Files
mercury/compiler/term_errors.m
2018-04-07 18:25:43 +10:00

627 lines
24 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1997-2000, 2003-2006, 2010-2011 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: term_errors.m.
% Main author: crs.
%
% This module prints out the various error messages that are produced by the
% various modules of termination analysis.
%
%-----------------------------------------------------------------------------%
:- module transform_hlds.term_errors.
:- interface.
:- import_module hlds.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module parse_tree.
:- import_module parse_tree.error_util.
:- import_module parse_tree.prog_data.
:- import_module assoc_list.
:- import_module bag.
:- import_module bool.
:- import_module list.
%-----------------------------------------------------------------------------%
:- type term_error_kind
---> pragma_foreign_code
% The analysis result depends on the change constant
% of a piece of pragma foreign code, (which cannot be
% obtained without analyzing the foreign code, which is
% something we cannot do).
% Valid in both passes.
; imported_pred
% The SCC contains some imported procedures,
% whose code is not accessible.
; can_loop_proc_called(pred_proc_id, pred_proc_id)
% can_loop_proc_called(Caller, Callee, Context)
% The call from Caller to Callee at the associated
% context is to a procedure (Callee) whose termination
% info is set to can_loop.
% Although this error does not prevent us from
% producing argument size information, it would
% prevent us from proving termination.
% We look for this error in pass 1; if we find it,
% we do not perform pass 2.
; horder_args(pred_proc_id, pred_proc_id)
% horder_args(Caller, Callee, Context)
% The call from Caller to Callee at the associated
% context has some arguments of a higher order type.
% Valid in both passes.
; horder_call
% horder_call
% There is a higher order call at the associated
% context. Valid in both passes.
; method_call
% method_call
% There is a call to a typeclass method at the associated
% context. Valid in both passes.
; inf_termination_const(pred_proc_id, pred_proc_id)
% inf_termination_const(Caller, Callee)
% The call from Caller to Callee at the associated
% context is to a procedure (Callee) whose arg size
% info is set to infinite.
% Valid in both passes.
; ho_inf_termination_const(pred_proc_id, list(pred_proc_id))
% ho_inf_termination_const(Caller, Callees).
% Caller makes a call to either call/N or apply/N
% at the associated context. 'Callees' gives the
% possible values of the higher-order argument.
; not_subset(pred_proc_id, bag(prog_var), bag(prog_var))
% not_subset(Proc, SupplierVariables, InHeadVariables)
% This error occurs when the bag of active variables
% is not a subset of the input head variables.
% Valid error only in pass 1.
; inf_call(pred_proc_id, pred_proc_id)
% inf_call(Caller, Callee)
% The call from Caller to Callee at the associated
% context has infinite weight.
% Valid error only in pass 2.
; cycle(pred_proc_id, assoc_list(pred_proc_id, prog_context))
% cycle(StartPPId, CallSites)
% In the cycle of calls starting at StartPPId and
% going through the named call sites may be an
% infinite loop.
% Valid error only in pass 2.
; no_eqns
% There are no equations in this SCC.
% This has 2 possible causes. (1) If the predicate has
% no output arguments, no equations will be created
% for them. The change constant of the predicate is
% undefined, but it will also never be used.
% (2) If the procedure is a builtin predicate, with
% an empty body, traversal cannot create any equations.
% Valid error only in pass 1.
; too_many_paths
% There are too many distinct paths to be analyzed.
% Valid in both passes (which analyze different sets
% of paths).
; solver_failed
% The solver could not find finite termination
% constants for the procedures in the SCC.
% Valid only in pass 1.
; is_builtin(pred_id)
% The termination constant of the given builtin is
% set to infinity; this happens when the type of at
% least one output argument permits a norm greater
% than zero.
; does_not_term_pragma(pred_id)
% The given procedure has a does_not_terminate pragma.
; inconsistent_annotations
% The pragma terminates/does_not_terminate declarations
% for the procedures in this SCC are inconsistent.
; does_not_term_foreign(pred_proc_id).
% The procedure contains foreign code that may
% make calls back to Mercury. By default such
% code is assumed to be non-terminating.
:- type term_error
---> term_error(prog_context, term_error_kind).
:- pred report_term_errors(module_info::in, scc::in, list(term_error)::in,
list(error_spec)::in, list(error_spec)::out) is det.
% An error is considered an indirect error if it is due either to a
% language feature we cannot analyze or due to an error in another part
% of the code. By default, we do not issue warnings about indirect errors,
% since in the first case, the programmer cannot do anything about it,
% and in the second case, the piece of code that the programmer *can* do
% something about is not this piece.
%
:- func term_error_kind_is_direct_error(term_error_kind) = bool.
% A fatal error is one that prevents pass 2 from proving termination.
%
:- func term_error_kind_is_fatal_error(term_error_kind) = bool.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds.hlds_error_util.
:- import_module parse_tree.prog_data_pragma.
:- import_module transform_hlds.term_util.
:- import_module cord.
:- import_module int.
:- import_module maybe.
:- import_module pair.
:- import_module require.
:- import_module set.
:- import_module string.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
report_term_errors(ModuleInfo, SCC, Errors, !Specs) :-
get_context_from_scc(ModuleInfo, SCC, Context),
( if set.is_singleton(SCC, PPId) then
Pieces1 = [words("Termination of")] ++
describe_one_proc_name(ModuleInfo, should_module_qualify, PPId),
Single = yes(PPId)
else
Pieces1 = [words("Termination of the "),
words("mutually recursive procedures")] ++
describe_several_proc_names(ModuleInfo,
should_module_qualify, set.to_sorted_list(SCC)),
Single = no
),
(
Errors = [],
% XXX This should never happen but for some reason, it often does.
% error("empty list of errors")
Pieces2 = [words("not proven, for unknown reason(s).")],
Pieces = Pieces1 ++ Pieces2,
ReasonMsgsCord = cord.init
;
Errors = [Error],
Pieces2 = [words("not proven for the following reason:")],
Pieces = Pieces1 ++ Pieces2,
describe_term_error(ModuleInfo, Single, Error, no,
cord.init, ReasonMsgsCord, !Specs)
;
Errors = [_, _ | _],
Pieces2 = [words("not proven for the following reasons:")],
Pieces = Pieces1 ++ Pieces2,
describe_term_errors(ModuleInfo, Single, Errors, 1,
cord.init, ReasonMsgsCord, !Specs)
),
ReasonMsgs = cord.list(ReasonMsgsCord),
Msgs = [simple_msg(Context, [always(Pieces)]) | ReasonMsgs],
Spec = error_spec(severity_warning, phase_termination_analysis, Msgs),
!:Specs = [Spec | !.Specs].
:- pred report_arg_size_errors(module_info::in, scc::in, list(term_error)::in,
list(error_spec)::in, list(error_spec)::out) is det.
report_arg_size_errors(ModuleInfo, SCC, Errors, !Specs) :-
get_context_from_scc(ModuleInfo, SCC, Context),
( if set.is_singleton(SCC, PPId) then
Pieces1 = [words("Termination constant of")] ++
describe_one_proc_name(ModuleInfo, should_module_qualify, PPId),
Single = yes(PPId)
else
Pieces1 = [words("Termination constants"),
words("of the mutually recursive procedures")] ++
describe_several_proc_names(ModuleInfo,
should_module_qualify, set.to_sorted_list(SCC)),
Single = no
),
Piece2 = words("set to infinity for the following"),
(
Errors = [],
unexpected($pred, "empty list of errors")
;
Errors = [Error],
Piece3 = words("reason:"),
Pieces = Pieces1 ++ [Piece2, Piece3],
describe_term_error(ModuleInfo, Single, Error, no,
cord.init, ReasonMsgsCord, !Specs)
;
Errors = [_, _ | _],
Piece3 = words("reasons:"),
Pieces = Pieces1 ++ [Piece2, Piece3],
describe_term_errors(ModuleInfo, Single, Errors, 1,
cord.init, ReasonMsgsCord, !Specs)
),
ReasonMsgs = cord.list(ReasonMsgsCord),
Msgs = [simple_msg(Context, [always(Pieces)]) | ReasonMsgs],
Spec = error_spec(severity_warning, phase_termination_analysis, Msgs),
!:Specs = [Spec | !.Specs].
:- pred describe_term_errors(module_info::in, maybe(pred_proc_id)::in,
list(term_error)::in, int::in, cord(error_msg)::in, cord(error_msg)::out,
list(error_spec)::in, list(error_spec)::out) is det.
describe_term_errors(_, _, [], _, !Msgs, !Specs).
describe_term_errors(ModuleInfo, Single, [Error | Errors], ErrNum0,
!Msgs, !Specs) :-
describe_term_error(ModuleInfo, Single, Error, yes(ErrNum0),
!Msgs, !Specs),
describe_term_errors(ModuleInfo, Single, Errors, ErrNum0 + 1,
!Msgs, !Specs).
:- pred describe_term_error(module_info::in, maybe(pred_proc_id)::in,
term_error::in, maybe(int)::in, cord(error_msg)::in, cord(error_msg)::out,
list(error_spec)::in, list(error_spec)::out) is det.
describe_term_error(ModuleInfo, Single, TermErrorContext, ErrorNum,
!ReasonMsgs, !Specs) :-
TermErrorContext = term_error(Context, ErrorKind),
term_error_kind_description(ModuleInfo, Single, ErrorKind, Pieces0,
Reason),
(
ErrorNum = yes(N),
string.int_to_string(N, Nstr),
Preamble = "Reason " ++ Nstr ++ ":",
Pieces = [fixed(Preamble) | Pieces0]
;
ErrorNum = no,
Pieces = Pieces0
),
ReasonMsg = error_msg(yes(Context), treat_as_first, 0, [always(Pieces)]),
!:ReasonMsgs = cord.snoc(!.ReasonMsgs, ReasonMsg),
(
Reason = yes(InfArgSizePPId),
lookup_proc_arg_size_info(ModuleInfo, InfArgSizePPId, ArgSize),
( if ArgSize = yes(infinite(ArgSizeErrors)) then
% XXX Should we add a Msg about the relevance of the spec
% added by the folliwng call?
% XXX the next line is cheating
ArgSizePPIdSCC = set.make_singleton_set(InfArgSizePPId),
report_arg_size_errors(ModuleInfo, ArgSizePPIdSCC, ArgSizeErrors,
!Specs)
else
unexpected($pred,
"inf arg size procedure does not have inf arg size")
)
;
Reason = no
).
:- pred term_error_kind_description(module_info::in, maybe(pred_proc_id)::in,
term_error_kind::in, list(format_component)::out,
maybe(pred_proc_id)::out) is det.
term_error_kind_description(ModuleInfo, Single, ErrorKind, Pieces, Reason) :-
(
ErrorKind = horder_call,
Pieces = [words("It contains a higher order call."), nl],
Reason = no
;
ErrorKind = method_call,
Pieces = [words("It contains a typeclass method call."), nl],
Reason = no
;
ErrorKind = pragma_foreign_code,
Pieces = [words("It depends on the properties of"),
words("foreign language code included via a"),
pragma_decl("foreign_proc"), words("declaration."), nl],
Reason = no
;
ErrorKind = inf_call(CallerPPId, CalleePPId),
(
Single = yes(PPId),
expect(unify(PPId, CallerPPId), $pred,
"inf_call: caller outside this SCC"),
Pieces1 = [words("It")]
;
Single = no,
Pieces1 = describe_one_proc_name(ModuleInfo,
should_module_qualify, CallerPPId)
),
Piece2 = words("calls"),
CalleePieces = describe_one_proc_name(ModuleInfo,
should_module_qualify, CalleePPId),
Pieces3 = [words("with an unbounded increase"),
words("in the size of the input arguments."), nl],
Pieces = Pieces1 ++ [Piece2] ++ CalleePieces ++ Pieces3,
Reason = no
;
ErrorKind = can_loop_proc_called(CallerPPId, CalleePPId),
(
Single = yes(PPId),
expect(unify(PPId, CallerPPId), $pred,
"can_loop_proc_called: caller outside this SCC"),
Pieces1 = [words("It")]
;
Single = no,
Pieces1 = describe_one_proc_name(ModuleInfo,
should_module_qualify, CallerPPId)
),
Piece2 = words("calls"),
CalleePieces = describe_one_proc_name(ModuleInfo,
should_module_qualify, CalleePPId),
Piece3 = words("which could not be proven to terminate."),
Pieces = Pieces1 ++ [Piece2] ++ CalleePieces ++ [Piece3, nl],
Reason = no
;
ErrorKind = imported_pred,
Pieces = [words("It contains one or more"),
words("predicates and/or functions"),
words("imported from another module."), nl],
Reason = no
;
ErrorKind = horder_args(CallerPPId, CalleePPId),
(
Single = yes(PPId),
expect(unify(PPId, CallerPPId), $pred,
"horder_args: caller outside this SCC"),
Pieces1 = [words("It")]
;
Single = no,
Pieces1 = describe_one_proc_name(ModuleInfo,
should_module_qualify, CallerPPId)
),
Piece2 = words("calls"),
CalleePieces = describe_one_proc_name(ModuleInfo,
should_module_qualify, CalleePPId),
Piece3 = words("with one or more higher order arguments."),
Pieces = Pieces1 ++ [Piece2] ++ CalleePieces ++ [Piece3, nl],
Reason = no
;
ErrorKind = inf_termination_const(CallerPPId, CalleePPId),
(
Single = yes(PPId),
expect(unify(PPId, CallerPPId), $pred,
"inf_termination_const: caller outside this SCC"),
Pieces1 = [words("It")]
;
Single = no,
Pieces1 = describe_one_proc_name(ModuleInfo,
should_module_qualify, CallerPPId)
),
Piece2 = words("calls"),
CalleePieces = describe_one_proc_name(ModuleInfo,
should_module_qualify, CalleePPId),
Piece3 = words("which has a termination constant of infinity."),
Pieces = Pieces1 ++ [Piece2] ++ CalleePieces ++ [Piece3, nl],
Reason = yes(CalleePPId)
;
ErrorKind = ho_inf_termination_const(CallerPPId, _ClosurePPIds),
% XXX We should print out the names of the non-terminating closures.
(
Single = yes(PPId),
expect(unify(PPId, CallerPPId), $pred,
"ho_info_termination_const: caller outside this SCC"),
Pieces1 = [words("It")]
;
Single = no,
Pieces1 = describe_one_proc_name(ModuleInfo,
should_module_qualify, CallerPPId)
),
Pieces2 = [words("makes one or more higher-order calls."),
words("Each of these higher-order calls has a"),
words("termination constant of infinity."), nl],
Pieces = Pieces1 ++ Pieces2,
Reason = no
;
ErrorKind = not_subset(ProcPPId, OutputSuppliers, HeadVars),
(
Single = yes(PPId),
( if PPId = ProcPPId then
Pieces1 = [words("The set of its output supplier variables")]
else
% XXX this should never happen (but it does)
% error("not_subset outside this SCC"),
PPIdPieces = describe_one_proc_name(ModuleInfo,
should_module_qualify, ProcPPId),
Pieces1 = [words("The set of output supplier variables of")
| PPIdPieces]
)
;
Single = no,
PPIdPieces = describe_one_proc_name(ModuleInfo,
should_module_qualify, ProcPPId),
Pieces1 = [words("The set of output supplier variables of") |
PPIdPieces]
),
ProcPPId = proc(PredId, ProcId),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
proc_info_get_varset(ProcInfo, Varset),
term_errors_var_bag_description(OutputSuppliers, Varset,
OutputSuppliersNames),
list.map((pred(OS::in, FOS::out) is det :- FOS = fixed(OS)),
OutputSuppliersNames, OutputSuppliersPieces),
Pieces3 = [words("is not a subset of the head variables")],
term_errors_var_bag_description(HeadVars, Varset, HeadVarsNames),
list.map((pred(HV::in, FHV::out) is det :- FHV = fixed(HV)),
HeadVarsNames, HeadVarsPieces),
Pieces = Pieces1 ++ OutputSuppliersPieces ++ Pieces3 ++
HeadVarsPieces ++ [suffix("."), nl],
Reason = no
;
ErrorKind = cycle(_StartPPId, CallSites),
( if CallSites = [DirectCall] then
SitePieces = describe_one_call_site(ModuleInfo,
should_module_qualify, DirectCall),
Pieces = [words("At the recursive call to") | SitePieces] ++
[words("the arguments are not guaranteed"),
words("to decrease in size."), nl]
else
Pieces = [words("In the recursive cycle through the calls to")] ++
describe_several_call_sites(ModuleInfo,
should_module_qualify, CallSites) ++
[words("the arguments are"),
words("not guaranteed to decrease in size."), nl]
),
Reason = no
;
ErrorKind = too_many_paths,
Pieces = [words("There are too many execution paths"),
words("for the analysis to process."), nl],
Reason = no
;
ErrorKind = no_eqns,
Pieces = [words("The analysis was unable to form any constraints"),
words("between the arguments of this group of procedures."), nl],
Reason = no
;
ErrorKind = solver_failed,
Pieces = [words("The solver found the constraints produced"),
words("by the analysis to be infeasible."), nl],
Reason = no
;
ErrorKind = is_builtin(_PredId),
% XXX expect(unify(Single, yes(_)), $pred,
% "builtin not alone in SCC"),
Pieces = [words("It is a builtin predicate."), nl],
Reason = no
;
ErrorKind = does_not_term_pragma(PredId),
Pieces1 = [words("There is a"), pragma_decl("does_not_terminate"),
words("declaration for")],
(
Single = yes(PPId),
PPId = proc(SCCPredId, _),
expect(unify(PredId, SCCPredId), $pred,
"does not terminate pragma outside this SCC"),
Pieces2 = [words("it."), nl]
;
Single = no,
Pieces2 = describe_one_pred_name(ModuleInfo,
should_module_qualify, PredId) ++ [suffix("."), nl]
),
Pieces = Pieces1 ++ Pieces2,
Reason = no
;
ErrorKind = inconsistent_annotations,
Pieces = [words("The termination pragmas are inconsistent."), nl],
Reason = no
;
ErrorKind = does_not_term_foreign(_),
Pieces = [words("It contains foreign code that"),
words("may make one or more calls back to Mercury."), nl],
Reason = no
).
%----------------------------------------------------------------------------%
:- pred term_errors_var_bag_description(bag(prog_var)::in, prog_varset::in,
list(string)::out) is det.
term_errors_var_bag_description(HeadVars, Varset, Pieces) :-
bag.to_assoc_list(HeadVars, HeadVarCountList),
term_errors_var_bag_description_2(HeadVarCountList, Varset, yes, Pieces).
:- pred term_errors_var_bag_description_2(assoc_list(prog_var, int)::in,
prog_varset::in, bool::in, list(string)::out) is det.
term_errors_var_bag_description_2([], _, _, ["{}"]).
term_errors_var_bag_description_2([Var - Count | VarCounts], Varset, First,
[Piece | Pieces]) :-
varset.lookup_name(Varset, Var, VarName),
( if Count > 1 then
string.append(VarName, "*", VarCountPiece0),
string.int_to_string(Count, CountStr),
string.append(VarCountPiece0, CountStr, VarCountPiece)
else
VarCountPiece = VarName
),
(
First = yes,
string.append("{", VarCountPiece, Piece0)
;
First = no,
Piece0 = VarCountPiece
),
(
VarCounts = [],
string.append(Piece0, "}.", Piece),
Pieces = []
;
VarCounts = [_ | _],
Piece = Piece0,
term_errors_var_bag_description_2(VarCounts, Varset, First, Pieces)
).
%-----------------------------------------------------------------------------%
% XXX Some of the following (and in is_fatal_error/1 as well) look wrong.
% Some of them should probably be calling unexpected/2 - juliensf.
term_error_kind_is_direct_error(ErrorKind) = IsDirect :-
(
( ErrorKind = horder_call
; ErrorKind = method_call
; ErrorKind = pragma_foreign_code
; ErrorKind = imported_pred
; ErrorKind = can_loop_proc_called(_, _)
; ErrorKind = horder_args(_, _)
; ErrorKind = does_not_term_pragma(_)
),
IsDirect = no
;
( ErrorKind = cycle(_, _)
; ErrorKind = does_not_term_foreign(_)
; ErrorKind = ho_inf_termination_const(_, _)
; ErrorKind = inf_call(_, _)
; ErrorKind = inf_termination_const(_, _)
; ErrorKind = is_builtin(_)
; ErrorKind = no_eqns
; ErrorKind = not_subset(_, _, _)
; ErrorKind = solver_failed
; ErrorKind = too_many_paths
; ErrorKind = inconsistent_annotations
),
IsDirect = yes
).
term_error_kind_is_fatal_error(ErrorKind) = IsFatal :-
(
( ErrorKind = horder_call
; ErrorKind = horder_args(_, _)
; ErrorKind = imported_pred
; ErrorKind = method_call
),
IsFatal = yes
;
( ErrorKind = pragma_foreign_code
; ErrorKind = can_loop_proc_called(_, _)
; ErrorKind = does_not_term_pragma(_)
; ErrorKind = cycle(_, _)
; ErrorKind = does_not_term_foreign(_)
; ErrorKind = ho_inf_termination_const(_, _)
; ErrorKind = inf_call(_, _)
; ErrorKind = inf_termination_const(_, _)
; ErrorKind = is_builtin(_)
; ErrorKind = no_eqns
; ErrorKind = not_subset(_, _, _)
; ErrorKind = solver_failed
; ErrorKind = too_many_paths
; ErrorKind = inconsistent_annotations
),
IsFatal = no
).
%----------------------------------------------------------------------------%
:- end_module transform_hlds.term_errors.
%----------------------------------------------------------------------------%