Files
mercury/compiler/export.m
Fergus Henderson a90391225d Add support for `pragma import', which is a simplified form of
Estimated hours taken: 20

Add support for `pragma import', which is a simplified form of
`pragma c_code'.  With `pragma import', the user specifies only
the C function name, rather than a C code fragment, and the
Mercury compiler handles the argument-passing automatically.

TODO
- add documentation to doc/reference_manual.texi.

WISHLIST
- change `pragma import' and `pragma export'
  to take an additional parameter indicating the language
  (e.g. C, Prolog, Ada, Fortran, etc.) and/or calling
  convention

compiler/prog_data.m:
	Add `pragma import' to the parse tree data structure.

compiler/prog_io_pragma.m:
	Add code to parse `pragma import' declarations.

compiler/mercury_to_mercury.m:
	Add code to pretty-print `pragma import' declarations.

compiler/module_qual.m:
	Add code to module-qualify `pragma import' declarations.

compiler/make_hlds.m:
	Add code to process `pragma import' declarations,
	by converting them to clauses with HLDS `c_code' instructions.

compiler/export.m:
	Declare `export__exclude_argument_type' in the interface,
	for use by the code for handling `pragma import' in make_hlds.m.
	Change the documentation to say that this procedure is used for
	both exported and imported procedures.

compiler/notes/compiler_design.html:
	Document how the compiler handles `pragma import' declarations.

tests/hard_coded/Mmakefile:
tests/hard_coded/pragma_import.m:
tests/hard_coded/pragma_import.exp:
	Add some test cases for `pragma import'.
1998-01-09 11:44:21 +00:00

533 lines
17 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1996-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% This module defines predicates to produce the functions which are
% exported to C via a `pragma export' declaration.
% Note: any changes here might also require similar changes to the handling
% of `pragma import' declarations, which are handled in make_hlds.m.
% Main authors: dgj.
%-----------------------------------------------------------------------------%
:- module export.
:- interface.
:- import_module hlds_module, prog_data.
:- import_module io, list, term.
% From the module_info, get a list of functions, each of which allows
% a call to be made to a Mercury procedure from C
:- pred export__get_pragma_exported_procs(module_info, list(string)).
:- mode export__get_pragma_exported_procs(in, out) is det.
% Produce a header file containing prototypes for the exported C
% functions
:- pred export__produce_header_file(module_info, string, io__state, io__state).
:- mode export__produce_header_file(in, in, di, uo) is det.
% Convert the term, which represents a type, to a string corresponding
% to its C type. (Defaults to Word).
:- pred export__term_to_type_string(term, string).
:- mode export__term_to_type_string(in, out) is det.
% Generate C code to convert an rval (represented as a string), from
% a C type to a mercury C type (ie. convert strings and floats to
% words) and return the resulting C code as a string.
:- pred convert_type_to_mercury(string, type, string).
:- mode convert_type_to_mercury(in, in, out) is det.
% Generate C code to convert an rval (represented as a string), from
% a mercury C type to a C type. (ie. convert words to strings and
% floats if required) and return the resulting C code as a string.
:- pred convert_type_from_mercury(string, type, string).
:- mode convert_type_from_mercury(in, in, out) is det.
% Certain types, namely io__state and store__store(S),
% are just dummy types used to ensure logical semantics;
% there is no need to actually pass them, and so when
% importing or exporting procedures to/from C, we don't
% include arguments with these types.
:- pred export__exclude_argument_type(type).
:- mode export__exclude_argument_type(in) is semidet.
:- implementation.
:- import_module code_gen, code_util, hlds_pred, llds, llds_out.
:- import_module library, map, int, string, std_util, assoc_list, require.
:- import_module bool.
export__get_pragma_exported_procs(Module, ExportedProcsCode) :-
module_info_get_pragma_exported_procs(Module, ExportedProcs),
module_info_get_predicate_table(Module, PredicateTable),
predicate_table_get_preds(PredicateTable, Preds),
export__to_c(Preds, ExportedProcs, Module, ExportedProcsCode).
% For each exported procedure, produce a C function.
% The code we generate is in the form
%
% #if SEMIDET
% bool
% #elif FUNCTION
% Word
% #else
% void
% #endif
% <function name>(Word Mercury__Argument1, Word *Mercury__Argument2...)
% /* Word for input, Word* for output */
% {
% #if NUM_REAL_REGS > 0
% Word c_regs[NUM_REAL_REGS];
% #endif
% #if FUNCTION
% Word retval;
% #endif
%
% /* save the registers that our C caller may be using */
% save_regs_to_mem(c_regs);
%
% /* restore Mercury's registers that were saved as */
% /* we entered C from Mercury (the process must */
% /* always start in Mercury so that we can */
% /* init_engine() etc.) */
% restore_registers();
% <copy input arguments from Mercury__Arguments into registers>
% /* save the registers which may be clobbered */
% /* by the C function call call_engine(). */
% save_transient_registers();
% {
% Declare_entry(<label of called proc>);
% call_engine(ENTRY(<label of called proc>);
% }
% /* restore the registers which may have been */
% /* clobbered by the return from the C function */
% /* call_engine() */
% restore_transient_registers();
% #if SEMIDET
% if (!r1) {
% restore_regs_from_mem(c_regs);
% return FALSE;
% }
% #elif FUNCTION
% <copy return value register into retval>
% #endif
% <copy output args from registers into *Mercury__Arguments>
% restore_regs_from_mem(c_regs);
% #if SEMIDET
% return TRUE;
% #elif FUNCTION
% return retval;
% #endif
% }
:- pred export__to_c(pred_table, list(pragma_exported_proc), module_info,
list(string)).
:- mode export__to_c(in, in, in, out) is det.
export__to_c(_Preds, [], _Module, []).
export__to_c(Preds, [E|ExportedProcs], Module, ExportedProcsCode) :-
E = pragma_exported_proc(PredId, ProcId, C_Function),
get_export_info(Preds, PredId, ProcId,
C_RetType, MaybeDeclareRetval, MaybeFail, MaybeSucceed,
ArgInfoTypes),
get_argument_declarations(ArgInfoTypes, yes, ArgDecls),
% work out which arguments are input, and which are output,
% and copy to/from the mercury registers.
get_input_args(ArgInfoTypes, 0, InputArgs),
copy_output_args(ArgInfoTypes, 0, OutputArgs),
code_util__make_proc_label(Module, PredId, ProcId, ProcLabel),
llds_out__get_proc_label(ProcLabel, yes, ProcLabelString),
string__append_list([ "\n",
C_RetType, "\n",
C_Function, "(", ArgDecls, ")\n{\n",
"#if NUM_REAL_REGS > 0\n",
"\tWord c_regs[NUM_REAL_REGS];\n",
"#endif\n",
MaybeDeclareRetval,
"\n",
"\tsave_regs_to_mem(c_regs);\n",
"\trestore_registers();\n",
InputArgs,
"\tsave_transient_registers();\n",
"\t{\n\tDeclare_entry(",
ProcLabelString,
");\n",
"\tcall_engine(ENTRY(",
ProcLabelString,
"));\n\t}\n",
"\trestore_transient_registers();\n",
MaybeFail,
OutputArgs,
"\trestore_regs_from_mem(c_regs);\n",
MaybeSucceed,
"}\n\n"],
Code),
export__to_c(Preds, ExportedProcs, Module, TheRest),
ExportedProcsCode = [Code|TheRest].
% get_export_info(Preds, PredId, ProcId,
% C_RetType, MaybeDeclareRetval, MaybeFail, MaybeSuccess,
% ArgInfoTypes):
% Figure out the C return type, the actions on success
% and failure, and the argument locations/modes/types
% for a given procedure.
:- pred get_export_info(pred_table, pred_id, proc_id,
string, string, string, string,
assoc_list(arg_info, type)).
:- mode get_export_info(in, in, in, out, out, out, out, out) is det.
get_export_info(Preds, PredId, ProcId, C_RetType,
MaybeDeclareRetval, MaybeFail, MaybeSucceed, ArgInfoTypes) :-
map__lookup(Preds, PredId, PredInfo),
pred_info_get_is_pred_or_func(PredInfo, PredOrFunc),
pred_info_procedures(PredInfo, ProcTable),
map__lookup(ProcTable, ProcId, ProcInfo),
proc_info_arg_info(ProcInfo, ArgInfos),
pred_info_arg_types(PredInfo, _TVarSet, ArgTypes),
proc_info_interface_code_model(ProcInfo, CodeModel),
assoc_list__from_corresponding_lists(ArgInfos, ArgTypes,
ArgInfoTypes0),
% figure out what the C return type should be,
% and build the `return' instructions (if any)
( CodeModel = model_det,
(
PredOrFunc = function,
pred_args_to_func_args(ArgInfoTypes0, ArgInfoTypes1,
arg_info(RetArgLoc, RetArgMode) - RetType),
RetArgMode = top_out,
\+ export__exclude_argument_type(RetType)
->
export__term_to_type_string(RetType, C_RetType),
argloc_to_string(RetArgLoc, RetArgString0),
convert_type_from_mercury(RetArgString0, RetType,
RetArgString),
string__append_list(["\t", C_RetType,
" return_value;\n"],
MaybeDeclareRetval),
string__append_list(["\treturn_value = ", RetArgString,
";\n"], MaybeFail),
string__append_list(["\treturn return_value;\n"],
MaybeSucceed),
ArgInfoTypes2 = ArgInfoTypes1
;
C_RetType = "void",
MaybeDeclareRetval = "",
MaybeFail = "",
MaybeSucceed = "",
ArgInfoTypes2 = ArgInfoTypes0
)
; CodeModel = model_semi,
% we treat semidet functions the same as semidet predicates,
% which means that for Mercury functions the Mercury return
% value becomes the last argument, and the C return value
% is a bool that is used to indicate success or failure.
C_RetType = "bool",
MaybeDeclareRetval = "",
string__append_list([
"\tif (!r1) {\n",
"\t\trestore_regs_from_mem(c_regs);\n",
"\treturn FALSE;\n",
"\t}\n"
], MaybeFail),
MaybeSucceed = "\treturn TRUE;\n",
ArgInfoTypes2 = ArgInfoTypes0
; CodeModel = model_non,
% we should probably check this earlier, e.g. in make_hlds.m,
% but better we catch this error late than never...
C_RetType = "\n#error ""cannot export nondet procedure""\n",
MaybeDeclareRetval = "",
MaybeFail = "",
MaybeSucceed = "",
ArgInfoTypes2 = ArgInfoTypes0
),
list__filter(export__include_arg, ArgInfoTypes2, ArgInfoTypes).
% export__include_arg(ArgInfoType):
% Succeeds iff the specified argument should be included in
% the arguments of the exported C function.
%
:- pred export__include_arg(pair(arg_info, type)::in) is semidet.
export__include_arg(arg_info(_Loc, Mode) - Type) :-
Mode \= top_unused,
\+ export__exclude_argument_type(Type).
% get_argument_declarations(Args, NameThem, DeclString):
% build a string to declare the argument types (and if
% NameThem = yes, the argument names) of a C function.
:- pred get_argument_declarations(assoc_list(arg_info, type), bool, string).
:- mode get_argument_declarations(in, in, out) is det.
get_argument_declarations([], _, "void").
get_argument_declarations([X|Xs], NameThem, Result) :-
get_argument_declarations_2([X|Xs], 0, NameThem, Result).
:- pred get_argument_declarations_2(assoc_list(arg_info, type), int, bool,
string).
:- mode get_argument_declarations_2(in, in, in, out) is det.
get_argument_declarations_2([], _, _, "").
get_argument_declarations_2([AT|ATs], Num0, NameThem, Result) :-
AT = ArgInfo - Type,
Num is Num0 + 1,
get_argument_declaration(ArgInfo, Type, Num, NameThem,
TypeString, ArgName),
(
ATs = []
->
string__append(TypeString, ArgName, Result)
;
get_argument_declarations_2(ATs, Num, NameThem, TheRest),
string__append_list([TypeString, ArgName, ", ", TheRest],
Result)
).
:- pred get_argument_declaration(arg_info, type, int, bool, string, string).
:- mode get_argument_declaration(in, in, in, in, out, out) is det.
get_argument_declaration(ArgInfo, Type, Num, NameThem, TypeString, ArgName) :-
ArgInfo = arg_info(_Loc, Mode),
( NameThem = yes ->
string__int_to_string(Num, NumString),
string__append(" Mercury__argument", NumString, ArgName)
;
ArgName = ""
),
export__term_to_type_string(Type, TypeString0),
(
Mode = top_out
->
% output variables are passed as pointers
string__append(TypeString0, " *", TypeString)
;
TypeString = TypeString0
).
:- pred get_input_args(assoc_list(arg_info, type), int, string).
:- mode get_input_args(in, in, out) is det.
get_input_args([], _, "").
get_input_args([AT|ATs], Num0, Result) :-
AT = ArgInfo - Type,
ArgInfo = arg_info(ArgLoc, Mode),
Num is Num0 + 1,
(
Mode = top_in,
string__int_to_string(Num, NumString),
string__append("Mercury__argument", NumString, ArgName0),
convert_type_to_mercury(ArgName0, Type, ArgName),
argloc_to_string(ArgLoc, ArgLocString),
string__append_list(
["\t", ArgLocString, " = ", ArgName, ";\n" ],
InputArg)
;
Mode = top_out,
InputArg = ""
;
Mode = top_unused,
InputArg = ""
),
get_input_args(ATs, Num, TheRest),
string__append(InputArg, TheRest, Result).
:- pred copy_output_args(assoc_list(arg_info, type), int, string).
:- mode copy_output_args(in, in, out) is det.
copy_output_args([], _, "").
copy_output_args([AT|ATs], Num0, Result) :-
AT = ArgInfo - Type,
ArgInfo = arg_info(ArgLoc, Mode),
Num is Num0 + 1,
(
Mode = top_in,
OutputArg = ""
;
Mode = top_out,
string__int_to_string(Num, NumString),
string__append("Mercury__argument", NumString, ArgName),
argloc_to_string(ArgLoc, ArgLocString0),
convert_type_from_mercury(ArgLocString0, Type, ArgLocString),
string__append_list(
["\t*", ArgName, " = ", ArgLocString, ";\n" ],
OutputArg)
;
Mode = top_unused,
OutputArg = ""
),
copy_output_args(ATs, Num, TheRest),
string__append(OutputArg, TheRest, Result).
% convert an argument location (currently just a register number)
% to a string representing a C code fragment that names it.
:- pred argloc_to_string(arg_loc, string).
:- mode argloc_to_string(in, out) is det.
argloc_to_string(RegNum, RegName) :-
string__int_to_string(RegNum, RegNumString),
(
% XXX We should handle float registers
% XXX This magic number can't be good
RegNum > 32
->
string__append_list(["r(", RegNumString, ")"], RegName)
;
string__append("r", RegNumString, RegName)
).
convert_type_to_mercury(Rval, Type, ConvertedRval) :-
(
Type = term__functor(term__atom("string"), [], _)
->
string__append("(Word) ", Rval, ConvertedRval)
;
Type = term__functor(term__atom("float"), [], _)
->
string__append_list(["float_to_word(", Rval, ")" ],
ConvertedRval)
;
Type = term__functor(term__atom("character"), [], _)
->
% We need to explicitly cast to UnsignedChar
% to avoid problems with C compilers for which `char'
% is signed.
string__append("(UnsignedChar) ", Rval, ConvertedRval)
;
ConvertedRval = Rval
).
convert_type_from_mercury(Rval, Type, ConvertedRval) :-
(
Type = term__functor(term__atom("string"), [], _)
->
string__append("(String) ", Rval, ConvertedRval)
;
Type = term__functor(term__atom("float"), [], _)
->
string__append_list(["word_to_float(", Rval, ")" ],
ConvertedRval)
;
ConvertedRval = Rval
).
% Certain types, namely io__state and store__store(S),
% are just dummy types used to ensure logical semantics;
% there is no need to actually pass them, and so when
% importing or exporting procedures to/from C, we don't
% include arguments with these types.
export__exclude_argument_type(Type) :-
Type = term__functor(term__atom(":"), [
term__functor(term__atom(ModuleName), [], _),
term__functor(term__atom(TypeName), TypeArgs, _)
], _),
list__length(TypeArgs, TypeArity),
export__exclude_argument_type_2(ModuleName, TypeName, TypeArity).
:- pred export__exclude_argument_type_2(string::in, string::in, arity::in)
is semidet.
export__exclude_argument_type_2("io", "state", 0). % io:state/0
export__exclude_argument_type_2("store", "store", 1). % store:store/1.
export__produce_header_file(Module, ModuleName) -->
{ module_info_get_pragma_exported_procs(Module, ExportedProcs) },
(
{ ExportedProcs = [_|_] }
->
{ module_info_get_predicate_table(Module, PredicateTable) },
{ predicate_table_get_preds(PredicateTable, Preds) },
{ string__append(ModuleName, ".h", FileName) },
io__tell(FileName, Result),
(
{ Result = ok }
->
{ library__version(Version) },
io__write_strings(
["/*\n** Automatically generated from `",
ModuleName,
".m' by the\n** Mercury compiler, version ",
Version,
". Do not edit.\n*/\n"]),
{ string__to_upper(ModuleName, UpperModuleName) },
{ string__append(UpperModuleName, "_H", UpperFileName) },
io__write_strings([
"#ifndef ", UpperFileName, "\n",
"#define ", UpperFileName, "\n",
"\n",
"#ifdef __cplusplus\n",
"extern ""C"" {\n",
"#endif\n",
"\n",
"#include ""mercury_imp.h""\n",
"\n"]),
export__produce_header_file_2(Preds, ExportedProcs),
io__write_strings([
"\n",
"#ifdef __cplusplus\n",
"}\n",
"#endif\n",
"\n",
"#endif /* ", UpperFileName, " */\n"]),
io__told
;
io__progname_base("export.m", ProgName),
io__write_string("\n"),
io__write_string(ProgName),
io__write_string(": can't open `"),
io__write_string(FileName),
io__write_string("' for output\n"),
io__set_exit_status(1)
)
;
[]
).
:- pred export__produce_header_file_2(pred_table, list(pragma_exported_proc),
io__state, io__state).
:- mode export__produce_header_file_2(in, in, di, uo) is det.
export__produce_header_file_2(_Preds, []) --> [].
export__produce_header_file_2(Preds, [E|ExportedProcs]) -->
{ E = pragma_exported_proc(PredId, ProcId, C_Function) },
{ get_export_info(Preds, PredId, ProcId, C_RetType,
_DeclareReturnVal, _FailureAction, _SuccessAction,
HeadArgInfoTypes) },
{ get_argument_declarations(HeadArgInfoTypes, no, ArgDecls) },
% output the function header
io__write_string(C_RetType),
io__write_string(" "),
io__write_string(C_Function),
io__write_string("("),
io__write_string(ArgDecls),
io__write_string(");\n"),
export__produce_header_file_2(Preds, ExportedProcs).
% Convert a term representation of a variable type to a string which
% represents the C type of the variable
% Apart from special cases, local variables become Words
export__term_to_type_string(Type, Result) :-
( Type = term__functor(term__atom("int"), [], _) ->
Result = "Integer"
; Type = term__functor(term__atom("float"), [], _) ->
Result = "Float"
; Type = term__functor(term__atom("string"), [], _) ->
Result = "String"
; Type = term__functor(term__atom("character"), [], _) ->
Result = "Char"
;
Result = "Word"
).