mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-12 04:14:06 +00:00
Keep the old style comments where they do not go to the end of the line, or where it is important that the comment line not have a // on it.
176 lines
5.6 KiB
Mathematica
176 lines
5.6 KiB
Mathematica
%---------------------------------------------------------------------------%
|
|
% vim: ft=mercury ts=4 sw=4 et
|
|
%---------------------------------------------------------------------------%
|
|
% Copyright (C) 1999, 2006, 2009-2010 The University of Melbourne.
|
|
% Copyright (C) 2013-2016, 2018 The Mercury team.
|
|
% This file is distributed under the terms specified in COPYING.LIB.
|
|
%---------------------------------------------------------------------------%
|
|
%
|
|
% lazy.m - provides support for optional explicit lazy evaluation.
|
|
%
|
|
% Author: fjh, pbone.
|
|
% Stability: medium.
|
|
%
|
|
% This module provides the data type `lazy(T)' and the functions `val',
|
|
% `delay', and `force', which can be used to emulate lazy evaluation.
|
|
%
|
|
% A field within a data structure can be made lazy by wrapping it within a lazy
|
|
% type. Or a lazy data structure can be implemented, for example:
|
|
%
|
|
% :- type lazy_list(T)
|
|
% ---> lazy_list(
|
|
% lazy(list_cell(T))
|
|
% ).
|
|
%
|
|
% :- type list_cell(T)
|
|
% ---> cons(T, lazy_list(T))
|
|
% ; nil.
|
|
%
|
|
% Note that this makes every list cell lazy, whereas:
|
|
%
|
|
% lazy(list(T))
|
|
%
|
|
% uses only one thunk for the entire list. And:
|
|
%
|
|
% list(lazy(T))
|
|
%
|
|
% uses one thunk for every element, but the list's structure is not lazy.
|
|
%
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- module lazy.
|
|
:- interface.
|
|
|
|
% A lazy(T) is a value of type T which will only be evaluated on
|
|
% demand.
|
|
%
|
|
:- type lazy(T).
|
|
|
|
% Convert a value from type T to lazy(T)
|
|
%
|
|
:- func val(T) = lazy(T).
|
|
|
|
% Construct a lazily-evaluated lazy(T) from a closure
|
|
%
|
|
:- func delay((func) = T) = lazy(T).
|
|
|
|
% Force the evaluation of a lazy(T), and return the result as type T.
|
|
% Note that if the type T may itself contains subterms of type lazy(T),
|
|
% as is the case when T is a recursive type like the lazy_list(T) type
|
|
% defined in lazy_list.m, those subterms will not be evaluated --
|
|
% force/1 only forces evaluation of the lazy/1 term at the top level.
|
|
%
|
|
% A second call to force will not re-evaluate the lazy expression, it will
|
|
% simply return T.
|
|
%
|
|
:- func force(lazy(T)) = T.
|
|
|
|
% Get the value of a lazy expression if it has already been made available
|
|
% with force/1 This is useful as it can provide information without
|
|
% incurring (much) cost.
|
|
%
|
|
:- impure pred read_if_val(lazy(T)::in, T::out) is semidet.
|
|
|
|
% Test lazy values for equality.
|
|
%
|
|
:- pred equal_values(lazy(T)::in, lazy(T)::in) is semidet.
|
|
|
|
:- pred compare_values(comparison_result::uo, lazy(T)::in, lazy(T)::in) is det.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
%
|
|
% The declarative semantics of the above constructs are given by the
|
|
% following equations:
|
|
%
|
|
% val(X) = delay((func) = X).
|
|
%
|
|
% force(delay(F)) = apply(F).
|
|
%
|
|
% The operational semantics satisfy the following:
|
|
%
|
|
% - val/1 and delay/1 both take O(1) time and use O(1) additional space.
|
|
% In particular, delay/1 does not evaluate its argument using apply/1.
|
|
%
|
|
% - When force/1 is first called for a given term, it uses apply/1 to
|
|
% evaluate the term, and then saves the result computed by destructively
|
|
% modifying its argument; subsequent calls to force/1 on the same term
|
|
% will return the same result. So the time to evaluate force(X), where
|
|
% X = delay(F), is O(the time to evaluate apply(F)) for the first call,
|
|
% and O(1) time for subsequent calls.
|
|
%
|
|
% - Equality on values of type lazy(T) is implemented by calling force/1
|
|
% on both arguments and comparing the results. So if X and Y have type
|
|
% lazy(T), and both X and Y are ground, then the time to evaluate X = Y
|
|
% is O(the time to evaluate (X1 = force(X)) + the time to evaluate
|
|
% (Y1 = force(Y)) + the time to unify X1 and Y1).
|
|
%
|
|
%---------------------------------------------------------------------------%
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module mutvar.
|
|
|
|
:- type lazy(T)
|
|
---> lazy(mutvar(lazy_state(T)))
|
|
where equality is equal_values,
|
|
comparison is compare_values.
|
|
|
|
% Note that we use a user-defined equality predicate to ensure
|
|
% that unifying two lazy(T) values will do the right thing.
|
|
%
|
|
:- type lazy_state(T)
|
|
---> value(T)
|
|
; closure((func) = T).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
val(X) = lazy(Mutvar) :-
|
|
promise_pure (
|
|
impure new_mutvar(value(X), Mutvar)
|
|
).
|
|
|
|
delay(F) = lazy(Mutvar) :-
|
|
promise_pure (
|
|
impure new_mutvar(closure(F), Mutvar)
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
force(Lazy) = Value :-
|
|
% The promise_equivalent_solutions scope is needed to tell the compiler
|
|
% that force will return equal answers given arguments that are equal
|
|
% but that have different representations.
|
|
promise_equivalent_solutions [Mutvar] (
|
|
Lazy = lazy(Mutvar)
|
|
),
|
|
promise_pure (
|
|
impure get_mutvar(Mutvar, State),
|
|
(
|
|
State = value(Value)
|
|
;
|
|
State = closure(Thunk),
|
|
Value = apply(Thunk),
|
|
impure set_mutvar(Mutvar, value(Value))
|
|
)
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
read_if_val(Lazy, Value) :-
|
|
promise_equivalent_solutions [Mutvar] (
|
|
Lazy = lazy(Mutvar)
|
|
),
|
|
impure get_mutvar(Mutvar, State),
|
|
State = value(Value).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
equal_values(X, Y) :-
|
|
force(X) = force(Y).
|
|
|
|
compare_values(R, X, Y) :-
|
|
compare(R, force(X), force(Y)).
|
|
|
|
%---------------------------------------------------------------------------%
|