mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-16 22:35:41 +00:00
Estimated hours taken: 6 Change the MLDS calling convention so that for model_det Mercury functions with output mode results, the function results get mapped to MLDS function return values rather than to by-ref parameters. The rationale for this is to make interoperability simpler (especially for the IL & Java back-ends). compiler/lambda.m: Change the rules for compatibility of closures so that for MLDS grades function closures are not treated as compatible with predicate closures. compiler/ml_code_util.m: Change ml_gen_params so that it takes a pred_or_func parameter, and for model_det functions it maps the output-moded function results to MLDS return values. compiler/ml_code_gen.m: For model_det functions with output mode results, return the function result by value. Rename the `output_vars' field of the ml_gen_info as `byref_output_vars'. compiler/ml_call_gen.m: Pass down the pred_or_func parameter to ml_gen_params. For calls to model_det functions with output mode results, return the function result by value. compiler/hlds_goal.m: Add new predicate generic_call_pred_or_func, for use by ml_call_gen.m. compiler/ml_unify_gen.m: Modify the code for generating wrapper functions for closures so that it reflects the new calling convention for Mercury functions. compiler/mlds.m: compiler/mlds_to_c.m: compiler/ml_code_gen.m: Don't handle model_det functions with output mode results specially in `pragma export' anymore, since the internal MLDS form now has the same prototype as the exported one.
2878 lines
92 KiB
Mathematica
2878 lines
92 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1999-2000 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% File: ml_code_gen.m
|
|
% Main author: fjh
|
|
|
|
% MLDS code generation -- convert from HLDS to MLDS.
|
|
|
|
% This module is an alternative to the original code generator.
|
|
% The original code generator compiles from HLDS to LLDS, generating
|
|
% very low-level code. This code generator instead compiles to MLDS,
|
|
% generating much higher-level code than the original code generator.
|
|
|
|
% For nondeterministic predicates, we generate code using an explicit
|
|
% continuation passing style. Each nondeterministic predicate gets
|
|
% translated into a function which takes an extra parameter which is a
|
|
% function pointer that points to the success continuation. On success,
|
|
% the function calls its success continuation, and on failure it returns.
|
|
|
|
% To keep things easy, this pass generates code which may contain nested
|
|
% functions; if the target language doesn't support nested functions (or
|
|
% doesn't support them _efficiently_) then a later MLDS->MLDS simplification
|
|
% pass will convert it to a form that does not use nested functions.
|
|
|
|
% Note that when we take the address of a nested function, we only ever
|
|
% do two things with it: pass it as a continuation argument, or call it.
|
|
% The continuations are never returned and never stored inside heap objects
|
|
% or global variables. These conditions are sufficient to ensure that
|
|
% we never keep the address of a nested function after the containing
|
|
% functions has returned, so we won't get any dangling continuations.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
% CODE GENERATION SUMMARY
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% In each procedure, we declare a local variable `bool succeeded'.
|
|
% This is used to hold the success status of semidet sub-goals.
|
|
% Note that the comments below show local declarations for the
|
|
% `succeeded' variable in all the places where they would be
|
|
% needed if we were generating them locally, but currently
|
|
% we actually just generate a single `succeeded' variable for
|
|
% each procedure.
|
|
%
|
|
% The calling convention for sub-goals is as follows.
|
|
%
|
|
% model_det goal:
|
|
% On success, fall through.
|
|
% (May clobber `succeeded'.)
|
|
% model_semi goal:
|
|
% On success, set `succeeded' to TRUE and fall through.
|
|
% On failure, set `succeeded' to FALSE and fall through.
|
|
% multi/nondet goal:
|
|
% On success, call the current success continuation.
|
|
% On failure, fall through.
|
|
% (May clobber `succeeded' in either case.)
|
|
%
|
|
% In comments, we use the following notation to distinguish between
|
|
% these three.
|
|
%
|
|
% model_det goal:
|
|
% <do Goal>
|
|
% This means execute Goal (which must be model_det).
|
|
% model_semi goal:
|
|
% <succeeded = Goal>
|
|
% This means execute Goal, and set `succeeded' to
|
|
% TRUE if the goal succeeds and FALSE if it fails.
|
|
% model_non goal:
|
|
% <Goal && CONT()>
|
|
% This means execute Goal, calling the success
|
|
% continuation function CONT() if it succeeds,
|
|
% and falling through if it fails.
|
|
%
|
|
% The notation
|
|
%
|
|
% [situation]:
|
|
% <[construct]>
|
|
% ===>
|
|
% [code]
|
|
%
|
|
% means that in the situation described by [situation],
|
|
% for the the specified [construct] we will generate the specified [code].
|
|
|
|
% There is one other important thing which can be considered part of the
|
|
% calling convention for the code that we generate for each goal.
|
|
% If static ground term optimization is enabled, then for the terms
|
|
% marked as static by mark_static_terms.m, we will generate static consts.
|
|
% These static consts can refer to other static consts defined earlier.
|
|
% We need to be careful about the scopes of variables to ensure that
|
|
% for any term that mark_static_terms.m marks as static, the C constants
|
|
% representing the arguments of that term are in scope at the point
|
|
% where that term is constructed. Basically this means that
|
|
% all the static consts generated inside a goal must be hoist out to
|
|
% the top level scope for that goal, except for goal types where
|
|
% goal_expr_mark_static_terms (in mark_static_terms.m) returns the
|
|
% same static_info unchanged, i.e. branched goals and negations.
|
|
%
|
|
% Handling static constants also requires that the calls to ml_gen_goal
|
|
% for each subgoal must be done in the right order, so that the
|
|
% const_num_map in the ml_gen_info holds the right sequence numbers
|
|
% for the constants in scope.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for wrapping goals
|
|
%
|
|
% If a model_foo goal occurs in a model_bar context, where foo != bar,
|
|
% then we need to modify the code that we emit for the goal so that
|
|
% it conforms to the calling convenion expected for model_bar.
|
|
|
|
% det goal in semidet context:
|
|
% <succeeded = Goal>
|
|
% ===>
|
|
% <do Goal>
|
|
% succeeded = TRUE;
|
|
|
|
% det goal in nondet context:
|
|
% <Goal && SUCCEED()>
|
|
% ===>
|
|
% <do Goal>
|
|
% SUCCEED();
|
|
|
|
% semi goal in nondet context:
|
|
% <Goal && SUCCEED()>
|
|
% ===>
|
|
% bool succeeded;
|
|
%
|
|
% <succeeded = Goal>
|
|
% if (succeeded) SUCCEED();
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for commits
|
|
%
|
|
|
|
% There's several different ways of handling commits:
|
|
% - using catch/throw
|
|
% - using setjmp/longjmp
|
|
% - exiting nested functions via gotos to
|
|
% their containing functions
|
|
%
|
|
% The MLDS data structure abstracts away these differences
|
|
% using the `try_commit' and `do_commit' instructions.
|
|
% The comments below show the MLDS try_commit/do_commit version first,
|
|
% but for clarity I've also included sample code using each of the three
|
|
% different techniques.
|
|
%
|
|
% If those methods turn out to be too inefficient,
|
|
% another alternative would be to change the generated
|
|
% code so that after every function call, it would check a flag,
|
|
% and if that flag was set, it would return.
|
|
% Then MR_DO_COMMIT would just set the flag and return.
|
|
% The flag could be in a global (or thread-local) variable,
|
|
% or it could be an additional value returned from each function.
|
|
|
|
% model_non in semi context: (using try_commit/do_commit)
|
|
% <succeeded = Goal>
|
|
% ===>
|
|
% MR_COMMIT_TYPE ref;
|
|
% void success() {
|
|
% MR_DO_COMMIT(ref);
|
|
% }
|
|
% MR_TRY_COMMIT(ref, {
|
|
% <Goal && success()>
|
|
% succeeded = FALSE;
|
|
% }, {
|
|
% succeeded = TRUE;
|
|
% })
|
|
|
|
% model_non in semi context: (using catch/throw)
|
|
% <succeeded = Goal>
|
|
% ===>
|
|
% void success() {
|
|
% throw COMMIT;
|
|
% }
|
|
% try {
|
|
% <Goal && success()>
|
|
% succeeded = FALSE;
|
|
% } catch (COMMIT) {
|
|
% succeeded = TRUE;
|
|
% }
|
|
|
|
% model_non in semi context: (using setjmp/longjmp)
|
|
% <succeeded = Goal>
|
|
% ===>
|
|
% jmp_buf buf;
|
|
% void success() {
|
|
% longjmp(buf, 1);
|
|
% }
|
|
% if (setjmp(buf)) {
|
|
% succeeded = TRUE;
|
|
% } else {
|
|
% <Goal && success()>
|
|
% succeeded = FALSE;
|
|
% }
|
|
|
|
% model_non in semi context: (using GNU C nested functions,
|
|
% GNU C local labels, and exiting
|
|
% the nested function by a goto
|
|
% to a label in the containing function)
|
|
% <succeeded = Goal>
|
|
% ===>
|
|
% __label__ commit;
|
|
% void success() {
|
|
% goto commit;
|
|
% }
|
|
% <Goal && success()>
|
|
% succeeded = FALSE;
|
|
% goto commit_done;
|
|
% commit:
|
|
% succeeded = TRUE;
|
|
% commit_done:
|
|
% ;
|
|
|
|
% model_non in det context: (using try_commit/do_commit)
|
|
% <do Goal>
|
|
% ===>
|
|
% MR_COMMIT_TYPE ref;
|
|
% void success() {
|
|
% MR_DO_COMMIT(ref);
|
|
% }
|
|
% MR_TRY_COMMIT(ref, {
|
|
% <Goal && success()>
|
|
% }, {})
|
|
|
|
% model_non in det context (using GNU C nested functions,
|
|
% GNU C local labels, and exiting
|
|
% the nested function by a goto
|
|
% to a label in the containing function)
|
|
% <do Goal>
|
|
% ===>
|
|
% __label__ done;
|
|
% void success() {
|
|
% goto done;
|
|
% }
|
|
% try {
|
|
% <Goal && success()>
|
|
% } catch (COMMIT) {}
|
|
% done: ;
|
|
|
|
% model_non in det context (using catch/throw):
|
|
% <do Goal>
|
|
% ===>
|
|
% void success() {
|
|
% throw COMMIT;
|
|
% }
|
|
% try {
|
|
% <Goal && success()>
|
|
% } catch (COMMIT) {}
|
|
|
|
% model_non in det context (using setjmp/longjmp):
|
|
% <do Goal>
|
|
% ===>
|
|
% jmp_buf buf;
|
|
% void success() {
|
|
% longjmp(buf, TRUE);
|
|
% }
|
|
% if (setjmp(buf) == 0) {
|
|
% <Goal && success()>
|
|
% }
|
|
|
|
% Note that for all of these versions, we must hoist any static declarations
|
|
% generated for <Goal> out to the top level; this is needed so that such
|
|
% declarations remain in scope for any following goals.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for empty conjunctions (`true')
|
|
%
|
|
|
|
% model_det goal:
|
|
% <do true>
|
|
% ===>
|
|
% /* fall through */
|
|
|
|
% model_semi goal:
|
|
% <succeeded = true>
|
|
% ===>
|
|
% succceeded = TRUE;
|
|
|
|
% model_non goal
|
|
% <true && CONT()>
|
|
% ===>
|
|
% CONT();
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for non-empty conjunctions
|
|
%
|
|
|
|
% We need to handle the case where the first goal cannot succeed
|
|
% specially:
|
|
%
|
|
% at_most_zero Goal:
|
|
% <Goal, Goals>
|
|
% ===>
|
|
% <Goal>
|
|
%
|
|
% The remaining cases for conjunction all assume that the first
|
|
% goal's determinism is not `erroneous' or `failure'.
|
|
|
|
% If the first goal is model_det, it is straight-forward:
|
|
%
|
|
% model_det Goal:
|
|
% <Goal, Goals>
|
|
% ===>
|
|
% <do Goal>
|
|
% <Goals>
|
|
|
|
% If the first goal is model_semidet, then there are two cases:
|
|
% if the conj as a whole is semidet, things are simple, and
|
|
% if the conj as a whole is model_non, then we do the same as
|
|
% for the semidet case, except that we also (ought to) declare
|
|
% a local `succeeded' variable.
|
|
%
|
|
% model_semi Goal in model_semi conj:
|
|
% <succeeded = (Goal, Goals)>
|
|
% ===>
|
|
% <succeeded = Goal>;
|
|
% if (succeeded) {
|
|
% <Goals>;
|
|
% }
|
|
%
|
|
% model_semi Goal in model_non conj:
|
|
% <Goal && Goals>
|
|
% ===>
|
|
% bool succeeded;
|
|
%
|
|
% <succeeded = Goal>;
|
|
% if (succeeded) {
|
|
% <Goals>;
|
|
% }
|
|
%
|
|
% The actual code generation scheme we use is slightly
|
|
% different to that: we hoist any declarations generated
|
|
% for <Goals> to the outer scope, rather than keeping
|
|
% them inside the `if', so that they remain in
|
|
% scope for any later goals which follow this.
|
|
% This is needed for declarations of static consts.
|
|
|
|
% For model_non goals, there are a couple of different
|
|
% ways that we could generate code, depending on whether
|
|
% we are aiming to maximize readability, or whether we
|
|
% prefer to generate code that may be more efficient
|
|
% but is a little less readable. The more readable method
|
|
% puts the generated goals in the same order that
|
|
% they occur in the source code:
|
|
%
|
|
% model_non Goal (optimized for readability)
|
|
% <Goal, Goals>
|
|
% ===>
|
|
% entry_func() {
|
|
% <Goal && succ_func()>;
|
|
% }
|
|
% succ_func() {
|
|
% <Goals && SUCCEED()>;
|
|
% }
|
|
%
|
|
% entry_func();
|
|
%
|
|
% The more efficient method generates the goals in
|
|
% reverse order, so it's less readable, but it has fewer
|
|
% function calls and can make it easier for the C compiler
|
|
% to inline things:
|
|
%
|
|
% model_non Goal (optimized for efficiency):
|
|
% <Goal, Goals>
|
|
% ===>
|
|
% succ_func() {
|
|
% <Goals && SUCCEED()>;
|
|
% }
|
|
%
|
|
% <Goal && succ_func()>;
|
|
%
|
|
% The more efficient method is the one we actually use.
|
|
%
|
|
% Here's how those two methods look on longer
|
|
% conjunctions of nondet goals:
|
|
%
|
|
% model_non goals (optimized for readability):
|
|
% <Goal1, Goal2, Goal3, Goals>
|
|
% ===>
|
|
% label0_func() {
|
|
% <Goal1 && label1_func()>;
|
|
% }
|
|
% label1_func() {
|
|
% <Goal2 && label2_func()>;
|
|
% }
|
|
% label2_func() {
|
|
% <Goal3 && label3_func()>;
|
|
% }
|
|
% label3_func() {
|
|
% <Goals && SUCCEED()>;
|
|
% }
|
|
%
|
|
% label0_func();
|
|
%
|
|
% model_non goals (optimized for efficiency):
|
|
% <Goal1, Goal2, Goal3, Goals>
|
|
% ===>
|
|
% label1_func() {
|
|
% label2_func() {
|
|
% label3_func() {
|
|
% <Goals && SUCCEED()>;
|
|
% }
|
|
% <Goal3 && label3_func()>;
|
|
% }
|
|
% <Goal2 && label2_func()>;
|
|
% }
|
|
% <Goal1 && label1_func()>;
|
|
%
|
|
% Note that it might actually make more sense to generate
|
|
% conjunctions of nondet goals like this:
|
|
%
|
|
% model_non goals (optimized for efficiency, alternative version):
|
|
% <Goal1, Goal2, Goal3, Goals>
|
|
% ===>
|
|
% label3_func() {
|
|
% <Goals && SUCCEED()>;
|
|
% }
|
|
% label2_func() {
|
|
% <Goal3 && label3_func()>;
|
|
% }
|
|
% label1_func() {
|
|
% <Goal2 && label2_func()>;
|
|
% }
|
|
%
|
|
% <Goal1 && label1_func()>;
|
|
%
|
|
% This would avoid the undesirable deep nesting that we sometimes get
|
|
% with our current scheme. However, if we're eliminating nested
|
|
% functions, as is normally the case, then after the ml_elim_nested
|
|
% transformation all the functions and variables have been hoisted
|
|
% to the top level, so there is no difference between these two.
|
|
%
|
|
% As with semidet conjunctions, we hoist declarations
|
|
% out so that they remain in scope for any following goals.
|
|
% This is needed for declarations of static consts.
|
|
% However, we want to keep the declarations of non-static
|
|
% variables local, since accessing local variables is more
|
|
% efficient that accessing variables in the environment
|
|
% from a nested function. So we only hoist declarations
|
|
% of static constants.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for empty disjunctions (`fail')
|
|
%
|
|
|
|
% model_semi goal:
|
|
% <succeeded = fail>
|
|
% ===>
|
|
% succeeded = FALSE;
|
|
|
|
% model_non goal:
|
|
% <fail && CONT()>
|
|
% ===>
|
|
% /* fall through */
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for non-empty disjunctions
|
|
%
|
|
|
|
% model_det disj:
|
|
|
|
% model_det Goal:
|
|
% <do (Goal ; Goals)>
|
|
% ===>
|
|
% <do Goal>
|
|
% /* <Goals> will never be reached */
|
|
|
|
% model_semi Goal:
|
|
% <do (Goal ; Goals)>
|
|
% ===>
|
|
% bool succeeded;
|
|
%
|
|
% <succeeded = Goal>;
|
|
% if (!succeeded) {
|
|
% <do Goals>;
|
|
% }
|
|
|
|
% model_semi disj:
|
|
|
|
% model_det Goal:
|
|
% <succeeded = (Goal ; Goals)>
|
|
% ===>
|
|
% bool succeeded;
|
|
%
|
|
% <do Goal>
|
|
% succeeded = TRUE
|
|
% /* <Goals> will never be reached */
|
|
|
|
% model_semi Goal:
|
|
% <succeeded = (Goal ; Goals)>
|
|
% ===>
|
|
% bool succeeded;
|
|
%
|
|
% <succeeded = Goal>;
|
|
% if (!succeeded) {
|
|
% <succeeded = Goals>;
|
|
% }
|
|
|
|
% model_non disj:
|
|
%
|
|
% model_det Goal:
|
|
% <(Goal ; Goals) && SUCCEED()>
|
|
% ===>
|
|
% <Goal>
|
|
% SUCCEED();
|
|
% <Goals && SUCCEED()>
|
|
%
|
|
% model_semi Goal:
|
|
% <(Goal ; Goals) && SUCCEED()>
|
|
% ===>
|
|
% bool succeeded;
|
|
%
|
|
% <succeeded = Goal>
|
|
% if (succeeded) SUCCEED();
|
|
% <Goals && SUCCEED()>
|
|
%
|
|
% model_non Goal:
|
|
% <(Goal ; Goals) && SUCCEED()>
|
|
% ===>
|
|
% <Goal && SUCCEED()>
|
|
% <Goals && SUCCEED()>
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for if-then-else
|
|
%
|
|
|
|
% model_semi Cond:
|
|
% <(Cond -> Then ; Else)>
|
|
% ===>
|
|
% bool succeeded;
|
|
%
|
|
% <succeeded = Cond>
|
|
% if (succeeded) {
|
|
% <Then>
|
|
% } else {
|
|
% <Else>
|
|
% }
|
|
|
|
% /*
|
|
% ** XXX The following transformation does not do as good a job of GC
|
|
% ** as it could. Ideally we ought to ensure that stuff used only
|
|
% ** in the `Else' part will be reclaimed if a GC occurs during
|
|
% ** the `Then' part. But that is a bit tricky to achieve.
|
|
% */
|
|
%
|
|
% model_non Cond:
|
|
% <(Cond -> Then ; Else)>
|
|
% ===>
|
|
% bool cond_<N>;
|
|
%
|
|
% void then_func() {
|
|
% cond_<N> = TRUE;
|
|
% <Then>
|
|
% }
|
|
%
|
|
% cond_<N> = FALSE;
|
|
% <Cond && then_func()>
|
|
% if (!cond_<N>) {
|
|
% <Else>
|
|
% }
|
|
% except that we hoist any declarations generated
|
|
% for <Cond> to the top of the scope, so that they
|
|
% are in scope for the <Then> goal
|
|
% (this is needed for declarations of static consts)
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for negation
|
|
%
|
|
|
|
% model_det negation
|
|
% <not(Goal)>
|
|
% ===>
|
|
% bool succeeded;
|
|
% <succeeded = Goal>
|
|
% /* now ignore the value of succeeded,
|
|
% which we know will be FALSE */
|
|
|
|
% model_semi negation, model_det Goal:
|
|
% <succeeded = not(Goal)>
|
|
% ===>
|
|
% <do Goal>
|
|
% succeeded = FALSE;
|
|
|
|
% model_semi negation, model_semi Goal:
|
|
% <succeeded = not(Goal)>
|
|
% ===>
|
|
% <succeeded = Goal>
|
|
% succeeded = !succeeded;
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for deconstruction unifications
|
|
%
|
|
|
|
% det (cannot_fail) deconstruction:
|
|
% <succeeded = (X => f(A1, A2, ...))>
|
|
% ===>
|
|
% A1 = arg(X, f, 1); % extract arguments
|
|
% A2 = arg(X, f, 2);
|
|
% ...
|
|
|
|
% semidet (can_fail) deconstruction:
|
|
% <X => f(A1, A2, ...)>
|
|
% ===>
|
|
% <succeeded = (X => f(_, _, _, _))> % tag test
|
|
% if (succeeded) {
|
|
% A1 = arg(X, f, 1); % extract arguments
|
|
% A2 = arg(X, f, 2);
|
|
% ...
|
|
% }
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
|
|
% XXX This back-end is still not yet complete.
|
|
%
|
|
% Done:
|
|
% - function prototypes
|
|
% - code generation for det, semidet, and nondet predicates:
|
|
% - conjunctions
|
|
% - disjunctions
|
|
% - negation
|
|
% - if-then-else
|
|
% - predicate/function calls
|
|
% - higher-order calls
|
|
% - unifications
|
|
% - assignment
|
|
% - simple tests
|
|
% - constructions
|
|
% - deconstructions
|
|
% - switches
|
|
% - commits
|
|
% - `pragma c_code'
|
|
% - RTTI
|
|
% - high level data representation
|
|
% (i.e. generate MLDS type declarations for user-defined types)
|
|
%
|
|
% BUGS:
|
|
% - XXX parameter passing problem for abstract equivalence types
|
|
% that are defined as float (or anything which doesn't map to `Word')
|
|
% - XXX setjmp() and volatile: local variables in functions that
|
|
% call setjmp() need to be declared volatile
|
|
% - XXX problem with unboxed float on DEC Alphas.
|
|
%
|
|
% TODO:
|
|
% - XXX define compare & unify preds for array and RTTI types
|
|
% - XXX need to generate correct layout information for closures
|
|
% so that tests/hard_coded/copy_pred works.
|
|
% - XXX fix ANSI/ISO C conformance of the generated code (i.e. port to lcc)
|
|
%
|
|
% UNIMPLEMENTED FEATURES:
|
|
% - test --det-copy-out
|
|
% - fix --gcc-nested-functions (need forward declarations for
|
|
% nested functions)
|
|
% - support debugging (with mdb)
|
|
% - support genuine parallel conjunction
|
|
% - support fact tables
|
|
% - support --split-c-files
|
|
% - support aditi
|
|
% - support trailing
|
|
% - support accurate GC
|
|
%
|
|
% POTENTIAL EFFICIENCY IMPROVEMENTS:
|
|
% - generate better code for switches
|
|
% - allow inlining of `pragma c_code' goals (see inlining.m)
|
|
% - generate local declarations for the `succeeded' variable;
|
|
% this would help in nondet code, because it would avoid
|
|
% the need to access the outermost function's `succeeded'
|
|
% variable via the environment pointer
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module ml_code_gen.
|
|
|
|
:- interface.
|
|
|
|
:- import_module hlds_module, mlds.
|
|
:- import_module io.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Generate MLDS code for an entire module.
|
|
%
|
|
:- pred ml_code_gen(module_info, mlds, io__state, io__state).
|
|
:- mode ml_code_gen(in, out, di, uo) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module ml_type_gen, ml_call_gen, ml_unify_gen, ml_code_util.
|
|
:- import_module llds. % XXX needed for `code_model'.
|
|
:- import_module arg_info, export, llds_out. % XXX needed for pragma C code
|
|
:- import_module hlds_pred, hlds_goal, hlds_data, prog_data.
|
|
:- import_module goal_util, type_util, mode_util, builtin_ops.
|
|
:- import_module passes_aux, modules.
|
|
:- import_module globals, options.
|
|
|
|
:- import_module assoc_list, bool, string, list, map.
|
|
:- import_module int, set, term, require, std_util.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Generate MLDS code for an entire module.
|
|
%
|
|
ml_code_gen(ModuleInfo, MLDS) -->
|
|
{ module_info_name(ModuleInfo, ModuleName) },
|
|
ml_gen_foreign_code(ModuleInfo, ForeignCode),
|
|
{ ml_gen_imports(ModuleInfo, Imports) },
|
|
ml_gen_defns(ModuleInfo, Defns),
|
|
{ MLDS = mlds(ModuleName, ForeignCode, Imports, Defns) }.
|
|
|
|
:- pred ml_gen_foreign_code(module_info, mlds__foreign_code,
|
|
io__state, io__state).
|
|
:- mode ml_gen_foreign_code(in, out, di, uo) is det.
|
|
|
|
ml_gen_foreign_code(ModuleInfo, MLDS_ForeignCode) -->
|
|
{ module_info_get_foreign_header(ModuleInfo, C_Header_Info) },
|
|
{ module_info_get_foreign_body_code(ModuleInfo, C_Body_Info) },
|
|
% XXX This assumes the language is C.
|
|
{ ConvBody = (func(S - C) = user_foreign_code(c, S, C)) },
|
|
{ User_C_Code = list__map(ConvBody, C_Body_Info) },
|
|
{ ml_gen_pragma_export(ModuleInfo, MLDS_PragmaExports) },
|
|
{ MLDS_ForeignCode = mlds__foreign_code(C_Header_Info, User_C_Code,
|
|
MLDS_PragmaExports) }.
|
|
|
|
:- pred ml_gen_imports(module_info, mlds__imports).
|
|
:- mode ml_gen_imports(in, out) is det.
|
|
|
|
ml_gen_imports(ModuleInfo, MLDS_ImportList) :-
|
|
module_info_get_all_deps(ModuleInfo, AllImports),
|
|
MLDS_ImportList = list__map(mercury_module_name_to_mlds,
|
|
set__to_sorted_list(AllImports)).
|
|
|
|
:- pred ml_gen_defns(module_info, mlds__defns, io__state, io__state).
|
|
:- mode ml_gen_defns(in, out, di, uo) is det.
|
|
|
|
ml_gen_defns(ModuleInfo, MLDS_Defns) -->
|
|
ml_gen_types(ModuleInfo, MLDS_TypeDefns),
|
|
ml_gen_preds(ModuleInfo, MLDS_PredDefns),
|
|
{ MLDS_Defns = list__append(MLDS_TypeDefns, MLDS_PredDefns) }.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% For each pragma export declaration we associate with it the
|
|
% information used to generate the function prototype for the MLDS
|
|
% entity.
|
|
%
|
|
|
|
:- pred ml_gen_pragma_export(module_info, list(mlds__pragma_export)).
|
|
:- mode ml_gen_pragma_export(in, out) is det.
|
|
|
|
ml_gen_pragma_export(ModuleInfo, MLDS_PragmaExports) :-
|
|
module_info_get_pragma_exported_procs(ModuleInfo, PragmaExports),
|
|
list__map(ml_gen_pragma_export_proc(ModuleInfo),
|
|
PragmaExports, MLDS_PragmaExports).
|
|
|
|
:- pred ml_gen_pragma_export_proc(module_info::in,
|
|
pragma_exported_proc::in, mlds__pragma_export::out) is det.
|
|
|
|
ml_gen_pragma_export_proc(ModuleInfo,
|
|
pragma_exported_proc(PredId, ProcId, C_Name, ProgContext),
|
|
ML_Defn) :-
|
|
|
|
ml_gen_proc_label(ModuleInfo, PredId, ProcId,
|
|
MLDS_Name, MLDS_ModuleName),
|
|
MLDS_FuncParams = ml_gen_proc_params(ModuleInfo, PredId, ProcId),
|
|
MLDS_Context = mlds__make_context(ProgContext),
|
|
ML_Defn = ml_pragma_export(C_Name, qual(MLDS_ModuleName, MLDS_Name),
|
|
MLDS_FuncParams, MLDS_Context).
|
|
|
|
|
|
%
|
|
% Test to see if the procedure is
|
|
% a model_det function whose function result has an output mode
|
|
% (whose type is not a dummy argument type like io__state),
|
|
% and if so, bind RetVar to the procedure's return value.
|
|
% These procedures need to handled specially: for such functions,
|
|
% we map the Mercury function result to an MLDS return value.
|
|
%
|
|
:- pred is_output_det_function(module_info, pred_id, proc_id, prog_var).
|
|
:- mode is_output_det_function(in, in, in, out) is semidet.
|
|
|
|
is_output_det_function(ModuleInfo, PredId, ProcId, RetArgVar) :-
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, PredInfo,
|
|
ProcInfo),
|
|
|
|
pred_info_get_is_pred_or_func(PredInfo, function),
|
|
proc_info_interface_code_model(ProcInfo, model_det),
|
|
|
|
proc_info_argmodes(ProcInfo, Modes),
|
|
pred_info_arg_types(PredInfo, ArgTypes),
|
|
proc_info_headvars(ProcInfo, ArgVars),
|
|
modes_to_arg_modes(ModuleInfo, Modes, ArgTypes, ArgModes),
|
|
pred_args_to_func_args(ArgModes, _InputArgModes, RetArgMode),
|
|
pred_args_to_func_args(ArgTypes, _InputArgTypes, RetArgType),
|
|
pred_args_to_func_args(ArgVars, _InputArgVars, RetArgVar),
|
|
|
|
RetArgMode = top_out,
|
|
\+ type_util__is_dummy_argument_type(RetArgType).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Stuff to generate MLDS code for HLDS predicates & functions.
|
|
%
|
|
|
|
% Generate MLDS definitions for all the non-imported
|
|
% predicates (and functions) in the HLDS.
|
|
%
|
|
:- pred ml_gen_preds(module_info, mlds__defns, io__state, io__state).
|
|
:- mode ml_gen_preds(in, out, di, uo) is det.
|
|
|
|
ml_gen_preds(ModuleInfo, MLDS_PredDefns) -->
|
|
{ module_info_preds(ModuleInfo, PredTable) },
|
|
{ map__keys(PredTable, PredIds) },
|
|
{ MLDS_PredDefns0 = [] },
|
|
ml_gen_preds_2(ModuleInfo, PredIds, PredTable,
|
|
MLDS_PredDefns0, MLDS_PredDefns).
|
|
|
|
:- pred ml_gen_preds_2(module_info, list(pred_id), pred_table,
|
|
mlds__defns, mlds__defns, io__state, io__state).
|
|
:- mode ml_gen_preds_2(in, in, in, in, out, di, uo) is det.
|
|
|
|
ml_gen_preds_2(ModuleInfo, PredIds0, PredTable, MLDS_Defns0, MLDS_Defns) -->
|
|
(
|
|
{ PredIds0 = [PredId|PredIds] }
|
|
->
|
|
{ map__lookup(PredTable, PredId, PredInfo) },
|
|
( { pred_info_is_imported(PredInfo) } ->
|
|
{ MLDS_Defns1 = MLDS_Defns0 }
|
|
;
|
|
ml_gen_pred(ModuleInfo, PredId, PredInfo,
|
|
MLDS_Defns0, MLDS_Defns1)
|
|
),
|
|
ml_gen_preds_2(ModuleInfo, PredIds, PredTable,
|
|
MLDS_Defns1, MLDS_Defns)
|
|
;
|
|
{ MLDS_Defns = MLDS_Defns0 }
|
|
).
|
|
|
|
% Generate MLDS definitions for all the non-imported
|
|
% procedures of a given predicate (or function).
|
|
%
|
|
:- pred ml_gen_pred(module_info, pred_id, pred_info,
|
|
mlds__defns, mlds__defns, io__state, io__state).
|
|
:- mode ml_gen_pred(in, in, in, in, out, di, uo) is det.
|
|
|
|
ml_gen_pred(ModuleInfo, PredId, PredInfo, MLDS_Defns0, MLDS_Defns) -->
|
|
{ pred_info_non_imported_procids(PredInfo, ProcIds) },
|
|
( { ProcIds = [] } ->
|
|
{ MLDS_Defns = MLDS_Defns0 }
|
|
;
|
|
write_pred_progress_message("% Generating MLDS code for ",
|
|
PredId, ModuleInfo),
|
|
{ pred_info_procedures(PredInfo, ProcTable) },
|
|
{ ml_gen_procs(ProcIds, ModuleInfo, PredId, PredInfo,
|
|
ProcTable, MLDS_Defns0, MLDS_Defns) }
|
|
).
|
|
|
|
:- pred ml_gen_procs(list(proc_id), module_info, pred_id, pred_info,
|
|
proc_table, mlds__defns, mlds__defns).
|
|
:- mode ml_gen_procs(in, in, in, in, in, in, out) is det.
|
|
|
|
ml_gen_procs([], _, _, _, _) --> [].
|
|
ml_gen_procs([ProcId | ProcIds], ModuleInfo, PredId, PredInfo, ProcTable)
|
|
-->
|
|
{ map__lookup(ProcTable, ProcId, ProcInfo) },
|
|
ml_gen_proc(ModuleInfo, PredId, ProcId, PredInfo, ProcInfo),
|
|
ml_gen_procs(ProcIds, ModuleInfo, PredId, PredInfo, ProcTable).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for handling individual procedures
|
|
%
|
|
|
|
% Generate MLDS code for the specified procedure.
|
|
%
|
|
:- pred ml_gen_proc(module_info, pred_id, proc_id, pred_info, proc_info,
|
|
mlds__defns, mlds__defns).
|
|
:- mode ml_gen_proc(in, in, in, in, in, in, out) is det.
|
|
|
|
ml_gen_proc(ModuleInfo, PredId, ProcId, _PredInfo, ProcInfo, Defns0, Defns) :-
|
|
proc_info_context(ProcInfo, Context),
|
|
|
|
ml_gen_proc_label(ModuleInfo, PredId, ProcId, MLDS_Name, _ModuleName),
|
|
MLDS_Context = mlds__make_context(Context),
|
|
MLDS_DeclFlags = ml_gen_proc_decl_flags(ModuleInfo, PredId, ProcId),
|
|
ml_gen_proc_defn(ModuleInfo, PredId, ProcId,
|
|
MLDS_ProcDefnBody, ExtraDefns),
|
|
MLDS_ProcDefn = mlds__defn(MLDS_Name, MLDS_Context, MLDS_DeclFlags,
|
|
MLDS_ProcDefnBody),
|
|
Defns1 = list__append(ExtraDefns, [MLDS_ProcDefn | Defns0]),
|
|
ml_gen_maybe_add_table_var(ModuleInfo, PredId, ProcId, ProcInfo,
|
|
Defns1, Defns).
|
|
|
|
:- pred ml_gen_maybe_add_table_var(module_info, pred_id, proc_id, proc_info,
|
|
mlds__defns, mlds__defns).
|
|
:- mode ml_gen_maybe_add_table_var(in, in, in, in, in, out) is det.
|
|
|
|
ml_gen_maybe_add_table_var(ModuleInfo, PredId, ProcId, ProcInfo,
|
|
Defns0, Defns) :-
|
|
proc_info_eval_method(ProcInfo, EvalMethod),
|
|
(
|
|
eval_method_has_per_proc_tabling_pointer(EvalMethod) = yes
|
|
->
|
|
ml_gen_pred_label(ModuleInfo, PredId, ProcId,
|
|
MLDS_PredLabel, _MLDS_PredModule),
|
|
Var = tabling_pointer(MLDS_PredLabel - ProcId),
|
|
proc_info_context(ProcInfo, Context),
|
|
TablePointerVarDefn = ml_gen_mlds_var_decl(
|
|
Var, mlds__generic_type,
|
|
mlds__make_context(Context)),
|
|
Defns = [TablePointerVarDefn | Defns0]
|
|
;
|
|
Defns = Defns0
|
|
).
|
|
|
|
% Return the declaration flags appropriate for a procedure definition.
|
|
%
|
|
:- func ml_gen_proc_decl_flags(module_info, pred_id, proc_id)
|
|
= mlds__decl_flags.
|
|
ml_gen_proc_decl_flags(ModuleInfo, PredId, ProcId) = MLDS_DeclFlags :-
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
( procedure_is_exported(PredInfo, ProcId) ->
|
|
Access = public
|
|
;
|
|
Access = private
|
|
),
|
|
PerInstance = per_instance,
|
|
Virtuality = non_virtual,
|
|
Finality = overridable,
|
|
Constness = modifiable,
|
|
Abstractness = concrete,
|
|
MLDS_DeclFlags = init_decl_flags(Access, PerInstance,
|
|
Virtuality, Finality, Constness, Abstractness).
|
|
|
|
% Generate an MLDS definition for the specified procedure.
|
|
%
|
|
:- pred ml_gen_proc_defn(module_info, pred_id, proc_id, mlds__entity_defn,
|
|
mlds__defns).
|
|
:- mode ml_gen_proc_defn(in, in, in, out, out) is det.
|
|
|
|
ml_gen_proc_defn(ModuleInfo, PredId, ProcId, MLDS_ProcDefnBody, ExtraDefns) :-
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
|
|
PredInfo, ProcInfo),
|
|
pred_info_arg_types(PredInfo, ArgTypes),
|
|
proc_info_interface_code_model(ProcInfo, CodeModel),
|
|
proc_info_headvars(ProcInfo, HeadVars),
|
|
proc_info_goal(ProcInfo, Goal0),
|
|
|
|
%
|
|
% The HLDS front-end sometimes over-estimates
|
|
% the set of non-locals. We need to restrict
|
|
% the set of non-locals for the top-level goal
|
|
% to just the headvars, because otherwise variables
|
|
% which occur in the top-level non-locals but which
|
|
% are not really non-local will not be declared.
|
|
%
|
|
Goal0 = GoalExpr - GoalInfo0,
|
|
goal_info_get_code_gen_nonlocals(GoalInfo0, NonLocals0),
|
|
set__list_to_set(HeadVars, HeadVarsSet),
|
|
set__intersect(HeadVarsSet, NonLocals0, NonLocals),
|
|
goal_info_set_code_gen_nonlocals(GoalInfo0, NonLocals, GoalInfo),
|
|
Goal = GoalExpr - GoalInfo,
|
|
|
|
goal_info_get_context(GoalInfo, Context),
|
|
|
|
MLDSGenInfo0 = ml_gen_info_init(ModuleInfo, PredId, ProcId),
|
|
MLDS_Params = ml_gen_proc_params(ModuleInfo, PredId, ProcId),
|
|
|
|
% Set up the initial success continuation, if any.
|
|
% Also figure out which output variables are returned by
|
|
% value (rather than being passed by reference) and remove
|
|
% them from the byref_output_vars field in the ml_gen_info.
|
|
( CodeModel = model_non ->
|
|
ml_set_up_initial_succ_cont(ModuleInfo, CopiedOutputVars,
|
|
MLDSGenInfo0, MLDSGenInfo1)
|
|
;
|
|
(
|
|
is_output_det_function(ModuleInfo, PredId, ProcId,
|
|
ResultVar)
|
|
->
|
|
CopiedOutputVars = [ResultVar],
|
|
ml_gen_info_get_byref_output_vars(MLDSGenInfo0,
|
|
ByRefOutputVars0),
|
|
list__delete_all(ByRefOutputVars0,
|
|
ResultVar, ByRefOutputVars),
|
|
ml_gen_info_set_byref_output_vars(ByRefOutputVars,
|
|
MLDSGenInfo0, MLDSGenInfo1)
|
|
;
|
|
CopiedOutputVars = [],
|
|
MLDSGenInfo1 = MLDSGenInfo0
|
|
)
|
|
),
|
|
|
|
% This would generate all the local variables at the top of the
|
|
% function:
|
|
% MLDS_LocalVars = ml_gen_all_local_var_decls(Goal, VarSet,
|
|
% VarTypes, HeadVars, ModuleInfo),
|
|
% But instead we now generate them locally for each goal.
|
|
% We just declare the `succeeded' var here,
|
|
% plus locals for any output arguments that are returned by value
|
|
% (e.g. if --nondet-copy-out is enabled, or for det function return
|
|
% values).
|
|
MLDS_Context = mlds__make_context(Context),
|
|
( CopiedOutputVars = [] ->
|
|
% optimize common case
|
|
OutputVarLocals = []
|
|
;
|
|
proc_info_varset(ProcInfo, VarSet),
|
|
proc_info_vartypes(ProcInfo, VarTypes),
|
|
% note that for headvars we must use the types from
|
|
% the procedure interface, not from the procedure body
|
|
HeadVarTypes = map__from_corresponding_lists(HeadVars,
|
|
ArgTypes),
|
|
OutputVarLocals = ml_gen_local_var_decls(VarSet,
|
|
map__overlay(VarTypes, HeadVarTypes),
|
|
MLDS_Context, ModuleInfo, CopiedOutputVars)
|
|
),
|
|
MLDS_LocalVars = [ml_gen_succeeded_var_decl(MLDS_Context) |
|
|
OutputVarLocals],
|
|
ml_gen_proc_body(CodeModel, HeadVars, ArgTypes, CopiedOutputVars, Goal,
|
|
MLDS_Decls0, MLDS_Statements,
|
|
MLDSGenInfo1, MLDSGenInfo),
|
|
ml_gen_info_get_extra_defns(MLDSGenInfo, ExtraDefns),
|
|
MLDS_Decls = list__append(MLDS_LocalVars, MLDS_Decls0),
|
|
MLDS_Statement = ml_gen_block(MLDS_Decls, MLDS_Statements, Context),
|
|
MLDS_ProcDefnBody = mlds__function(yes(proc(PredId, ProcId)),
|
|
MLDS_Params, yes(MLDS_Statement)).
|
|
|
|
:- pred ml_set_up_initial_succ_cont(module_info, list(prog_var),
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_set_up_initial_succ_cont(in, out, in, out) is det.
|
|
|
|
ml_set_up_initial_succ_cont(ModuleInfo, NondetCopiedOutputVars) -->
|
|
{ module_info_globals(ModuleInfo, Globals) },
|
|
{ globals__lookup_bool_option(Globals, nondet_copy_out,
|
|
NondetCopyOut) },
|
|
( { NondetCopyOut = yes } ->
|
|
% for --nondet-copy-out, we generate local variables
|
|
% for the output variables and then pass them to the
|
|
% continuation, rather than passing them by reference.
|
|
=(MLDSGenInfo0),
|
|
{ ml_gen_info_get_byref_output_vars(MLDSGenInfo0,
|
|
NondetCopiedOutputVars) },
|
|
ml_gen_info_set_byref_output_vars([])
|
|
;
|
|
{ NondetCopiedOutputVars = [] }
|
|
),
|
|
ml_gen_var_list(NondetCopiedOutputVars, OutputVarLvals),
|
|
ml_variable_types(NondetCopiedOutputVars, OutputVarTypes),
|
|
ml_initial_cont(OutputVarLvals, OutputVarTypes, InitialCont),
|
|
ml_gen_info_push_success_cont(InitialCont).
|
|
|
|
% Generate MLDS definitions for all the local variables in a function.
|
|
%
|
|
% Note that this function generates all the local variables at the
|
|
% top of the function. It might be a better idea to instead
|
|
% generate local declarations for all the variables used in
|
|
% each sub-goal.
|
|
%
|
|
:- func ml_gen_all_local_var_decls(hlds_goal, prog_varset,
|
|
map(prog_var, prog_type), list(prog_var), module_info) =
|
|
mlds__defns.
|
|
ml_gen_all_local_var_decls(Goal, VarSet, VarTypes, HeadVars, ModuleInfo) =
|
|
MLDS_LocalVars :-
|
|
Goal = _ - GoalInfo,
|
|
goal_info_get_context(GoalInfo, Context),
|
|
goal_util__goal_vars(Goal, AllVarsSet),
|
|
set__delete_list(AllVarsSet, HeadVars, LocalVarsSet),
|
|
set__to_sorted_list(LocalVarsSet, LocalVars),
|
|
MLDS_Context = mlds__make_context(Context),
|
|
MLDS_LocalVars0 = ml_gen_local_var_decls(VarSet, VarTypes,
|
|
MLDS_Context, ModuleInfo, LocalVars),
|
|
MLDS_SucceededVar = ml_gen_succeeded_var_decl(MLDS_Context),
|
|
MLDS_LocalVars = [MLDS_SucceededVar | MLDS_LocalVars0].
|
|
|
|
% Generate declarations for a list of local variables.
|
|
%
|
|
:- func ml_gen_local_var_decls(prog_varset, map(prog_var, prog_type),
|
|
mlds__context, module_info, prog_vars) = mlds__defns.
|
|
ml_gen_local_var_decls(VarSet, VarTypes, Context, ModuleInfo, Vars) =
|
|
LocalDecls :-
|
|
list__filter_map(ml_gen_local_var_decl(VarSet, VarTypes, Context,
|
|
ModuleInfo), Vars, LocalDecls).
|
|
|
|
% Generate a declaration for a local variable.
|
|
%
|
|
:- pred ml_gen_local_var_decl(prog_varset, map(prog_var, prog_type),
|
|
mlds__context, module_info, prog_var, mlds__defn).
|
|
:- mode ml_gen_local_var_decl(in, in, in, in, in, out) is semidet.
|
|
ml_gen_local_var_decl(VarSet, VarTypes, Context, ModuleInfo, Var, MLDS_Defn) :-
|
|
map__lookup(VarTypes, Var, Type),
|
|
not type_util__is_dummy_argument_type(Type),
|
|
VarName = ml_gen_var_name(VarSet, Var),
|
|
MLDS_Defn = ml_gen_var_decl(VarName, Type, Context, ModuleInfo).
|
|
|
|
% Generate the code for a procedure body.
|
|
%
|
|
:- pred ml_gen_proc_body(code_model, list(prog_var), list(prog_type),
|
|
list(prog_var), hlds_goal, mlds__defns, mlds__statements,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_proc_body(in, in, in, in, in, out, out, in, out) is det.
|
|
|
|
ml_gen_proc_body(CodeModel, HeadVars, ArgTypes, CopiedOutputVars, Goal,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
{ Goal = _ - GoalInfo },
|
|
{ goal_info_get_context(GoalInfo, Context) },
|
|
|
|
%
|
|
% First just generate the code for the procedure's goal.
|
|
%
|
|
{ DoGenGoal = ml_gen_goal(CodeModel, Goal) },
|
|
|
|
%
|
|
% In certain cases -- for example existentially typed procedures,
|
|
% or unification/compare procedures for equivalence types --
|
|
% the parameters types may not match the types of the head variables.
|
|
% In such cases, we need to box/unbox/cast them to the right type.
|
|
% We also grab the original (uncast) lvals for the copied output
|
|
% variables (if any) here, since for the return statement that
|
|
% we append below, we want the original vars, not their cast versions.
|
|
%
|
|
ml_gen_var_list(CopiedOutputVars, CopiedOutputVarOriginalLvals),
|
|
ml_gen_convert_headvars(HeadVars, ArgTypes, CopiedOutputVars, Context,
|
|
ConvDecls, ConvInputStatements, ConvOutputStatements),
|
|
(
|
|
{ ConvDecls = [] },
|
|
{ ConvInputStatements = [] },
|
|
{ ConvOutputStatements = [] }
|
|
->
|
|
% No boxing/unboxing/casting required.
|
|
DoGenGoal(MLDS_Decls, MLDS_Statements1)
|
|
;
|
|
% Boxing/unboxing/casting required.
|
|
% We need to convert the input arguments,
|
|
% generate the goal, convert the output arguments,
|
|
% and then succeeed.
|
|
{ DoConvOutputs = (pred(Decls::out, Statements::out, in, out)
|
|
is det -->
|
|
ml_gen_success(CodeModel, Context, SuccStatements),
|
|
{ Decls = [] },
|
|
{ Statements = list__append(ConvOutputStatements,
|
|
SuccStatements) }
|
|
) },
|
|
ml_combine_conj(CodeModel, Context,
|
|
DoGenGoal, DoConvOutputs,
|
|
MLDS_Decls0, MLDS_Statements0),
|
|
{ MLDS_Statements1 = list__append(ConvInputStatements,
|
|
MLDS_Statements0) },
|
|
{ MLDS_Decls = list__append(ConvDecls, MLDS_Decls0) }
|
|
),
|
|
|
|
%
|
|
% Finally append an appropriate `return' statement, if needed.
|
|
%
|
|
ml_append_return_statement(CodeModel, CopiedOutputVarOriginalLvals,
|
|
Context, MLDS_Statements1, MLDS_Statements).
|
|
|
|
%
|
|
% In certain cases -- for example existentially typed procedures,
|
|
% or unification/compare procedures for equivalence types --
|
|
% the parameter types may not match the types of the head variables.
|
|
% In such cases, we need to box/unbox/cast them to the right type.
|
|
% This procedure handles that.
|
|
%
|
|
:- pred ml_gen_convert_headvars(list(prog_var), list(prog_type),
|
|
list(prog_var), prog_context,
|
|
mlds__defns, mlds__statements, mlds__statements,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_convert_headvars(in, in, in, in, out, out, out, in, out) is det.
|
|
|
|
ml_gen_convert_headvars([], [], _, _, [], [], []) --> [].
|
|
ml_gen_convert_headvars([Var|Vars], [HeadType|HeadTypes], CopiedOutputVars,
|
|
Context, Decls, InputStatements, OutputStatements) -->
|
|
ml_variable_type(Var, BodyType),
|
|
(
|
|
%
|
|
% Check whether HeadType is the same as BodyType
|
|
% (modulo the term__contexts)
|
|
%
|
|
{ map__init(Subst0) },
|
|
{ type_unify(HeadType, BodyType, [], Subst0, Subst) },
|
|
{ map__is_empty(Subst) }
|
|
->
|
|
% just recursively process the remaining arguments
|
|
ml_gen_convert_headvars(Vars, HeadTypes, CopiedOutputVars,
|
|
Context, Decls, InputStatements, OutputStatements)
|
|
;
|
|
%
|
|
% generate the lval for the head variable
|
|
%
|
|
ml_gen_var_with_type(Var, HeadType, HeadVarLval),
|
|
|
|
%
|
|
% generate code to box or unbox that head variable,
|
|
% to convert its type from HeadType to BodyType
|
|
%
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_varset(MLDSGenInfo, VarSet) },
|
|
{ VarName = ml_gen_var_name(VarSet, Var) },
|
|
ml_gen_box_or_unbox_lval(HeadType, BodyType, HeadVarLval,
|
|
VarName, Context, BodyLval, ConvDecls,
|
|
ConvInputStatements, ConvOutputStatements),
|
|
|
|
%
|
|
% Ensure that for any uses of this variable in the procedure
|
|
% body, we use the BodyLval (which has type BodyType)
|
|
% rather than the HeadVarLval (which has type HeadType).
|
|
%
|
|
ml_gen_info_set_var_lval(Var, BodyLval),
|
|
|
|
%
|
|
% Recursively process the remaining arguments
|
|
%
|
|
ml_gen_convert_headvars(Vars, HeadTypes, CopiedOutputVars,
|
|
Context, Decls1, InputStatements1, OutputStatements1),
|
|
|
|
%
|
|
% Add the code to convert this input or output.
|
|
%
|
|
=(MLDSGenInfo2),
|
|
{ ml_gen_info_get_byref_output_vars(MLDSGenInfo2,
|
|
ByRefOutputVars) },
|
|
{
|
|
( list__member(Var, ByRefOutputVars)
|
|
; list__member(Var, CopiedOutputVars)
|
|
)
|
|
->
|
|
InputStatements = InputStatements1,
|
|
OutputStatements = list__append(OutputStatements1,
|
|
ConvOutputStatements)
|
|
;
|
|
InputStatements = list__append(ConvInputStatements,
|
|
InputStatements1),
|
|
OutputStatements = OutputStatements1
|
|
},
|
|
{ list__append(ConvDecls, Decls1, Decls) }
|
|
).
|
|
ml_gen_convert_headvars([], [_|_], _, _, _, _, _) -->
|
|
{ error("ml_gen_convert_headvars: length mismatch") }.
|
|
ml_gen_convert_headvars([_|_], [], _, _, _, _, _) -->
|
|
{ error("ml_gen_convert_headvars: length mismatch") }.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Stuff to generate code for goals.
|
|
%
|
|
|
|
% Generate MLDS code for the specified goal in the
|
|
% specified code model. Return the result as a single statement
|
|
% (which may be a block statement containing nested declarations).
|
|
%
|
|
:- pred ml_gen_goal(code_model, hlds_goal, mlds__statement,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_goal(in, in, out, in, out) is det.
|
|
|
|
ml_gen_goal(CodeModel, Goal, MLDS_Statement) -->
|
|
ml_gen_goal(CodeModel, Goal, MLDS_Decls, MLDS_Statements),
|
|
{ Goal = _ - GoalInfo },
|
|
{ goal_info_get_context(GoalInfo, Context) },
|
|
{ MLDS_Statement = ml_gen_block(MLDS_Decls, MLDS_Statements,
|
|
Context) }.
|
|
|
|
% Generate MLDS code for the specified goal in the
|
|
% specified code model. Return the result as two lists,
|
|
% one containing the necessary declarations and the other
|
|
% containing the generated statements.
|
|
%
|
|
:- pred ml_gen_goal(code_model, hlds_goal, mlds__defns, mlds__statements,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_goal(in, in, out, out, in, out) is det.
|
|
|
|
ml_gen_goal(CodeModel, Goal, MLDS_Decls, MLDS_Statements) -->
|
|
{ Goal = GoalExpr - GoalInfo },
|
|
%
|
|
% Generate the local variables for this goal.
|
|
% We need to declare any variables which
|
|
% are local to this goal (including its subgoals),
|
|
% but which are not local to a subgoal.
|
|
% (If they're local to a subgoal, they'll be declared
|
|
% when we generate code for that subgoal.)
|
|
|
|
{ Locals = goal_local_vars(Goal) },
|
|
{ SubGoalLocals = union_of_direct_subgoal_locals(Goal) },
|
|
{ set__difference(Locals, SubGoalLocals, VarsToDeclareHere) },
|
|
{ set__to_sorted_list(VarsToDeclareHere, VarsList) },
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_varset(MLDSGenInfo, VarSet) },
|
|
{ ml_gen_info_get_var_types(MLDSGenInfo, VarTypes) },
|
|
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
|
|
{ VarDecls = ml_gen_local_var_decls(VarSet, VarTypes,
|
|
mlds__make_context(Context), ModuleInfo, VarsList) },
|
|
|
|
%
|
|
% Generate code for the goal in its own code model.
|
|
%
|
|
{ goal_info_get_context(GoalInfo, Context) },
|
|
{ goal_info_get_code_model(GoalInfo, GoalCodeModel) },
|
|
ml_gen_goal_expr(GoalExpr, GoalCodeModel, Context,
|
|
GoalDecls, GoalStatements0),
|
|
|
|
%
|
|
% Add whatever wrapper is needed to convert the goal's
|
|
% code model to the desired code model.
|
|
%
|
|
ml_gen_wrap_goal(CodeModel, GoalCodeModel, Context,
|
|
GoalStatements0, GoalStatements),
|
|
|
|
{ ml_join_decls(VarDecls, [], GoalDecls, GoalStatements, Context,
|
|
MLDS_Decls, MLDS_Statements) }.
|
|
|
|
% Return the set of variables which occur in the specified goal
|
|
% (including in its subgoals) and which are local to that goal.
|
|
:- func goal_local_vars(hlds_goal) = set(prog_var).
|
|
goal_local_vars(Goal) = LocalVars :-
|
|
% find all the variables in the goal
|
|
goal_util__goal_vars(Goal, GoalVars),
|
|
% delete the non-locals
|
|
Goal = _ - GoalInfo,
|
|
goal_info_get_code_gen_nonlocals(GoalInfo, NonLocalVars),
|
|
set__difference(GoalVars, NonLocalVars, LocalVars).
|
|
|
|
:- func union_of_direct_subgoal_locals(hlds_goal) = set(prog_var).
|
|
|
|
union_of_direct_subgoal_locals(Goal - _GoalInfo) =
|
|
promise_only_solution((pred(UnionOfSubGoalLocals::out) is cc_multi :-
|
|
set__init(EmptySet),
|
|
unsorted_aggregate(direct_subgoal(Goal),
|
|
union_subgoal_locals, EmptySet, UnionOfSubGoalLocals)
|
|
)).
|
|
|
|
:- pred union_subgoal_locals(hlds_goal, set(prog_var), set(prog_var)).
|
|
:- mode union_subgoal_locals(in, in, out) is det.
|
|
|
|
union_subgoal_locals(SubGoal, UnionOfSubGoalLocals0, UnionOfSubGoalLocals) :-
|
|
SubGoalLocals = goal_local_vars(SubGoal),
|
|
set__union(UnionOfSubGoalLocals0, SubGoalLocals, UnionOfSubGoalLocals).
|
|
|
|
% ml_gen_wrap_goal(OuterCodeModel, InnerCodeModel, Context,
|
|
% MLDS_Statements0, MLDS_Statements):
|
|
%
|
|
% OuterCodeModel is the code model expected by the
|
|
% context in which a goal is called. InnerCodeModel
|
|
% is the code model which the goal actually has.
|
|
% This predicate converts the code generated for
|
|
% the goal using InnerCodeModel into code that uses
|
|
% the calling convention appropriate for OuterCodeModel.
|
|
%
|
|
:- pred ml_gen_wrap_goal(code_model, code_model, prog_context,
|
|
mlds__statements, mlds__statements,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_wrap_goal(in, in, in, in, out, in, out) is det.
|
|
|
|
% If the inner and outer code models are equal,
|
|
% we don't need to do anything special.
|
|
|
|
ml_gen_wrap_goal(model_det, model_det, _,
|
|
MLDS_Statements, MLDS_Statements) --> [].
|
|
ml_gen_wrap_goal(model_semi, model_semi, _,
|
|
MLDS_Statements, MLDS_Statements) --> [].
|
|
ml_gen_wrap_goal(model_non, model_non, _,
|
|
MLDS_Statements, MLDS_Statements) --> [].
|
|
|
|
% If the inner code model is more precise than the outer code
|
|
% model, then we need to append some statements to convert
|
|
% the calling convention for the inner code model to that of
|
|
% the outer code model.
|
|
|
|
ml_gen_wrap_goal(model_semi, model_det, Context,
|
|
MLDS_Statements0, MLDS_Statements) -->
|
|
%
|
|
% det goal in semidet context:
|
|
% <succeeded = Goal>
|
|
% ===>
|
|
% <do Goal>
|
|
% succeeded = TRUE
|
|
%
|
|
ml_gen_set_success(const(true), Context, SetSuccessTrue),
|
|
{ MLDS_Statements = list__append(MLDS_Statements0, [SetSuccessTrue]) }.
|
|
|
|
ml_gen_wrap_goal(model_non, model_det, Context,
|
|
MLDS_Statements0, MLDS_Statements) -->
|
|
%
|
|
% det goal in nondet context:
|
|
% <Goal && SUCCEED()>
|
|
% ===>
|
|
% <do Goal>
|
|
% SUCCEED()
|
|
%
|
|
ml_gen_call_current_success_cont(Context, CallCont),
|
|
{ MLDS_Statements = list__append(MLDS_Statements0, [CallCont]) }.
|
|
|
|
ml_gen_wrap_goal(model_non, model_semi, Context,
|
|
MLDS_Statements0, MLDS_Statements) -->
|
|
%
|
|
% semi goal in nondet context:
|
|
% <Goal && SUCCEED()>
|
|
% ===>
|
|
% bool succeeded;
|
|
%
|
|
% <succeeded = Goal>
|
|
% if (succeeded) SUCCEED()
|
|
%
|
|
ml_gen_test_success(Succeeded),
|
|
ml_gen_call_current_success_cont(Context, CallCont),
|
|
{ IfStmt = if_then_else(Succeeded, CallCont, no) },
|
|
{ IfStatement = mlds__statement(IfStmt, mlds__make_context(Context)) },
|
|
{ MLDS_Statements = list__append(MLDS_Statements0, [IfStatement]) }.
|
|
|
|
% If the inner code model is less precise than the outer code model,
|
|
% then simplify.m is supposed to wrap the goal inside a `some'
|
|
% to indicate that a commit is needed.
|
|
|
|
ml_gen_wrap_goal(model_det, model_semi, _, _, _) -->
|
|
{ error("ml_gen_wrap_goal: code model mismatch -- semi in det") }.
|
|
ml_gen_wrap_goal(model_det, model_non, _, _, _) -->
|
|
{ error("ml_gen_wrap_goal: code model mismatch -- nondet in det") }.
|
|
ml_gen_wrap_goal(model_semi, model_non, _, _, _) -->
|
|
{ error("ml_gen_wrap_goal: code model mismatch -- nondet in semi") }.
|
|
|
|
% Generate code for a commit.
|
|
%
|
|
:- pred ml_gen_commit(hlds_goal, code_model, prog_context,
|
|
mlds__defns, mlds__statements,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_commit(in, in, in, out, out, in, out) is det.
|
|
|
|
ml_gen_commit(Goal, CodeModel, Context, MLDS_Decls, MLDS_Statements) -->
|
|
{ Goal = _ - GoalInfo },
|
|
{ goal_info_get_code_model(GoalInfo, GoalCodeModel) },
|
|
{ goal_info_get_context(GoalInfo, GoalContext) },
|
|
|
|
( { GoalCodeModel = model_non, CodeModel = model_semi } ->
|
|
|
|
% model_non in semi context: (using try_commit/do_commit)
|
|
% <succeeded = Goal>
|
|
% ===>
|
|
% bool succeeded;
|
|
% MR_COMMIT_TYPE ref;
|
|
% void success() {
|
|
% succeeded = TRUE;
|
|
% MR_DO_COMMIT(ref);
|
|
% }
|
|
% #ifdef NONDET_COPY_OUT
|
|
% <local var decls>
|
|
% #endif
|
|
% MR_TRY_COMMIT(ref, {
|
|
% <Goal && success()>
|
|
% succeeded = FALSE;
|
|
% }, {
|
|
% #ifdef NONDET_COPY_OUT
|
|
% <copy local vars to output args>
|
|
% #endif
|
|
% succeeded = TRUE;
|
|
% })
|
|
|
|
ml_gen_maybe_make_locals_for_output_args(GoalInfo,
|
|
LocalVarDecls, CopyLocalsToOutputArgs,
|
|
OrigVarLvalMap),
|
|
|
|
% generate the `success()' function
|
|
ml_gen_new_func_label(no, SuccessFuncLabel,
|
|
SuccessFuncLabelRval),
|
|
/* push nesting level */
|
|
{ MLDS_Context = mlds__make_context(Context) },
|
|
ml_gen_info_new_commit_label(CommitLabelNum),
|
|
{ string__format("commit_%d", [i(CommitLabelNum)],
|
|
CommitRef) },
|
|
ml_qualify_var(CommitRef, CommitRefLval),
|
|
{ CommitRefDecl = ml_gen_commit_var_decl(MLDS_Context,
|
|
CommitRef) },
|
|
{ DoCommitStmt = do_commit(lval(CommitRefLval)) },
|
|
{ DoCommitStatement = mlds__statement(DoCommitStmt,
|
|
MLDS_Context) },
|
|
/* pop nesting level */
|
|
ml_gen_nondet_label_func(SuccessFuncLabel, Context,
|
|
DoCommitStatement, SuccessFunc),
|
|
|
|
ml_get_env_ptr(EnvPtrRval),
|
|
{ SuccessCont = success_cont(SuccessFuncLabelRval,
|
|
EnvPtrRval, [], []) },
|
|
ml_gen_info_push_success_cont(SuccessCont),
|
|
ml_gen_goal(model_non, Goal, GoalDecls, GoalStatements),
|
|
% hoist any static constant declarations for Goal
|
|
% out to the top level
|
|
{ list__filter(ml_decl_is_static_const, GoalDecls,
|
|
GoalStaticDecls, GoalOtherDecls) },
|
|
{ GoalStatement = ml_gen_block(GoalOtherDecls,
|
|
GoalStatements, GoalContext) },
|
|
ml_gen_info_pop_success_cont,
|
|
ml_gen_set_success(const(false), Context, SetSuccessFalse),
|
|
ml_gen_set_success(const(true), Context, SetSuccessTrue),
|
|
{ TryCommitStmt = try_commit(CommitRefLval,
|
|
ml_gen_block([], [GoalStatement, SetSuccessFalse],
|
|
Context),
|
|
ml_gen_block([], list__append(CopyLocalsToOutputArgs,
|
|
[SetSuccessTrue]), Context)) },
|
|
{ TryCommitStatement = mlds__statement(TryCommitStmt,
|
|
MLDS_Context) },
|
|
|
|
{ MLDS_Decls = list__append([CommitRefDecl,
|
|
SuccessFunc | LocalVarDecls], GoalStaticDecls) },
|
|
{ MLDS_Statements = [TryCommitStatement] },
|
|
|
|
ml_gen_info_set_var_lvals(OrigVarLvalMap)
|
|
|
|
; { GoalCodeModel = model_non, CodeModel = model_det } ->
|
|
|
|
% model_non in det context: (using try_commit/do_commit)
|
|
% <do Goal>
|
|
% ===>
|
|
% MR_COMMIT_TYPE ref;
|
|
% void success() {
|
|
% MR_DO_COMMIT(ref);
|
|
% }
|
|
% #ifdef NONDET_COPY_OUT
|
|
% <local var decls>
|
|
% #endif
|
|
% MR_TRY_COMMIT(ref, {
|
|
% #ifdef NONDET_COPY_OUT
|
|
% <copy local vars to output args>
|
|
% #endif
|
|
% <Goal && success()>
|
|
% }, {})
|
|
|
|
ml_gen_maybe_make_locals_for_output_args(GoalInfo,
|
|
LocalVarDecls, CopyLocalsToOutputArgs,
|
|
OrigVarLvalMap),
|
|
|
|
% generate the `success()' function
|
|
ml_gen_new_func_label(no,
|
|
SuccessFuncLabel, SuccessFuncLabelRval),
|
|
/* push nesting level */
|
|
{ MLDS_Context = mlds__make_context(Context) },
|
|
ml_gen_info_new_commit_label(CommitLabelNum),
|
|
{ string__format("commit_%d", [i(CommitLabelNum)],
|
|
CommitRef) },
|
|
ml_qualify_var(CommitRef, CommitRefLval),
|
|
{ CommitRefDecl = ml_gen_commit_var_decl(MLDS_Context,
|
|
CommitRef) },
|
|
{ DoCommitStmt = do_commit(lval(CommitRefLval)) },
|
|
{ DoCommitStatement = mlds__statement(DoCommitStmt,
|
|
MLDS_Context) },
|
|
/* pop nesting level */
|
|
ml_gen_nondet_label_func(SuccessFuncLabel, Context,
|
|
DoCommitStatement, SuccessFunc),
|
|
|
|
ml_get_env_ptr(EnvPtrRval),
|
|
{ SuccessCont = success_cont(SuccessFuncLabelRval,
|
|
EnvPtrRval, [], []) },
|
|
ml_gen_info_push_success_cont(SuccessCont),
|
|
ml_gen_goal(model_non, Goal, GoalDecls, GoalStatements),
|
|
% hoist any static constant declarations for Goal
|
|
% out to the top level
|
|
{ list__filter(ml_decl_is_static_const, GoalDecls,
|
|
GoalStaticDecls, GoalOtherDecls) },
|
|
{ GoalStatement = ml_gen_block(GoalOtherDecls,
|
|
GoalStatements, GoalContext) },
|
|
ml_gen_info_pop_success_cont,
|
|
|
|
{ TryCommitStmt = try_commit(CommitRefLval, GoalStatement,
|
|
ml_gen_block([], CopyLocalsToOutputArgs, Context)) },
|
|
{ TryCommitStatement = mlds__statement(TryCommitStmt,
|
|
MLDS_Context) },
|
|
|
|
{ MLDS_Decls = list__append([CommitRefDecl,
|
|
SuccessFunc | LocalVarDecls], GoalStaticDecls) },
|
|
{ MLDS_Statements = [TryCommitStatement] },
|
|
|
|
ml_gen_info_set_var_lvals(OrigVarLvalMap)
|
|
;
|
|
% no commit required
|
|
ml_gen_goal(CodeModel, Goal, MLDS_Decls, MLDS_Statements)
|
|
).
|
|
|
|
%
|
|
% In commits, you have model_non code called from a model_det or
|
|
% model_semi context. With --nondet-copy-out, when generating code
|
|
% for commits, if the context is a model_det or model_semi procedure
|
|
% with output arguments passed by reference, then we need to introduce
|
|
% local variables corresponding to those output arguments,
|
|
% and at the end of the commit we'll copy the local variables into
|
|
% the output arguments.
|
|
%
|
|
:- pred ml_gen_maybe_make_locals_for_output_args(hlds_goal_info, mlds__defns,
|
|
mlds__statements, map(prog_var, mlds__lval),
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_maybe_make_locals_for_output_args(in, out, out, out, in, out)
|
|
is det.
|
|
|
|
ml_gen_maybe_make_locals_for_output_args(GoalInfo,
|
|
LocalVarDecls, CopyLocalsToOutputArgs, OrigVarLvalMap) -->
|
|
=(MLDSGenInfo0),
|
|
{ ml_gen_info_get_var_lvals(MLDSGenInfo0, OrigVarLvalMap) },
|
|
ml_gen_info_get_globals(Globals),
|
|
{ globals__lookup_bool_option(Globals, nondet_copy_out,
|
|
NondetCopyOut) },
|
|
( { NondetCopyOut = yes } ->
|
|
{ goal_info_get_context(GoalInfo, Context) },
|
|
{ goal_info_get_nonlocals(GoalInfo, NonLocals) },
|
|
{ ml_gen_info_get_byref_output_vars(MLDSGenInfo0,
|
|
ByRefOutputVars) },
|
|
{ VarsToCopy = set__intersect(set__list_to_set(ByRefOutputVars),
|
|
NonLocals) },
|
|
ml_gen_make_locals_for_output_args(
|
|
set__to_sorted_list(VarsToCopy), Context,
|
|
LocalVarDecls, CopyLocalsToOutputArgs)
|
|
;
|
|
{ LocalVarDecls = [] },
|
|
{ CopyLocalsToOutputArgs = [] }
|
|
).
|
|
|
|
:- pred ml_gen_make_locals_for_output_args(list(prog_var), prog_context,
|
|
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_make_locals_for_output_args(in, in, out, out, in, out) is det.
|
|
|
|
ml_gen_make_locals_for_output_args([], _, [], []) --> [].
|
|
ml_gen_make_locals_for_output_args([Var | Vars], Context,
|
|
LocalDefns, Assigns) -->
|
|
ml_gen_make_locals_for_output_args(Vars, Context,
|
|
LocalDefns0, Assigns0),
|
|
ml_variable_type(Var, Type),
|
|
( { type_util__is_dummy_argument_type(Type) } ->
|
|
{ LocalDefns = LocalDefns0 },
|
|
{ Assigns = Assigns0 }
|
|
;
|
|
ml_gen_make_local_for_output_arg(Var, Type, Context,
|
|
LocalDefn, Assign),
|
|
{ LocalDefns = [LocalDefn | LocalDefns0] },
|
|
{ Assigns = [Assign | Assigns0] }
|
|
).
|
|
|
|
:- pred ml_gen_make_local_for_output_arg(prog_var, prog_type, prog_context,
|
|
mlds__defn, mlds__statement, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_make_local_for_output_arg(in, in, in, out, out, in, out) is det.
|
|
|
|
ml_gen_make_local_for_output_arg(OutputVar, Type, Context,
|
|
LocalVarDefn, Assign) -->
|
|
%
|
|
% Look up the name of the output variable
|
|
%
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_varset(MLDSGenInfo, VarSet) },
|
|
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
|
|
{ OutputVarName = ml_gen_var_name(VarSet, OutputVar) },
|
|
|
|
%
|
|
% Generate a declaration for a corresponding local variable.
|
|
%
|
|
{ string__append("local_", OutputVarName, LocalVarName) },
|
|
{ LocalVarDefn = ml_gen_var_decl(LocalVarName, Type,
|
|
mlds__make_context(Context), ModuleInfo) },
|
|
|
|
%
|
|
% Generate code to assign from the local var to the output var
|
|
%
|
|
ml_gen_var(OutputVar, OutputVarLval),
|
|
ml_qualify_var(LocalVarName, LocalVarLval),
|
|
{ Assign = ml_gen_assign(OutputVarLval, lval(LocalVarLval), Context) },
|
|
|
|
%
|
|
% Update the lval for this variable so that any references to it
|
|
% inside the commit refer to the local variable rather than
|
|
% to the output argument.
|
|
% (Note that we reset all the var lvals at the end of the commit.)
|
|
%
|
|
ml_gen_info_set_var_lval(OutputVar, LocalVarLval).
|
|
|
|
% Generate the declaration for the `commit' variable.
|
|
%
|
|
:- func ml_gen_commit_var_decl(mlds__context, mlds__var_name) = mlds__defn.
|
|
ml_gen_commit_var_decl(Context, VarName) =
|
|
ml_gen_mlds_var_decl(var(VarName), mlds__commit_type, Context).
|
|
|
|
% Generate MLDS code for the different kinds of HLDS goals.
|
|
%
|
|
:- pred ml_gen_goal_expr(hlds_goal_expr, code_model, prog_context,
|
|
mlds__defns, mlds__statements,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_goal_expr(in, in, in, out, out, in, out) is det.
|
|
|
|
ml_gen_goal_expr(switch(Var, CanFail, CasesList, _), CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
ml_gen_switch(Var, CanFail, CasesList, CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements).
|
|
|
|
ml_gen_goal_expr(some(_Vars, _CanRemove, Goal), CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
ml_gen_commit(Goal, CodeModel, Context, MLDS_Decls, MLDS_Statements).
|
|
|
|
ml_gen_goal_expr(if_then_else(_Vars, Cond, Then, Else, _),
|
|
CodeModel, Context, MLDS_Decls, MLDS_Statements) -->
|
|
ml_gen_ite(CodeModel, Cond, Then, Else, Context,
|
|
MLDS_Decls, MLDS_Statements).
|
|
|
|
ml_gen_goal_expr(not(Goal), CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
ml_gen_negation(Goal, CodeModel, Context, MLDS_Decls, MLDS_Statements).
|
|
|
|
ml_gen_goal_expr(conj(Goals), CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
ml_gen_conj(Goals, CodeModel, Context, MLDS_Decls, MLDS_Statements).
|
|
|
|
ml_gen_goal_expr(disj(Goals, _), CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
ml_gen_disj(Goals, CodeModel, Context, MLDS_Decls, MLDS_Statements).
|
|
|
|
ml_gen_goal_expr(par_conj(Goals, _SM), CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
%
|
|
% XXX currently we treat parallel conjunction the same as
|
|
% sequential conjunction -- parallelism is not yet implemented
|
|
%
|
|
ml_gen_conj(Goals, CodeModel, Context, MLDS_Decls, MLDS_Statements).
|
|
|
|
ml_gen_goal_expr(generic_call(GenericCall, Vars, Modes, Detism), CodeModel,
|
|
Context, MLDS_Decls, MLDS_Statements) -->
|
|
{ determinism_to_code_model(Detism, CallCodeModel) },
|
|
{ require(unify(CodeModel, CallCodeModel),
|
|
"ml_gen_generic_call: code model mismatch") },
|
|
ml_gen_generic_call(GenericCall, Vars, Modes, CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements).
|
|
|
|
ml_gen_goal_expr(call(PredId, ProcId, ArgVars, BuiltinState, _, PredName),
|
|
CodeModel, Context, MLDS_Decls, MLDS_Statements) -->
|
|
(
|
|
{
|
|
BuiltinState = not_builtin
|
|
;
|
|
% For the MLDS back-end, we can't treat
|
|
% private_builtin:unsafe_type_cast as an
|
|
% inline builtin, since the code that
|
|
% builtin_ops__translate_builtin generates
|
|
% for it is not type-correct. Instead,
|
|
% we treat it as an ordinary polymorphic
|
|
% procedure; ml_gen_call will then generate
|
|
% the proper type conversions automatically.
|
|
PredName = qualified(_, "unsafe_type_cast")
|
|
}
|
|
->
|
|
ml_gen_var_list(ArgVars, ArgLvals),
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_varset(MLDSGenInfo, VarSet) },
|
|
{ ArgNames = ml_gen_var_names(VarSet, ArgVars) },
|
|
ml_variable_types(ArgVars, ActualArgTypes),
|
|
ml_gen_call(PredId, ProcId, ArgNames, ArgLvals, ActualArgTypes,
|
|
CodeModel, Context, MLDS_Decls, MLDS_Statements)
|
|
;
|
|
ml_gen_builtin(PredId, ProcId, ArgVars, CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements)
|
|
).
|
|
|
|
ml_gen_goal_expr(unify(_A, _B, _, Unification, _), CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
ml_gen_unification(Unification, CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements).
|
|
|
|
ml_gen_goal_expr(pragma_foreign_code(_Lang, Attributes,
|
|
PredId, ProcId, ArgVars, ArgDatas, OrigArgTypes, PragmaImpl),
|
|
CodeModel, OuterContext, MLDS_Decls, MLDS_Statements) -->
|
|
(
|
|
{ PragmaImpl = ordinary(C_Code, _MaybeContext) },
|
|
ml_gen_ordinary_pragma_c_code(CodeModel, Attributes,
|
|
PredId, ProcId, ArgVars, ArgDatas, OrigArgTypes,
|
|
C_Code, OuterContext, MLDS_Decls, MLDS_Statements)
|
|
;
|
|
{ PragmaImpl = nondet(
|
|
LocalVarsDecls, LocalVarsContext,
|
|
FirstCode, FirstContext, LaterCode, LaterContext,
|
|
_Treatment, SharedCode, SharedContext) },
|
|
ml_gen_nondet_pragma_c_code(CodeModel, Attributes,
|
|
PredId, ProcId, ArgVars, ArgDatas, OrigArgTypes,
|
|
OuterContext, LocalVarsDecls, LocalVarsContext,
|
|
FirstCode, FirstContext, LaterCode, LaterContext,
|
|
SharedCode, SharedContext, MLDS_Decls, MLDS_Statements)
|
|
;
|
|
{ PragmaImpl = import(Name, HandleReturn, Vars, _Context) },
|
|
{ C_Code = string__append_list([HandleReturn, " ",
|
|
Name, "(", Vars, ");"]) },
|
|
ml_gen_ordinary_pragma_c_code(CodeModel, Attributes,
|
|
PredId, ProcId, ArgVars, ArgDatas, OrigArgTypes,
|
|
C_Code, OuterContext, MLDS_Decls, MLDS_Statements)
|
|
).
|
|
|
|
ml_gen_goal_expr(bi_implication(_, _), _, _, _, _) -->
|
|
% these should have been expanded out by now
|
|
{ error("ml_gen_goal_expr: unexpected bi_implication") }.
|
|
|
|
:- pred ml_gen_nondet_pragma_c_code(code_model, pragma_foreign_code_attributes,
|
|
pred_id, proc_id, list(prog_var),
|
|
list(maybe(pair(string, mode))), list(prog_type), prog_context,
|
|
string, maybe(prog_context), string, maybe(prog_context),
|
|
string, maybe(prog_context), string, maybe(prog_context),
|
|
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_nondet_pragma_c_code(in, in, in, in, in, in, in, in,
|
|
in, in, in, in, in, in, in, in, out, out, in, out) is det.
|
|
|
|
% For model_non pragma c_code,
|
|
% we generate code of the following form:
|
|
%
|
|
% #define MR_PROC_LABEL <procedure name>
|
|
% <declaration of locals needed for boxing/unboxing>
|
|
% {
|
|
% <declaration of one local variable for each arg>
|
|
% struct {
|
|
% <user's local_vars decls>
|
|
% } MR_locals;
|
|
% bool MR_done = FALSE;
|
|
% bool MR_succeeded = FALSE;
|
|
%
|
|
% #define FAIL (MR_done = TRUE)
|
|
% #define SUCCEED (MR_succeeded = TRUE)
|
|
% #define SUCCEED_LAST (MR_succeeded = TRUE, \
|
|
% MR_done = TRUE)
|
|
% #define LOCALS (&MR_locals)
|
|
%
|
|
% <assign input args>
|
|
% <obtain global lock>
|
|
% <user's first_code C code>
|
|
% while (true) {
|
|
% <user's shared_code C code>
|
|
% <release global lock>
|
|
% if (MR_succeeded) {
|
|
% <assign output args>
|
|
% <boxing/unboxing of outputs>
|
|
% CONT();
|
|
% }
|
|
% if (MR_done) break;
|
|
% <obtain global lock>
|
|
% <user's later_code C code>
|
|
% }
|
|
%
|
|
% #undef FAIL
|
|
% #undef SUCCEED
|
|
% #undef SUCCEED_LAST
|
|
% #undef LOCALS
|
|
% }
|
|
% #undef MR_PROC_LABEL
|
|
%
|
|
% We insert a #define for MR_PROC_LABEL, so that the C code in
|
|
% the Mercury standard library that allocates memory manually
|
|
% can use MR_PROC_LABEL as the procname argument to
|
|
% incr_hp_msg(), for memory profiling. Hard-coding the procname
|
|
% argument in the C code would be wrong, since it wouldn't
|
|
% handle the case where the original pragma c_code procedure
|
|
% gets inlined and optimized away. Of course we also need to
|
|
% #undef it afterwards.
|
|
%
|
|
ml_gen_nondet_pragma_c_code(CodeModel, Attributes,
|
|
PredId, ProcId, ArgVars, ArgDatas, OrigArgTypes, Context,
|
|
LocalVarsDecls, LocalVarsContext, FirstCode, FirstContext,
|
|
LaterCode, LaterContext, SharedCode, SharedContext,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
%
|
|
% Combine all the information about the each arg
|
|
%
|
|
{ ml_make_c_arg_list(ArgVars, ArgDatas, OrigArgTypes,
|
|
ArgList) },
|
|
|
|
%
|
|
% Generate <declaration of one local variable for each arg>
|
|
%
|
|
{ ml_gen_pragma_c_decls(ArgList, ArgDeclsList) },
|
|
|
|
%
|
|
% Generate definitions of the FAIL, SUCCEED, SUCCEED_LAST,
|
|
% and LOCALS macros
|
|
%
|
|
{ string__append_list([
|
|
" #define FAIL (MR_done = TRUE)\n",
|
|
" #define SUCCEED (MR_succeeded = TRUE)\n",
|
|
" #define SUCCEED_LAST (MR_succeeded = TRUE, MR_done = TRUE)\n",
|
|
" #define LOCALS (&MR_locals)\n"
|
|
], HashDefines) },
|
|
{ string__append_list([
|
|
" #undef FAIL\n",
|
|
" #undef SUCCEED\n",
|
|
" #undef SUCCEED_LAST\n",
|
|
" #undef LOCALS\n"
|
|
], HashUndefs) },
|
|
|
|
%
|
|
% Generate code to set the values of the input variables.
|
|
%
|
|
ml_gen_pragma_c_input_arg_list(ArgList, AssignInputsList),
|
|
|
|
%
|
|
% Generate code to assign the values of the output variables.
|
|
%
|
|
ml_gen_pragma_c_output_arg_list(ArgList, Context,
|
|
AssignOutputsList, ConvDecls, ConvStatements),
|
|
|
|
%
|
|
% Generate code fragments to obtain and release the global lock
|
|
%
|
|
{ thread_safe(Attributes, ThreadSafe) },
|
|
ml_gen_obtain_release_global_lock(ThreadSafe, PredId,
|
|
ObtainLock, ReleaseLock),
|
|
|
|
%
|
|
% Generate the MR_PROC_LABEL #define
|
|
%
|
|
ml_gen_hash_define_mr_proc_label(PredId, ProcId, HashDefine),
|
|
|
|
%
|
|
% Put it all together
|
|
%
|
|
{ Starting_C_Code = list__condense([
|
|
[raw_target_code("{\n")],
|
|
HashDefine,
|
|
ArgDeclsList,
|
|
[raw_target_code("\tstruct {\n"),
|
|
user_target_code(LocalVarsDecls, LocalVarsContext),
|
|
raw_target_code("\n"),
|
|
raw_target_code("\t} MR_locals;\n"),
|
|
raw_target_code("\tbool MR_succeeded = FALSE;\n"),
|
|
raw_target_code("\tbool MR_done = FALSE;\n"),
|
|
raw_target_code("\n"),
|
|
raw_target_code(HashDefines),
|
|
raw_target_code("\n")],
|
|
AssignInputsList,
|
|
[raw_target_code(ObtainLock),
|
|
raw_target_code("\t{\n"),
|
|
user_target_code(FirstCode, FirstContext),
|
|
raw_target_code("\n\t;}\n"),
|
|
raw_target_code("\twhile (1) {\n"),
|
|
raw_target_code("\t\t{\n"),
|
|
user_target_code(SharedCode, SharedContext),
|
|
raw_target_code("\n\t\t;}\n"),
|
|
raw_target_code("#undef MR_PROC_LABEL\n"),
|
|
raw_target_code(ReleaseLock),
|
|
raw_target_code("\t\tif (MR_succeeded) {\n")],
|
|
AssignOutputsList
|
|
]) },
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
|
|
{ module_info_globals(ModuleInfo, Globals) },
|
|
{ globals__lookup_string_option(Globals, target, Target) },
|
|
( { CodeModel = model_non } ->
|
|
|
|
% For IL code, we can't call continutations because
|
|
% there is no syntax for calling managed function
|
|
% pointers in managed C++. Instead we
|
|
% have to call back into IL and make the continuation
|
|
% call in IL. This is called an "indirect" success
|
|
% continuation call.
|
|
|
|
(
|
|
{ Target = "il" }
|
|
->
|
|
ml_gen_call_current_success_cont_indirectly(Context,
|
|
CallCont)
|
|
;
|
|
ml_gen_call_current_success_cont(Context, CallCont)
|
|
)
|
|
;
|
|
{ error("ml_gen_nondet_pragma_c_code: unexpected code model") }
|
|
),
|
|
{ Ending_C_Code = [
|
|
raw_target_code("\t\t}\n"),
|
|
raw_target_code("\t\tif (MR_done) break;\n"),
|
|
raw_target_code(ObtainLock),
|
|
raw_target_code("\t\t{\n"),
|
|
user_target_code(LaterCode, LaterContext),
|
|
raw_target_code("\n\t\t;}\n"),
|
|
raw_target_code("\t}\n"),
|
|
raw_target_code("\n"),
|
|
raw_target_code(HashUndefs),
|
|
raw_target_code("}\n")
|
|
] },
|
|
{ Starting_C_Code_Stmt = target_code(lang_C, Starting_C_Code) },
|
|
{ Starting_C_Code_Statement = mlds__statement(
|
|
atomic(Starting_C_Code_Stmt), mlds__make_context(Context)) },
|
|
{ Ending_C_Code_Stmt = target_code(lang_C, Ending_C_Code) },
|
|
{ Ending_C_Code_Statement = mlds__statement(
|
|
atomic(Ending_C_Code_Stmt), mlds__make_context(Context)) },
|
|
{ MLDS_Statements = list__condense([
|
|
[Starting_C_Code_Statement],
|
|
ConvStatements,
|
|
[CallCont,
|
|
Ending_C_Code_Statement]
|
|
]) },
|
|
{ MLDS_Decls = ConvDecls }.
|
|
|
|
:- pred ml_gen_ordinary_pragma_c_code(code_model,
|
|
pragma_foreign_code_attributes,
|
|
pred_id, proc_id, list(prog_var),
|
|
list(maybe(pair(string, mode))), list(prog_type),
|
|
string, prog_context,
|
|
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_ordinary_pragma_c_code(in, in, in, in, in, in,
|
|
in, in, in, out, out, in, out) is det.
|
|
|
|
% For ordinary (not model_non) pragma c_code,
|
|
% we generate code of the following form:
|
|
%
|
|
% model_det pragma_c_code:
|
|
%
|
|
% #define MR_PROC_LABEL <procedure name>
|
|
% <declaration of locals needed for boxing/unboxing>
|
|
% {
|
|
% <declaration of one local variable for each arg>
|
|
%
|
|
% <assign input args>
|
|
% <obtain global lock>
|
|
% <c code>
|
|
% <boxing/unboxing of outputs>
|
|
% <release global lock>
|
|
% <assign output args>
|
|
% }
|
|
% #undef MR_PROC_LABEL
|
|
%
|
|
% model_semi pragma_c_code:
|
|
%
|
|
% #define MR_PROC_LABEL <procedure name>
|
|
% <declaration of locals needed for boxing/unboxing>
|
|
% {
|
|
% <declaration of one local variable for each arg>
|
|
% bool SUCCESS_INDICATOR;
|
|
%
|
|
% <assign input args>
|
|
% <obtain global lock>
|
|
% <c code>
|
|
% <release global lock>
|
|
% if (SUCCESS_INDICATOR) {
|
|
% <assign output args>
|
|
% <boxing/unboxing of outputs>
|
|
% }
|
|
%
|
|
% <succeeded> = SUCCESS_INDICATOR;
|
|
% }
|
|
% #undef MR_PROC_LABEL
|
|
%
|
|
% We insert a #define for MR_PROC_LABEL, so that the C code in
|
|
% the Mercury standard library that allocates memory manually
|
|
% can use MR_PROC_LABEL as the procname argument to
|
|
% incr_hp_msg(), for memory profiling. Hard-coding the procname
|
|
% argument in the C code would be wrong, since it wouldn't
|
|
% handle the case where the original pragma c_code procedure
|
|
% gets inlined and optimized away. Of course we also need to
|
|
% #undef it afterwards.
|
|
%
|
|
% Note that we generate this code directly as
|
|
% `target_code(lang_C, <string>)' instructions in the MLDS.
|
|
% It would probably be nicer to encode more of the structure
|
|
% in the MLDS, so that (a) we could do better MLDS optimization
|
|
% and (b) so that the generation of C code strings could be
|
|
% isolated in mlds_to_c.m. Also we will need to do something
|
|
% different for targets other than C, e.g. when compiling to
|
|
% Java.
|
|
%
|
|
ml_gen_ordinary_pragma_c_code(CodeModel, Attributes,
|
|
PredId, ProcId, ArgVars, ArgDatas, OrigArgTypes,
|
|
C_Code, Context, MLDS_Decls, MLDS_Statements) -->
|
|
%
|
|
% Combine all the information about the each arg
|
|
%
|
|
{ ml_make_c_arg_list(ArgVars, ArgDatas, OrigArgTypes,
|
|
ArgList) },
|
|
|
|
%
|
|
% Generate <declaration of one local variable for each arg>
|
|
%
|
|
{ ml_gen_pragma_c_decls(ArgList, ArgDeclsList) },
|
|
|
|
%
|
|
% Generate code to set the values of the input variables.
|
|
%
|
|
ml_gen_pragma_c_input_arg_list(ArgList, AssignInputsList),
|
|
|
|
%
|
|
% Generate code to assign the values of the output variables.
|
|
%
|
|
ml_gen_pragma_c_output_arg_list(ArgList, Context,
|
|
AssignOutputsList, ConvDecls, ConvStatements),
|
|
|
|
%
|
|
% Generate code fragments to obtain and release the global lock
|
|
%
|
|
{ thread_safe(Attributes, ThreadSafe) },
|
|
ml_gen_obtain_release_global_lock(ThreadSafe, PredId,
|
|
ObtainLock, ReleaseLock),
|
|
|
|
%
|
|
% Generate the MR_PROC_LABEL #define
|
|
%
|
|
ml_gen_hash_define_mr_proc_label(PredId, ProcId, HashDefine),
|
|
|
|
%
|
|
% Put it all together
|
|
%
|
|
( { CodeModel = model_det } ->
|
|
{ Starting_C_Code = list__condense([
|
|
[raw_target_code("{\n")],
|
|
HashDefine,
|
|
ArgDeclsList,
|
|
[raw_target_code("\n")],
|
|
AssignInputsList,
|
|
[raw_target_code(ObtainLock),
|
|
raw_target_code("\t\t{\n"),
|
|
user_target_code(C_Code, yes(Context)),
|
|
raw_target_code("\n\t\t;}\n"),
|
|
raw_target_code("#undef MR_PROC_LABEL\n"),
|
|
raw_target_code(ReleaseLock)],
|
|
AssignOutputsList
|
|
]) },
|
|
{ Ending_C_Code = [raw_target_code("}\n")] }
|
|
; { CodeModel = model_semi } ->
|
|
ml_success_lval(SucceededLval),
|
|
{ Starting_C_Code = list__condense([
|
|
[raw_target_code("{\n")],
|
|
HashDefine,
|
|
ArgDeclsList,
|
|
[raw_target_code("\tbool SUCCESS_INDICATOR;\n"),
|
|
raw_target_code("\n")],
|
|
AssignInputsList,
|
|
[raw_target_code(ObtainLock),
|
|
raw_target_code("\t\t{\n"),
|
|
user_target_code(C_Code, yes(Context)),
|
|
raw_target_code("\n\t\t;}\n"),
|
|
raw_target_code("#undef MR_PROC_LABEL\n"),
|
|
raw_target_code(ReleaseLock),
|
|
raw_target_code("\tif (SUCCESS_INDICATOR) {\n")],
|
|
AssignOutputsList
|
|
]) },
|
|
{ Ending_C_Code = [
|
|
raw_target_code("\t}\n"),
|
|
target_code_output(SucceededLval),
|
|
raw_target_code(" = SUCCESS_INDICATOR;\n"),
|
|
raw_target_code("}\n")
|
|
] }
|
|
;
|
|
{ error("ml_gen_ordinary_pragma_c_code: unexpected code model") }
|
|
),
|
|
{ Starting_C_Code_Stmt = target_code(lang_C, Starting_C_Code) },
|
|
{ Ending_C_Code_Stmt = target_code(lang_C, Ending_C_Code) },
|
|
{ Starting_C_Code_Statement = mlds__statement(
|
|
atomic(Starting_C_Code_Stmt), mlds__make_context(Context)) },
|
|
{ Ending_C_Code_Statement = mlds__statement(atomic(Ending_C_Code_Stmt),
|
|
mlds__make_context(Context)) },
|
|
{ MLDS_Statements = list__condense([
|
|
[Starting_C_Code_Statement],
|
|
ConvStatements,
|
|
[Ending_C_Code_Statement]
|
|
]) },
|
|
{ MLDS_Decls = ConvDecls }.
|
|
|
|
% Generate code fragments to obtain and release the global lock
|
|
% (this is used for ensuring thread safety in a concurrent
|
|
% implementation)
|
|
%
|
|
:- pred ml_gen_obtain_release_global_lock(thread_safe, pred_id,
|
|
string, string, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_obtain_release_global_lock(in, in, out, out, in, out) is det.
|
|
|
|
ml_gen_obtain_release_global_lock(ThreadSafe, PredId,
|
|
ObtainLock, ReleaseLock) -->
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
|
|
{ module_info_globals(ModuleInfo, Globals) },
|
|
{ globals__lookup_bool_option(Globals, parallel, Parallel) },
|
|
{
|
|
Parallel = yes,
|
|
ThreadSafe = not_thread_safe
|
|
->
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
pred_info_name(PredInfo, Name),
|
|
llds_out__quote_c_string(Name, MangledName),
|
|
string__append_list(["\tMR_OBTAIN_GLOBAL_LOCK(""",
|
|
MangledName, """);\n"], ObtainLock),
|
|
string__append_list(["\tMR_RELEASE_GLOBAL_LOCK(""",
|
|
MangledName, """);\n"], ReleaseLock)
|
|
;
|
|
ObtainLock = "",
|
|
ReleaseLock = ""
|
|
}.
|
|
|
|
:- pred ml_gen_hash_define_mr_proc_label(pred_id::in, proc_id::in,
|
|
list(target_code_component)::out,
|
|
ml_gen_info::in, ml_gen_info::out) is det.
|
|
|
|
ml_gen_hash_define_mr_proc_label(PredId, ProcId, HashDefine) -->
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
|
|
{ ml_gen_proc_label(ModuleInfo, PredId, ProcId, MLDS_Name, _Module) },
|
|
{ HashDefine = [raw_target_code("#define MR_PROC_LABEL "),
|
|
name(MLDS_Name),
|
|
raw_target_code("\n")] }.
|
|
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
%
|
|
% we gather all the information about each pragma_c argument
|
|
% together into this struct
|
|
%
|
|
|
|
:- type ml_c_arg
|
|
---> ml_c_arg(
|
|
prog_var,
|
|
maybe(pair(string, mode)), % name and mode
|
|
prog_type % original type before
|
|
% inlining/specialization
|
|
% (the actual type may be an instance
|
|
% of this type, if this type is
|
|
% polymorphic).
|
|
).
|
|
|
|
:- pred ml_make_c_arg_list(list(prog_var)::in,
|
|
list(maybe(pair(string, mode)))::in, list(prog_type)::in,
|
|
list(ml_c_arg)::out) is det.
|
|
|
|
ml_make_c_arg_list(Vars, ArgDatas, Types, ArgList) :-
|
|
( Vars = [], ArgDatas = [], Types = [] ->
|
|
ArgList = []
|
|
; Vars = [V|Vs], ArgDatas = [N|Ns], Types = [T|Ts] ->
|
|
Arg = ml_c_arg(V, N, T),
|
|
ml_make_c_arg_list(Vs, Ns, Ts, Args),
|
|
ArgList = [Arg | Args]
|
|
;
|
|
error("ml_code_gen:make_c_arg_list - length mismatch")
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% ml_gen_pragma_c_decls generates C code to declare the arguments
|
|
% for a `pragma c_code' declaration.
|
|
%
|
|
:- pred ml_gen_pragma_c_decls(list(ml_c_arg)::in,
|
|
list(target_code_component)::out) is det.
|
|
|
|
ml_gen_pragma_c_decls([], []).
|
|
ml_gen_pragma_c_decls([Arg|Args], [Decl|Decls]) :-
|
|
ml_gen_pragma_c_decl(Arg, Decl),
|
|
ml_gen_pragma_c_decls(Args, Decls).
|
|
|
|
% ml_gen_pragma_c_decl generates C code to declare an argument
|
|
% of a `pragma c_code' declaration.
|
|
%
|
|
:- pred ml_gen_pragma_c_decl(ml_c_arg::in, target_code_component::out) is det.
|
|
|
|
ml_gen_pragma_c_decl(ml_c_arg(_Var, MaybeNameAndMode, Type), Decl) :-
|
|
(
|
|
MaybeNameAndMode = yes(ArgName - _Mode),
|
|
\+ var_is_singleton(ArgName)
|
|
->
|
|
export__type_to_type_string(Type, TypeString),
|
|
string__format("\t%s %s;\n", [s(TypeString), s(ArgName)],
|
|
DeclString)
|
|
;
|
|
% if the variable doesn't occur in the ArgNames list,
|
|
% it can't be used, so we just ignore it
|
|
DeclString = ""
|
|
),
|
|
Decl = raw_target_code(DeclString).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% var_is_singleton determines whether or not a given pragma_c variable
|
|
% is singleton (i.e. starts with an underscore)
|
|
%
|
|
% Singleton vars should be ignored when generating the declarations for
|
|
% pragma_c arguments because:
|
|
%
|
|
% - they should not appear in the C code
|
|
% - they could clash with the system name space
|
|
%
|
|
:- pred var_is_singleton(string) is semidet.
|
|
:- mode var_is_singleton(in) is semidet.
|
|
|
|
var_is_singleton(Name) :-
|
|
string__first_char(Name, '_', _).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred ml_gen_pragma_c_input_arg_list(list(ml_c_arg)::in,
|
|
list(target_code_component)::out,
|
|
ml_gen_info::in, ml_gen_info::out) is det.
|
|
|
|
ml_gen_pragma_c_input_arg_list(ArgList, AssignInputs) -->
|
|
list__map_foldl(ml_gen_pragma_c_input_arg, ArgList, AssignInputsList),
|
|
{ list__condense(AssignInputsList, AssignInputs) }.
|
|
|
|
% ml_gen_pragma_c_input_arg generates C code to assign the value of an input
|
|
% arg for a `pragma c_code' declaration.
|
|
%
|
|
:- pred ml_gen_pragma_c_input_arg(ml_c_arg::in,
|
|
list(target_code_component)::out,
|
|
ml_gen_info::in, ml_gen_info::out) is det.
|
|
|
|
ml_gen_pragma_c_input_arg(ml_c_arg(Var, MaybeNameAndMode, OrigType),
|
|
AssignInput) -->
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
|
|
(
|
|
{ MaybeNameAndMode = yes(ArgName - Mode) },
|
|
{ \+ var_is_singleton(ArgName) },
|
|
{ mode_to_arg_mode(ModuleInfo, Mode, OrigType, top_in) }
|
|
->
|
|
ml_variable_type(Var, VarType),
|
|
ml_gen_var(Var, VarLval),
|
|
( { type_util__is_dummy_argument_type(VarType) } ->
|
|
% The variable may not have been declared,
|
|
% so we need to generate a dummy value for it.
|
|
% Using `0' here is more efficient than
|
|
% using private_builtin__dummy_var, which is
|
|
% what ml_gen_var will have generated for this
|
|
% variable.
|
|
{ ArgRval = const(int_const(0)) }
|
|
;
|
|
ml_gen_box_or_unbox_rval(VarType, OrigType,
|
|
lval(VarLval), ArgRval)
|
|
),
|
|
{ module_info_globals(ModuleInfo, Globals) },
|
|
{ globals__lookup_bool_option(Globals, highlevel_data,
|
|
HighLevelData) },
|
|
{ HighLevelData = yes ->
|
|
% In general, the types used for the C interface
|
|
% are not the same as the types used by
|
|
% --high-level-data, so we always use a cast here.
|
|
% (Strictly speaking the cast is not needed for
|
|
% a few cases like `int', but it doesn't do any harm.)
|
|
export__type_to_type_string(OrigType, TypeString),
|
|
string__format("(%s)", [s(TypeString)], Cast)
|
|
;
|
|
% For --no-high-level-data, we only need to use
|
|
% a cast is for polymorphic types, which are
|
|
% `Word' in the C interface but `MR_Box' in the
|
|
% MLDS back-end.
|
|
( type_util__var(OrigType, _) ->
|
|
Cast = "(MR_Word) "
|
|
;
|
|
Cast = ""
|
|
)
|
|
},
|
|
{ string__format("\t%s = %s\n",
|
|
[s(ArgName), s(Cast)],
|
|
AssignToArgName) },
|
|
{ AssignInput = [
|
|
raw_target_code(AssignToArgName),
|
|
target_code_input(ArgRval),
|
|
raw_target_code(";\n")
|
|
] }
|
|
;
|
|
% if the variable doesn't occur in the ArgNames list,
|
|
% it can't be used, so we just ignore it
|
|
{ AssignInput = [] }
|
|
).
|
|
|
|
:- pred ml_gen_pragma_c_output_arg_list(list(ml_c_arg)::in, prog_context::in,
|
|
list(target_code_component)::out,
|
|
mlds__defns::out, mlds__statements::out,
|
|
ml_gen_info::in, ml_gen_info::out) is det.
|
|
|
|
ml_gen_pragma_c_output_arg_list([], _, [], [], []) --> [].
|
|
ml_gen_pragma_c_output_arg_list([C_Arg | C_Args], Context, Components,
|
|
ConvDecls, ConvStatements) -->
|
|
ml_gen_pragma_c_output_arg(C_Arg, Context, Components1,
|
|
ConvDecls1, ConvStatements1),
|
|
ml_gen_pragma_c_output_arg_list(C_Args, Context, Components2,
|
|
ConvDecls2, ConvStatements2),
|
|
{ Components = list__append(Components1, Components2) },
|
|
{ ConvDecls = list__append(ConvDecls1, ConvDecls2) },
|
|
{ ConvStatements = list__append(ConvStatements1, ConvStatements2) }.
|
|
|
|
% ml_gen_pragma_c_output_arg generates C code to assign the value of an output
|
|
% arg for a `pragma c_code' declaration.
|
|
%
|
|
:- pred ml_gen_pragma_c_output_arg(ml_c_arg::in, prog_context::in,
|
|
list(target_code_component)::out,
|
|
mlds__defns::out, mlds__statements::out,
|
|
ml_gen_info::in, ml_gen_info::out) is det.
|
|
|
|
ml_gen_pragma_c_output_arg(ml_c_arg(Var, MaybeNameAndMode, OrigType),
|
|
Context, AssignOutput, ConvDecls, ConvOutputStatements) -->
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
|
|
(
|
|
{ MaybeNameAndMode = yes(ArgName - Mode) },
|
|
{ \+ var_is_singleton(ArgName) },
|
|
{ \+ type_util__is_dummy_argument_type(OrigType) },
|
|
{ mode_to_arg_mode(ModuleInfo, Mode, OrigType, top_out) }
|
|
->
|
|
ml_variable_type(Var, VarType),
|
|
ml_gen_var(Var, VarLval),
|
|
ml_gen_box_or_unbox_lval(VarType, OrigType, VarLval, ArgName,
|
|
Context, ArgLval, ConvDecls, _ConvInputStatements,
|
|
ConvOutputStatements),
|
|
{ module_info_globals(ModuleInfo, Globals) },
|
|
{ globals__lookup_bool_option(Globals, highlevel_data,
|
|
HighLevelData) },
|
|
{ HighLevelData = yes ->
|
|
% In general, the types used for the C interface
|
|
% are not the same as the types used by
|
|
% --high-level-data, so we always use a cast here.
|
|
% (Strictly speaking the cast is not needed for
|
|
% a few cases like `int', but it doesn't do any harm.)
|
|
% Note that we can't easily obtain the type string
|
|
% for the RHS of the assignment, so instead we
|
|
% cast the LHS.
|
|
export__type_to_type_string(OrigType, TypeString),
|
|
string__format("*(%s *)&", [s(TypeString)], LHS_Cast),
|
|
RHS_Cast = ""
|
|
;
|
|
% For --no-high-level-data, we only need to use
|
|
% a cast is for polymorphic types, which are
|
|
% `Word' in the C interface but `MR_Box' in the
|
|
% MLDS back-end.
|
|
( type_util__var(VarType, _) ->
|
|
RHS_Cast = "(MR_Box) "
|
|
;
|
|
RHS_Cast = ""
|
|
),
|
|
LHS_Cast = ""
|
|
},
|
|
{ string__format(" = %s%s;\n", [s(RHS_Cast), s(ArgName)],
|
|
AssignFromArgName) },
|
|
{ string__format("\t%s\n", [s(LHS_Cast)], AssignTo) },
|
|
{ AssignOutput = [
|
|
raw_target_code(AssignTo),
|
|
target_code_output(ArgLval),
|
|
raw_target_code(AssignFromArgName)
|
|
] }
|
|
;
|
|
% if the variable doesn't occur in the ArgNames list,
|
|
% it can't be used, so we just ignore it
|
|
{ AssignOutput = [] },
|
|
{ ConvDecls = [] },
|
|
{ ConvOutputStatements = [] }
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for switches
|
|
%
|
|
|
|
% Generate MLDS code for a switch.
|
|
%
|
|
:- pred ml_gen_switch(prog_var, can_fail, list(case), code_model, prog_context,
|
|
mlds__defns, mlds__statements,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_switch(in, in, in, in, in, out, out, in, out) is det.
|
|
|
|
|
|
:- type extended_case ---> case(int, cons_tag, cons_id, hlds_goal).
|
|
:- type cases_list == list(extended_case).
|
|
|
|
% TODO: optimize various different special kinds of switches,
|
|
% such as string switches, dense switches, lookup switches,
|
|
% etc. (see switch_gen.m, etc.).
|
|
% TODO: optimize switches so that the recursive case comes
|
|
% first (see switch_gen.m).
|
|
|
|
ml_gen_switch(Var, CanFail, Cases, CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
%
|
|
% Lookup the representation of the constructors for the tag tests
|
|
% and their corresponding priorities.
|
|
%
|
|
ml_switch_lookup_tags(Cases, Var, TaggedCases0),
|
|
%
|
|
% Sort the cases according to the priority of their tag tests.
|
|
%
|
|
{ list__sort_and_remove_dups(TaggedCases0, TaggedCases) },
|
|
%
|
|
% Generate an if-then-else chain which tests each of the cases
|
|
% in turn.
|
|
%
|
|
ml_switch_generate_cases(TaggedCases, Var,
|
|
CodeModel, CanFail, Context,
|
|
MLDS_Decls, MLDS_Statements).
|
|
|
|
% Look up the representation (tag) for the cons_id in each case.
|
|
% Also look up the priority of each tag test.
|
|
%
|
|
:- pred ml_switch_lookup_tags(list(case), prog_var, cases_list,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_switch_lookup_tags(in, in, out, in, out) is det.
|
|
|
|
ml_switch_lookup_tags([], _, []) --> [].
|
|
ml_switch_lookup_tags([Case | Cases], Var, [TaggedCase | TaggedCases]) -->
|
|
{ Case = case(ConsId, Goal) },
|
|
ml_variable_type(Var, Type),
|
|
ml_cons_id_to_tag(ConsId, Type, Tag),
|
|
{ ml_switch_priority(Tag, Priority) },
|
|
{ TaggedCase = case(Priority, Tag, ConsId, Goal) },
|
|
ml_switch_lookup_tags(Cases, Var, TaggedCases).
|
|
|
|
% Return the priority of a tag test.
|
|
% A low number here indicates a high priority.
|
|
% We prioritize the tag tests so that the cheapest
|
|
% (most efficient) ones come first.
|
|
%
|
|
:- pred ml_switch_priority(cons_tag, int).
|
|
:- mode ml_switch_priority(in, out) is det.
|
|
|
|
ml_switch_priority(no_tag, 0). % should never occur
|
|
ml_switch_priority(int_constant(_), 1).
|
|
ml_switch_priority(shared_local_tag(_, _), 1).
|
|
ml_switch_priority(unshared_tag(_), 2).
|
|
ml_switch_priority(float_constant(_), 3).
|
|
ml_switch_priority(shared_remote_tag(_, _), 4).
|
|
ml_switch_priority(string_constant(_), 5).
|
|
% The following tags should all never occur in switches.
|
|
ml_switch_priority(pred_closure_tag(_, _, _), 6).
|
|
ml_switch_priority(code_addr_constant(_, _), 6).
|
|
ml_switch_priority(type_ctor_info_constant(_, _, _), 6).
|
|
ml_switch_priority(base_typeclass_info_constant(_, _, _), 6).
|
|
ml_switch_priority(tabling_pointer_constant(_, _), 6).
|
|
|
|
% Generate a chain of if-then-elses to test each case in turn.
|
|
%
|
|
:- pred ml_switch_generate_cases(list(extended_case), prog_var,
|
|
code_model, can_fail, prog_context, mlds__defns, mlds__statements,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_switch_generate_cases(in, in, in, in, in, out, out,
|
|
in, out) is det.
|
|
|
|
ml_switch_generate_cases([], _Var, CodeModel, CanFail, Context,
|
|
[], MLDS_Statements) -->
|
|
( { CanFail = can_fail } ->
|
|
ml_gen_failure(CodeModel, Context, MLDS_Statements)
|
|
;
|
|
{ error("switch failure") }
|
|
).
|
|
ml_switch_generate_cases([Case | Cases], Var, CodeModel, CanFail, Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
{ Case = case(_, _Tag, ConsId, Goal) },
|
|
(
|
|
{ Cases = [], CanFail = cannot_fail }
|
|
->
|
|
ml_gen_goal(CodeModel, Goal, MLDS_Decls, MLDS_Statements)
|
|
;
|
|
ml_gen_tag_test(Var, ConsId, TagTestDecls, TagTestStatements,
|
|
TagTestExpression),
|
|
ml_gen_goal(CodeModel, Goal, GoalStatement),
|
|
ml_switch_generate_cases(Cases, Var, CodeModel, CanFail,
|
|
Context, RestDecls, RestStatements),
|
|
{ Rest = ml_gen_block(RestDecls, RestStatements, Context) },
|
|
{ IfStmt = if_then_else(TagTestExpression,
|
|
GoalStatement, yes(Rest)) },
|
|
{ IfStatement = mlds__statement(IfStmt,
|
|
mlds__make_context(Context)) },
|
|
{ MLDS_Decls = TagTestDecls },
|
|
{ MLDS_Statements = list__append(TagTestStatements,
|
|
[IfStatement]) }
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for if-then-else
|
|
%
|
|
|
|
:- pred ml_gen_ite(code_model, hlds_goal, hlds_goal, hlds_goal, prog_context,
|
|
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_ite(in, in, in, in, in, out, out, in, out) is det.
|
|
|
|
ml_gen_ite(CodeModel, Cond, Then, Else, Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
{ Cond = _ - CondGoalInfo },
|
|
{ goal_info_get_code_model(CondGoalInfo, CondCodeModel) },
|
|
(
|
|
{ CondCodeModel = model_det },
|
|
% simplify.m should remove these
|
|
{ error("ml_gen_ite: det cond") }
|
|
;
|
|
% model_semi cond:
|
|
% <(Cond -> Then ; Else)>
|
|
% ===>
|
|
% bool succeeded;
|
|
%
|
|
% <succeeded = Cond>
|
|
% if (succeeded) {
|
|
% <Then>
|
|
% } else {
|
|
% <Else>
|
|
% }
|
|
{ CondCodeModel = model_semi },
|
|
ml_gen_goal(model_semi, Cond, CondDecls, CondStatements),
|
|
ml_gen_test_success(Succeeded),
|
|
ml_gen_goal(CodeModel, Then, ThenStatement),
|
|
ml_gen_goal(CodeModel, Else, ElseStatement),
|
|
{ IfStmt = if_then_else(Succeeded, ThenStatement,
|
|
yes(ElseStatement)) },
|
|
{ IfStatement = mlds__statement(IfStmt,
|
|
mlds__make_context(Context)) },
|
|
{ MLDS_Decls = CondDecls },
|
|
{ MLDS_Statements = list__append(CondStatements,
|
|
[IfStatement]) }
|
|
;
|
|
% /*
|
|
% ** XXX The following transformation does not do as
|
|
% ** good a job of GC as it could. Ideally we ought
|
|
% ** to ensure that stuff used only in the `Else'
|
|
% ** part will be reclaimed if a GC occurs during
|
|
% ** the `Then' part. But that is a bit tricky to
|
|
% ** achieve.
|
|
% */
|
|
%
|
|
% model_non cond:
|
|
% <(Cond -> Then ; Else)>
|
|
% ===>
|
|
% bool cond_<N>;
|
|
%
|
|
% void then_func() {
|
|
% cond_<N> = TRUE;
|
|
% <Then>
|
|
% }
|
|
%
|
|
% cond_<N> = FALSE;
|
|
% <Cond && then_func()>
|
|
% if (!cond_<N>) {
|
|
% <Else>
|
|
% }
|
|
% except that we hoist any declarations generated
|
|
% for <Cond> to the top of the scope, so that they
|
|
% are in scope for the <Then> goal
|
|
% (this is needed for declarations of static consts)
|
|
|
|
|
|
{ CondCodeModel = model_non },
|
|
|
|
% generate the `cond_<N>' var and the code to initialize it to false
|
|
ml_gen_info_new_cond_var(CondVar),
|
|
{ MLDS_Context = mlds__make_context(Context) },
|
|
{ CondVarDecl = ml_gen_cond_var_decl(CondVar, MLDS_Context) },
|
|
ml_gen_set_cond_var(CondVar, const(false), Context,
|
|
SetCondFalse),
|
|
|
|
% allocate a name for the `then_func'
|
|
ml_gen_new_func_label(no, ThenFuncLabel, ThenFuncLabelRval),
|
|
|
|
% generate <Cond && then_func()>
|
|
ml_get_env_ptr(EnvPtrRval),
|
|
{ SuccessCont = success_cont(ThenFuncLabelRval, EnvPtrRval,
|
|
[], []) },
|
|
ml_gen_info_push_success_cont(SuccessCont),
|
|
ml_gen_goal(model_non, Cond, CondDecls, CondStatements),
|
|
ml_gen_info_pop_success_cont,
|
|
|
|
% generate the `then_func'
|
|
/* push nesting level */
|
|
{ Then = _ - ThenGoalInfo },
|
|
{ goal_info_get_context(ThenGoalInfo, ThenContext) },
|
|
ml_gen_set_cond_var(CondVar, const(true), ThenContext,
|
|
SetCondTrue),
|
|
ml_gen_goal(CodeModel, Then, ThenStatement),
|
|
{ ThenFuncBody = ml_gen_block([],
|
|
[SetCondTrue, ThenStatement], ThenContext) },
|
|
/* pop nesting level */
|
|
ml_gen_nondet_label_func(ThenFuncLabel, ThenContext,
|
|
ThenFuncBody, ThenFunc),
|
|
|
|
% generate `if (!cond_<N>) { <Else> }'
|
|
ml_gen_test_cond_var(CondVar, CondSucceeded),
|
|
ml_gen_goal(CodeModel, Else, ElseStatement),
|
|
{ IfStmt = if_then_else(unop(std_unop(not), CondSucceeded),
|
|
ElseStatement, no) },
|
|
{ IfStatement = mlds__statement(IfStmt, MLDS_Context) },
|
|
|
|
% package it all up in the right order
|
|
{ MLDS_Decls = list__append([CondVarDecl | CondDecls], [ThenFunc]) },
|
|
{ MLDS_Statements = list__append(
|
|
[SetCondFalse | CondStatements], [IfStatement]) }
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for negation
|
|
%
|
|
|
|
:- pred ml_gen_negation(hlds_goal, code_model, prog_context,
|
|
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_negation(in, in, in, out, out, in, out) is det.
|
|
|
|
ml_gen_negation(Cond, CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
{ Cond = _ - CondGoalInfo },
|
|
{ goal_info_get_code_model(CondGoalInfo, CondCodeModel) },
|
|
(
|
|
% model_det negation:
|
|
% <not(Goal)>
|
|
% ===>
|
|
% {
|
|
% bool succeeded;
|
|
% <succeeded = Goal>
|
|
% /* now ignore the value of succeeded,
|
|
% which we know will be FALSE */
|
|
% }
|
|
{ CodeModel = model_det },
|
|
ml_gen_goal(model_semi, Cond, MLDS_Decls, MLDS_Statements)
|
|
;
|
|
% model_semi negation, model_det goal:
|
|
% <succeeded = not(Goal)>
|
|
% ===>
|
|
% <do Goal>
|
|
% succeeded = FALSE;
|
|
{ CodeModel = model_semi, CondCodeModel = model_det },
|
|
ml_gen_goal(model_det, Cond, CondDecls, CondStatements),
|
|
ml_gen_set_success(const(false), Context, SetSuccessFalse),
|
|
{ MLDS_Decls = CondDecls },
|
|
{ MLDS_Statements = list__append(CondStatements,
|
|
[SetSuccessFalse]) }
|
|
;
|
|
% model_semi negation, model_semi goal:
|
|
% <succeeded = not(Goal)>
|
|
% ===>
|
|
% <succeeded = Goal>
|
|
% succeeded = !succeeded;
|
|
{ CodeModel = model_semi, CondCodeModel = model_semi },
|
|
ml_gen_goal(model_semi, Cond, CondDecls, CondStatements),
|
|
ml_gen_test_success(Succeeded),
|
|
ml_gen_set_success(unop(std_unop(not), Succeeded), Context,
|
|
InvertSuccess),
|
|
{ MLDS_Decls = CondDecls },
|
|
{ MLDS_Statements = list__append(CondStatements,
|
|
[InvertSuccess]) }
|
|
;
|
|
{ CodeModel = model_semi, CondCodeModel = model_non },
|
|
{ error("ml_gen_negation: nondet cond") }
|
|
;
|
|
{ CodeModel = model_non },
|
|
{ error("ml_gen_negation: nondet negation") }
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for conjunctions
|
|
%
|
|
|
|
:- pred ml_gen_conj(hlds_goals, code_model, prog_context,
|
|
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_conj(in, in, in, out, out, in, out) is det.
|
|
|
|
ml_gen_conj([], CodeModel, Context, [], MLDS_Statements) -->
|
|
ml_gen_success(CodeModel, Context, MLDS_Statements).
|
|
ml_gen_conj([SingleGoal], CodeModel, _Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
ml_gen_goal(CodeModel, SingleGoal, MLDS_Decls, MLDS_Statements).
|
|
ml_gen_conj([First | Rest], CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
{ Rest = [_ | _] },
|
|
{ First = _ - FirstGoalInfo },
|
|
{ goal_info_get_determinism(FirstGoalInfo, FirstDeterminism) },
|
|
( { determinism_components(FirstDeterminism, _, at_most_zero) } ->
|
|
% the `Rest' code is unreachable
|
|
ml_gen_goal(CodeModel, First, MLDS_Decls, MLDS_Statements)
|
|
;
|
|
{ determinism_to_code_model(FirstDeterminism, FirstCodeModel) },
|
|
{ DoGenFirst = ml_gen_goal(FirstCodeModel, First) },
|
|
{ DoGenRest = ml_gen_conj(Rest, CodeModel, Context) },
|
|
ml_combine_conj(FirstCodeModel, Context,
|
|
DoGenFirst, DoGenRest, MLDS_Decls, MLDS_Statements)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for disjunctions
|
|
%
|
|
|
|
:- pred ml_gen_disj(hlds_goals, code_model, prog_context,
|
|
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_disj(in, in, in, out, out, in, out) is det.
|
|
|
|
%
|
|
% handle empty disjunctions (a.ka. `fail')
|
|
%
|
|
ml_gen_disj([], CodeModel, Context, [], Statements) -->
|
|
ml_gen_failure(CodeModel, Context, Statements).
|
|
|
|
%
|
|
% handle singleton disjunctions
|
|
% (the HLDS should not contain singleton disjunctions,
|
|
% but this code is needed to handle recursive calls to ml_gen_disj)
|
|
% Note that each arm of the model_non disjunction is placed into
|
|
% a block. This avoids a problem where ml_join_decls can create
|
|
% block nesting proportional to the size of the disjunction.
|
|
% The nesting can hit fixed limit problems in some C compilers.
|
|
%
|
|
ml_gen_disj([SingleGoal], CodeModel, Context, [], [MLDS_Statement]) -->
|
|
ml_gen_goal(CodeModel, SingleGoal, Goal_Decls, Goal_Statements),
|
|
{ MLDS_Statement = ml_gen_block(Goal_Decls, Goal_Statements,
|
|
Context) }.
|
|
|
|
ml_gen_disj([First | Rest], CodeModel, Context,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
{ Rest = [_ | _] },
|
|
( { CodeModel = model_non } ->
|
|
%
|
|
% model_non disj:
|
|
%
|
|
% <(Goal ; Goals) && SUCCEED()>
|
|
% ===>
|
|
% <Goal && SUCCEED()>
|
|
% <Goals && SUCCEED()>
|
|
%
|
|
ml_gen_goal(model_non, First, FirstDecls, FirstStatements),
|
|
ml_gen_disj(Rest, model_non, Context,
|
|
RestDecls, RestStatements),
|
|
|
|
(
|
|
{ RestDecls = [] }
|
|
->
|
|
{ FirstBlock = ml_gen_block(FirstDecls,
|
|
FirstStatements, Context) },
|
|
{ MLDS_Decls = [] },
|
|
{ MLDS_Statements = [FirstBlock | RestStatements] }
|
|
;
|
|
{ error("ml_gen_disj: RestDecls not empty.") }
|
|
)
|
|
|
|
; /* CodeModel is model_det or model_semi */
|
|
%
|
|
% model_det/model_semi disj:
|
|
%
|
|
% model_det goal:
|
|
% <Goal ; Goals>
|
|
% ===>
|
|
% <Goal>
|
|
% /* <Goals> will never be reached */
|
|
%
|
|
% model_semi goal:
|
|
% <Goal ; Goals>
|
|
% ===>
|
|
% {
|
|
% bool succeeded;
|
|
%
|
|
% <succeeded = Goal>;
|
|
% if (!succeeded) {
|
|
% <Goals>;
|
|
% }
|
|
% }
|
|
%
|
|
{ First = _ - FirstGoalInfo },
|
|
{ goal_info_get_code_model(FirstGoalInfo, FirstCodeModel) },
|
|
(
|
|
{ FirstCodeModel = model_det },
|
|
ml_gen_goal(model_det, First,
|
|
MLDS_Decls, MLDS_Statements)
|
|
;
|
|
{ FirstCodeModel = model_semi },
|
|
ml_gen_goal(model_semi, First,
|
|
FirstDecls, FirstStatements),
|
|
ml_gen_test_success(Succeeded),
|
|
ml_gen_disj(Rest, CodeModel, Context,
|
|
RestDecls, RestStatements),
|
|
{ RestStatement = ml_gen_block(RestDecls,
|
|
RestStatements, Context) },
|
|
{ IfStmt = if_then_else(unop(std_unop(not), Succeeded),
|
|
RestStatement, no) },
|
|
{ IfStatement = mlds__statement(IfStmt,
|
|
mlds__make_context(Context)) },
|
|
{ MLDS_Decls = FirstDecls },
|
|
{ MLDS_Statements = list__append(FirstStatements,
|
|
[IfStatement]) }
|
|
;
|
|
{ FirstCodeModel = model_non },
|
|
% simplify.m should get wrap commits around these
|
|
{ error("model_non disj in model_det disjunction") }
|
|
)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|