mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-12 12:26:29 +00:00
1060 lines
42 KiB
Mathematica
1060 lines
42 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% vim: ft=mercury ts=4 sw=4 et
|
|
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 2005-2012 The University of Melbourne.
|
|
% Copyright (C) 2017 The Mercury Team.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% File rbmm.points_to_analysis.m.
|
|
% Main author: Quan Phan.
|
|
%
|
|
% This module implements the region points-to analysis (rpta), which collects
|
|
% for each procedure a region points-to graph representing the splitting of
|
|
% the heap used by the procedure into regions, i.e., which variables are
|
|
% stored in which regions. Because the region model is polymorphic, i.e., we
|
|
% can pass different actual regions for region arguments, the analysis also
|
|
% gathers the alpha mapping, which maps formal region parameters to actual
|
|
% ones at each call site in a procedure. So there are 2 sorts of information:
|
|
% region points-to graph (rptg) and alpha mapping.
|
|
%
|
|
% The analysis is composed of 2 phases:
|
|
%
|
|
% 1. intraprocedural analysis: only analyses unifications and compute only
|
|
% rptgs.
|
|
% 2. interprocedural analysis: only analyses (plain) procedure calls,
|
|
% compute both rptgs and alpha mappings.
|
|
%
|
|
% Currently the analysis ONLY collects the information, do NOT record it into
|
|
% the HLDS.
|
|
%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module transform_hlds.rbmm.points_to_analysis.
|
|
:- interface.
|
|
|
|
:- import_module hlds.
|
|
:- import_module hlds.hlds_module.
|
|
:- import_module transform_hlds.rbmm.points_to_info.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred region_points_to_analysis(rpta_info_table::out,
|
|
module_info::in, module_info::out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module hlds.goal_path.
|
|
:- import_module hlds.hlds_dependency_graph.
|
|
:- import_module hlds.hlds_goal.
|
|
:- import_module hlds.hlds_pred.
|
|
:- import_module libs.
|
|
:- import_module libs.dependency_graph.
|
|
:- import_module parse_tree.
|
|
:- import_module parse_tree.prog_data.
|
|
:- import_module parse_tree.prog_data_pragma.
|
|
:- import_module transform_hlds.rbmm.points_to_graph.
|
|
:- import_module transform_hlds.smm_common.
|
|
:- import_module transform_hlds.ctgc.
|
|
:- import_module transform_hlds.ctgc.fixpoint_table.
|
|
|
|
:- import_module bool.
|
|
:- import_module int.
|
|
:- import_module list.
|
|
:- import_module map.
|
|
:- import_module maybe.
|
|
:- import_module require.
|
|
:- import_module set.
|
|
:- import_module string.
|
|
:- import_module term.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
region_points_to_analysis(InfoTable, !ModuleInfo) :-
|
|
rpta_info_table_init = InfoTable0,
|
|
intra_proc_rpta(!.ModuleInfo, InfoTable0, InfoTable1),
|
|
inter_proc_rpta(!.ModuleInfo, InfoTable1, InfoTable).
|
|
|
|
%----------------------------------------------------------------------------%
|
|
%
|
|
% Phase 1: intraprocedural region points-to analysis
|
|
%
|
|
|
|
:- pred intra_proc_rpta(module_info::in,
|
|
rpta_info_table::in, rpta_info_table::out) is det.
|
|
|
|
intra_proc_rpta(ModuleInfo, !InfoTable) :-
|
|
module_info_get_valid_pred_ids(ModuleInfo, PredIds),
|
|
list.foldl(intra_proc_rpta_pred(ModuleInfo), PredIds, !InfoTable).
|
|
|
|
:- pred intra_proc_rpta_pred(module_info::in, pred_id::in,
|
|
rpta_info_table::in, rpta_info_table::out) is det.
|
|
|
|
intra_proc_rpta_pred(ModuleInfo, PredId, !InfoTable) :-
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
ProcIds = pred_info_non_imported_procids(PredInfo),
|
|
list.foldl(intra_proc_rpta_proc(ModuleInfo, PredId), ProcIds, !InfoTable).
|
|
|
|
:- pred intra_proc_rpta_proc(module_info::in, pred_id::in, proc_id::in,
|
|
rpta_info_table::in, rpta_info_table::out) is det.
|
|
|
|
intra_proc_rpta_proc(ModuleInfo, PredId, ProcId, !InfoTable) :-
|
|
PPId = proc(PredId, ProcId),
|
|
( if some_are_special_preds([PPId], ModuleInfo) then
|
|
true
|
|
else
|
|
module_info_proc_info(ModuleInfo, PPId, ProcInfo),
|
|
RptaInfo0 = rpta_info_init(ProcInfo),
|
|
proc_info_get_goal(ProcInfo, Goal),
|
|
intra_analyse_goal(Goal, RptaInfo0, RptaInfo),
|
|
rpta_info_table_set_rpta_info(PPId, RptaInfo, !InfoTable)
|
|
).
|
|
|
|
:- pred intra_analyse_goal(hlds_goal::in, rpta_info::in, rpta_info::out)
|
|
is det.
|
|
|
|
intra_analyse_goal(Goal, !RptaInfo) :-
|
|
Goal = hlds_goal(GoalExpr, _),
|
|
intra_analyse_goal_expr(GoalExpr, !RptaInfo).
|
|
|
|
:- pred intra_analyse_goal_expr(hlds_goal_expr::in,
|
|
rpta_info::in, rpta_info::out) is det.
|
|
|
|
intra_analyse_goal_expr(conj(_ConjType, Goals), !RptaInfo) :-
|
|
list.foldl(intra_analyse_goal, Goals, !RptaInfo).
|
|
|
|
% Calls (of all types) are not considered during the intraprocedural
|
|
% analysis.
|
|
%
|
|
intra_analyse_goal_expr(plain_call(_, _, _, _, _, _), !RptaInfo).
|
|
intra_analyse_goal_expr(generic_call(_, _, _, _, _), !RptaInfo).
|
|
intra_analyse_goal_expr(call_foreign_proc(_, _, _, _, _, _, _), !RptaInfo).
|
|
|
|
intra_analyse_goal_expr(switch(_, _, Cases), !RptaInfo) :-
|
|
list.foldl(intra_analyse_case, Cases, !RptaInfo).
|
|
intra_analyse_goal_expr(disj(Goals), !RptaInfo) :-
|
|
list.foldl(intra_analyse_goal, Goals, !RptaInfo).
|
|
intra_analyse_goal_expr(negation(Goal), !RptaInfo) :-
|
|
intra_analyse_goal(Goal, !RptaInfo).
|
|
intra_analyse_goal_expr(unify(_, _, _, Unification, _), !RptaInfo) :-
|
|
intra_analyse_unification(Unification, !RptaInfo).
|
|
|
|
% scope
|
|
% XXX: only analyse the goal. May need to take into account the Reason.
|
|
%
|
|
intra_analyse_goal_expr(scope(_Reason, Goal), !RptaInfo) :-
|
|
% (
|
|
% ( Reason = exist_quant(_)
|
|
% ; Reason = promise_solutions(_, _) % XXX ???
|
|
% ; Reason = promise_purity(_, _)
|
|
% ; Reason = commit(_) % XXX ???
|
|
% ; Reason = barrier(_)
|
|
% ; Reason = trace_goal(_, _, _, _, _)
|
|
% ; Reason = from_ground_term(_)
|
|
% ),
|
|
intra_analyse_goal(Goal, !RptaInfo).
|
|
% ;
|
|
% Msg = "intra_analyse_goal_expr: Scope's reason of from_ground_term "
|
|
% ++ "not handled",
|
|
% unexpected($pred, Msg)
|
|
% ).
|
|
|
|
intra_analyse_goal_expr(if_then_else(_Vars, If, Then, Else), !RptaInfo) :-
|
|
intra_analyse_goal(If, !RptaInfo),
|
|
intra_analyse_goal(Then, !RptaInfo),
|
|
intra_analyse_goal(Else, !RptaInfo).
|
|
|
|
intra_analyse_goal_expr(shorthand(_), _, _) :-
|
|
% These should have been expanded out by now.
|
|
unexpected($pred, "shorthand").
|
|
|
|
:- pred intra_analyse_case(case::in, rpta_info::in, rpta_info::out) is det.
|
|
|
|
intra_analyse_case(Case, !RptaInfo) :-
|
|
Case = case(_, _, Goal),
|
|
intra_analyse_goal(Goal, !RptaInfo).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% For construction and deconstruction unifications, add an edge from
|
|
% the node of the variable on the LHS to that of each variable on the RHS.
|
|
% For construction, also mark the node of lhs variable allocated.
|
|
%
|
|
% For assignment unifications we merge the nodes corresponding to
|
|
% the variables on either side.
|
|
%
|
|
% For simple test unifications we do nothing.
|
|
%
|
|
:- pred intra_analyse_unification(unification::in,
|
|
rpta_info::in, rpta_info::out) is det.
|
|
|
|
intra_analyse_unification(construct(LVar, ConsId, RVars, _, _, _, _),
|
|
rpta_info(!.Graph, AlphaMapping), rpta_info(!:Graph, AlphaMapping)) :-
|
|
% Mark allocated.
|
|
rptg_get_node_by_variable(!.Graph, LVar, LNode),
|
|
LNodeContent0 = rptg_get_node_content(!.Graph, LNode),
|
|
LNodeContent0 = rptg_node_content(A, B, C, D, _IsAlloc),
|
|
LNodeContent = rptg_node_content(A, B, C, D, bool.yes),
|
|
rptg_set_node_content(LNode, LNodeContent, !Graph),
|
|
|
|
% Add edges.
|
|
list.foldl2(process_cons_and_decons(LVar, ConsId), RVars, 1, _, !Graph).
|
|
|
|
intra_analyse_unification(deconstruct(LVar, ConsId, RVars, _, _, _),
|
|
rpta_info(!.Graph, AlphaMapping), rpta_info(!:Graph, AlphaMapping)) :-
|
|
list.foldl2(process_cons_and_decons(LVar, ConsId), RVars, 1, _, !Graph).
|
|
intra_analyse_unification(assign(ToVar, FromVar),
|
|
rpta_info(!.Graph, AlphaMapping), rpta_info(!:Graph, AlphaMapping)) :-
|
|
rptg_get_node_by_variable(!.Graph, ToVar, ToNode),
|
|
rptg_get_node_by_variable(!.Graph, FromVar, FromNode),
|
|
( if ToNode = FromNode then
|
|
true
|
|
else
|
|
unify_operator(ToNode, FromNode, !Graph),
|
|
% After merging the two nodes, apply rule P1 to restore the
|
|
% RPTG's invariants.
|
|
rule_1(ToNode, !Graph)
|
|
).
|
|
intra_analyse_unification(simple_test(_, _), !RptaInfo).
|
|
intra_analyse_unification(complicated_unify(_, _, _), _, _) :-
|
|
unexpected($pred, "complicated_unify").
|
|
|
|
:- pred process_cons_and_decons(prog_var::in, cons_id::in, prog_var::in,
|
|
int::in, int::out, rpt_graph::in, rpt_graph::out) is det.
|
|
|
|
process_cons_and_decons(LVar, ConsId, RVar, !Component, !Graph) :-
|
|
rptg_get_node_by_variable(!.Graph, LVar, LNode),
|
|
rptg_get_node_by_variable(!.Graph, RVar, RNode),
|
|
Sel = [termsel(ConsId, !.Component)],
|
|
EdgeLabel = rptg_edge_content(Sel),
|
|
|
|
% Only add the edge if it is not in the graph.
|
|
% It is more suitable to the edge_operator's semantics if we check
|
|
% this inside the edge_operator. But we also want to know if the edge
|
|
% is actually added or not so it is convenient to check the edge's
|
|
% existence outside edge_operator. Otherwise we can extend edge_operator
|
|
% with one more argument to indicate that.
|
|
( if rptg_edge_in_graph(LNode, EdgeLabel, RNode, !.Graph) then
|
|
true
|
|
else
|
|
edge_operator(LNode, RNode, EdgeLabel, !Graph),
|
|
|
|
% After an edge is added, rules P2 and P3 are applied to ensure
|
|
% the invariants of the graph.
|
|
rule_2(LNode, RNode, ConsId, !.Component, !Graph),
|
|
|
|
% In case the node containing RVar might have changed.
|
|
rptg_get_node_by_variable(!.Graph, RVar, RVarNode),
|
|
rule_3(RVarNode, !Graph)
|
|
),
|
|
!:Component = !.Component + 1.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Phase 2: interprocedural region points-to analysis
|
|
%
|
|
|
|
% The interprocedural analysis requires fixpoint computation,
|
|
% so we will compute a fixpoint for each strongly connected component.
|
|
%
|
|
:- pred inter_proc_rpta(module_info::in,
|
|
rpta_info_table::in, rpta_info_table::out) is det.
|
|
|
|
inter_proc_rpta(ModuleInfo0, !InfoTable) :-
|
|
module_info_ensure_dependency_info(ModuleInfo0, ModuleInfo, DepInfo),
|
|
BottomUpSCCs = dependency_info_get_bottom_up_sccs(DepInfo),
|
|
run_with_dependencies(BottomUpSCCs, ModuleInfo, !InfoTable).
|
|
|
|
:- pred run_with_dependencies(hlds_bottom_up_dependency_sccs::in,
|
|
module_info::in, rpta_info_table::in, rpta_info_table::out) is det.
|
|
|
|
run_with_dependencies(BottomUpSCCs, ModuleInfo, !InfoTable) :-
|
|
list.foldl(run_with_dependency(ModuleInfo), BottomUpSCCs, !InfoTable).
|
|
|
|
:- pred run_with_dependency(module_info::in, set(pred_proc_id)::in,
|
|
rpta_info_table::in, rpta_info_table::out) is det.
|
|
|
|
run_with_dependency(ModuleInfo, SCC, !InfoTable) :-
|
|
set.to_sorted_list(SCC, SCCProcs),
|
|
( if some_are_special_preds(SCCProcs, ModuleInfo) then
|
|
% Analysis ignores special predicates.
|
|
true
|
|
else
|
|
% Run the fixpoint computation on the SCC.
|
|
FPTable = init_rpta_fixpoint_table(SCCProcs, !.InfoTable),
|
|
run_with_dependency_until_fixpoint(SCC, FPTable, ModuleInfo,
|
|
!InfoTable)
|
|
).
|
|
|
|
:- pred run_with_dependency_until_fixpoint(scc::in,
|
|
rpta_fixpoint_table::in, module_info::in, rpta_info_table::in,
|
|
rpta_info_table::out) is det.
|
|
|
|
run_with_dependency_until_fixpoint(SCC, FPTable0, ModuleInfo, !InfoTable) :-
|
|
set.foldl(inter_analyse_proc(ModuleInfo, !.InfoTable), SCC,
|
|
FPTable0, FPTable1),
|
|
( if fixpoint_reached(FPTable1) then
|
|
% If we have reached a fixpoint for this SCC then update the
|
|
% RPTA info table.
|
|
set.foldl(update_rpta_info_in_rpta_info_table(FPTable1), SCC,
|
|
!InfoTable)
|
|
else
|
|
% Otherwise, begin the next iteration.
|
|
new_run(FPTable1, FPTable),
|
|
run_with_dependency_until_fixpoint(SCC, FPTable, ModuleInfo,
|
|
!InfoTable)
|
|
).
|
|
|
|
:- pred inter_analyse_proc(module_info::in, rpta_info_table::in,
|
|
pred_proc_id::in, rpta_fixpoint_table::in, rpta_fixpoint_table::out)
|
|
is det.
|
|
|
|
inter_analyse_proc(ModuleInfo, InfoTable, PPId, !FPTable) :-
|
|
% Look up the procedure's rpta_info.
|
|
% If this is the first iteration then the rtpa_info we use is the
|
|
% one computed for this procedure during the intraprocedural analysis.
|
|
%
|
|
lookup_rpta_info(PPId, InfoTable, !FPTable, ProcRptaInfo0, _),
|
|
|
|
% Start the analysis of the procedure's body.
|
|
%
|
|
% We will need the information about program point for storing alpha
|
|
% mapping.
|
|
%
|
|
% XXX we should only fill goal path slots once, not once per iteration.
|
|
%
|
|
module_info_proc_info(ModuleInfo, PPId, ProcInfo0),
|
|
fill_goal_path_slots_in_proc(ModuleInfo, ProcInfo0, ProcInfo),
|
|
|
|
proc_info_get_goal(ProcInfo, Goal),
|
|
inter_analyse_goal(ModuleInfo, InfoTable, Goal, !FPTable,
|
|
ProcRptaInfo0, ProcRptaInfo),
|
|
|
|
% Put the result of this iteration into the fixpoint table.
|
|
%
|
|
rpta_fixpoint_table_new_rpta_info(PPId, ProcRptaInfo, !FPTable).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for interprocedural analysis of goals.
|
|
%
|
|
|
|
% Analyse a given goal, with module_info and fixpoint table
|
|
% to lookup extra information, starting from an initial abstract
|
|
% substitution, and creating a new one. During this process,
|
|
% the fixpoint table might change (when recursive predicates are
|
|
% encountered).
|
|
%
|
|
:- pred inter_analyse_goal(module_info::in,
|
|
rpta_info_table::in, hlds_goal::in,
|
|
rpta_fixpoint_table::in, rpta_fixpoint_table::out,
|
|
rpta_info::in, rpta_info::out) is det.
|
|
|
|
inter_analyse_goal(ModuleInfo, InfoTable, Goal, !FPtable, !RptaInfo) :-
|
|
Goal = hlds_goal(GoalExpr, GoalInfo),
|
|
inter_analyse_goal_expr(GoalExpr, GoalInfo, ModuleInfo, InfoTable,
|
|
!FPtable, !RptaInfo).
|
|
|
|
:- pred inter_analyse_goal_expr(hlds_goal_expr::in, hlds_goal_info::in,
|
|
module_info::in, rpta_info_table::in, rpta_fixpoint_table::in,
|
|
rpta_fixpoint_table::out, rpta_info::in, rpta_info::out) is det.
|
|
|
|
inter_analyse_goal_expr(conj(_ConjType, Goals), _, ModuleInfo,
|
|
InfoTable, !FPTable, !RptaInfo) :-
|
|
list.foldl2(inter_analyse_goal(ModuleInfo, InfoTable), Goals,
|
|
!FPTable, !RptaInfo).
|
|
|
|
% There are two rpta_info's:
|
|
% one is of the currently-analysed procedure (caller) which we are going
|
|
% to update, the other is of the called procedure (callee).
|
|
%
|
|
% The input RptaInfo is caller's, if the procedure calls itself then
|
|
% this is also that of the callee but we will retrieve it again from the
|
|
% InfoTable.
|
|
%
|
|
inter_analyse_goal_expr(Goal, GoalInfo, ModuleInfo, InfoTable,
|
|
!FPTable, !CallerRptaInfo) :-
|
|
Goal = plain_call(PredId, ProcId, ActualParams, _, _, _),
|
|
CalleePPId = proc(PredId, ProcId),
|
|
|
|
% Get callee's rpta_info.
|
|
% As what I assume now, after the intraprocedural analysis we have all
|
|
% the rpta_info's of all the procedures in the InfoTable, therefore
|
|
% this lookup cannot fail. But it sometimes fails because the callee
|
|
% can be imported procedures, built-ins and so forth which are not
|
|
% analysed by the intraprocedural analysis. In such cases, I assume that
|
|
% the rpta_info of the caller is not updated, because no information is
|
|
% available from the callee.
|
|
% When IsInit = no, the CalleeRptaInfo is dummy.
|
|
lookup_rpta_info(CalleePPId, InfoTable, !FPTable, CalleeRptaInfo, IsInit),
|
|
(
|
|
IsInit = yes
|
|
;
|
|
IsInit = no,
|
|
CallSite = program_point_init(GoalInfo),
|
|
CalleeRptaInfo = rpta_info(CalleeGraph, _),
|
|
|
|
% Collect alpha mapping at this call site.
|
|
module_info_proc_info(ModuleInfo, CalleePPId, CalleeProcInfo),
|
|
proc_info_get_headvars(CalleeProcInfo, FormalParams),
|
|
!.CallerRptaInfo = rpta_info(CallerGraph0, CallerAlphaMappings0),
|
|
alpha_mapping_at_call_site(FormalParams, ActualParams, CalleeGraph,
|
|
CallerGraph0, CallerGraph,
|
|
map.init, CallerAlphaMappingAtCallSite),
|
|
map.set(CallSite, CallerAlphaMappingAtCallSite,
|
|
CallerAlphaMappings0, CallerAlphaMappings),
|
|
CallerRptaInfo1 = rpta_info(CallerGraph, CallerAlphaMappings),
|
|
|
|
% Follow the edges from the nodes rooted at the formal parameters
|
|
% (in the callee's graph) and apply the interprocedural rules to
|
|
% complete the alpha mapping and update the caller's graph with
|
|
% the information from the callee's graph.
|
|
map.keys(CallerAlphaMappingAtCallSite, FormalNodes),
|
|
apply_rules(FormalNodes, CallSite, [], CalleeRptaInfo,
|
|
CallerRptaInfo1, !:CallerRptaInfo)
|
|
).
|
|
|
|
inter_analyse_goal_expr(generic_call(_, _, _, _, _), _, _, _, !FPTable,
|
|
!RptaInfo) :-
|
|
sorry($pred, "generic_call not handled").
|
|
|
|
inter_analyse_goal_expr(switch(_, _, Cases), _, ModuleInfo, InfoTable,
|
|
!FPTable, !RptaInfo) :-
|
|
list.foldl2(inter_analyse_case(ModuleInfo, InfoTable), Cases,
|
|
!FPTable, !RptaInfo).
|
|
|
|
% Unifications are ignored in interprocedural analysis
|
|
%
|
|
inter_analyse_goal_expr(unify(_, _, _, _, _), _, _, _, !FPTable, !RptaInfo).
|
|
|
|
inter_analyse_goal_expr(disj(Disjs), _, ModuleInfo, InfoTable,
|
|
!FPTable, !RptaInfo) :-
|
|
list.foldl2(inter_analyse_goal(ModuleInfo, InfoTable), Disjs,
|
|
!FPTable, !RptaInfo).
|
|
|
|
inter_analyse_goal_expr(negation(Goal), _, ModuleInfo, InfoTable,
|
|
!FPTable, !RptaInfo) :-
|
|
inter_analyse_goal(ModuleInfo, InfoTable, Goal, !FPTable, !RptaInfo).
|
|
|
|
% XXX: may need to take into account the Reason.
|
|
% for now just analyse the goal.
|
|
%
|
|
inter_analyse_goal_expr(scope(_Reason, Goal), _, ModuleInfo, InfoTable,
|
|
!FPTable, !RptaInfo) :-
|
|
% (
|
|
% ( Reason = exist_quant(_)
|
|
% ; Reason = promise_solutions(_, _) % XXX ???
|
|
% ; Reason = promise_purity(_, _)
|
|
% ; Reason = commit(_) % XXX ???
|
|
% ; Reason = barrier(_)
|
|
% ; Reason = trace_goal(_, _, _, _, _)
|
|
% ; Reason = from_ground_term(_)
|
|
% ),
|
|
inter_analyse_goal(ModuleInfo, InfoTable, Goal, !FPTable, !RptaInfo).
|
|
% ;
|
|
% Msg = "inter_analyse_goal_expr: Scope's reason of from_ground_term "
|
|
% ++ "not handled",
|
|
% unexpected($pred, Msg)
|
|
% ).
|
|
|
|
inter_analyse_goal_expr(if_then_else(_Vars, If, Then, Else), _, ModuleInfo,
|
|
InfoTable, !FPTable, !RptaInfo) :-
|
|
inter_analyse_goal(ModuleInfo, InfoTable, If, !FPTable, !RptaInfo),
|
|
inter_analyse_goal(ModuleInfo, InfoTable, Then, !FPTable, !RptaInfo),
|
|
inter_analyse_goal(ModuleInfo, InfoTable, Else, !FPTable, !RptaInfo).
|
|
|
|
inter_analyse_goal_expr(GoalExpr, _, _, _, !FPTable, !RptaInfo) :-
|
|
GoalExpr = call_foreign_proc(_, _, _, _, _, _, _),
|
|
sorry($pred, "foreign code").
|
|
|
|
inter_analyse_goal_expr(shorthand(_), _, _, _, !FPTable, !RptaInfo) :-
|
|
unexpected($pred, "shorthand").
|
|
|
|
:- pred inter_analyse_case(module_info::in,
|
|
rpta_info_table::in, case::in, rpta_fixpoint_table::in,
|
|
rpta_fixpoint_table::out, rpta_info::in, rpta_info::out) is det.
|
|
|
|
inter_analyse_case(ModuleInfo, InfoTable, Case, !FPtable, !RptaInfo) :-
|
|
Case = case(_, _, Goal),
|
|
inter_analyse_goal(ModuleInfo, InfoTable, Goal, !FPtable, !RptaInfo).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% As said above, the rpta_info of a procedure when it is looked
|
|
% up in interprocedural analysis is either in the InfoTable or in the
|
|
% fixpoint table. If the procedure happens to be imported ones, built-ins,
|
|
% and so on, we returns no and initialize the lookup value to a dummy
|
|
% value.
|
|
%
|
|
:- pred lookup_rpta_info(pred_proc_id::in, rpta_info_table::in,
|
|
rpta_fixpoint_table::in, rpta_fixpoint_table::out,
|
|
rpta_info::out, bool::out) is det.
|
|
|
|
lookup_rpta_info(PPId, InfoTable, !FPtable, RptaInfo, Init) :-
|
|
( if
|
|
% First look up in the current fixpoint table, ...
|
|
get_from_fixpoint_table(PPId, RptaInfo0, !.FPtable, FPtable1)
|
|
then
|
|
RptaInfo = RptaInfo0,
|
|
!:FPtable = FPtable1,
|
|
Init = bool.no
|
|
else
|
|
% ... second look up among already recorded rpta_info.
|
|
( if
|
|
RptaInfo0 = rpta_info_table_search_rpta_info(PPId, InfoTable)
|
|
then
|
|
RptaInfo = RptaInfo0,
|
|
Init = bool.no
|
|
else
|
|
% Initialize a dummy.
|
|
RptaInfo = rpta_info(rpt_graph_init, map.init),
|
|
Init = bool.yes
|
|
)
|
|
).
|
|
|
|
:- pred update_rpta_info_in_rpta_info_table(rpta_fixpoint_table::in,
|
|
pred_proc_id::in, rpta_info_table::in, rpta_info_table::out) is det.
|
|
|
|
update_rpta_info_in_rpta_info_table(FPTable, PPId, !InfoTable) :-
|
|
RptaInfo = get_from_fixpoint_table_final(PPId, FPTable),
|
|
rpta_info_table_set_rpta_info(PPId, RptaInfo, !InfoTable).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Invariants for RPTGs.
|
|
%
|
|
|
|
% Rule P1:
|
|
% After two nodes are unified, it can happen that the unified node has
|
|
% two edges with the same label pointing to 2 different nodes. This rule
|
|
% ensures that if it happens the 2 nodes will also be unified.
|
|
%
|
|
% The algorithm is as follows.
|
|
% 1. If the node has no or one outedge we have to do nothing and the
|
|
% predicate quits.
|
|
% 2. The node has > 1 outedges, take one of them,
|
|
% find in the rest another edge that has the same label,
|
|
% unify the end nodes of the two edges.
|
|
% Because of this unification of the end nodes,
|
|
% more unifications are probably triggered.
|
|
% 3. If a unification happens, start all over again with the same node
|
|
% and the *updated* graph that has one less outedge from the node.
|
|
%
|
|
:- pred rule_1(rptg_node::in, rpt_graph::in, rpt_graph::out) is det.
|
|
|
|
rule_1(Node, !Graph) :-
|
|
% XXX This might not be needed because we have just unified into Node.
|
|
rptg_get_node_by_node(!.Graph, Node, UnifiedNode),
|
|
|
|
OutEdgesOfUnifiedNode = rptg_lookup_list_outedges(!.Graph, UnifiedNode),
|
|
(
|
|
OutEdgesOfUnifiedNode = [E | Es],
|
|
merge_nodes_reached_by_same_labelled_edges(E, Es, Es, !Graph,
|
|
Happened),
|
|
(
|
|
Happened = bool.no
|
|
;
|
|
% Some nodes have been merged, so size of !:Graph is strictly
|
|
% smaller than that of !.Graph and at some point this predicate
|
|
% will end up in the then-branch.
|
|
Happened = bool.yes,
|
|
rule_1(UnifiedNode, !Graph)
|
|
)
|
|
;
|
|
OutEdgesOfUnifiedNode = []
|
|
).
|
|
|
|
% merge_nodes_reached_by_same_labelled_edges(Edge, EdgeList, Rest,
|
|
% !Graph, Happened) unifies the end nodes of Edge and of an edge
|
|
% in EdgeList that has the same label as the input edge.
|
|
% When one such an edge found,
|
|
% the predicate will not look further in the list.
|
|
% The unification of nodes, if happends (Happened = yes),
|
|
% will be propagated by calling rule_1 predicate mutually recursively.
|
|
%
|
|
% The loop in this predicate is similar to
|
|
% for i = ... to N - 1
|
|
% for j = i+1 to N ...
|
|
% ...
|
|
%
|
|
:- pred merge_nodes_reached_by_same_labelled_edges(rptg_edge::in,
|
|
list(rptg_edge)::in, list(rptg_edge)::in, rpt_graph::in, rpt_graph::out,
|
|
bool::out) is det.
|
|
|
|
% This clause is reached when no unification of nodes happened and
|
|
% all the out-edges have been considered (Rest = []).
|
|
%
|
|
merge_nodes_reached_by_same_labelled_edges(_, [], [], !Graph, bool.no).
|
|
|
|
% This clause is reached when some out-edges still need to be processed.
|
|
%
|
|
merge_nodes_reached_by_same_labelled_edges(_, [], [E | Es], !Graph,
|
|
Happened) :-
|
|
merge_nodes_reached_by_same_labelled_edges(E, Es, Es, !Graph, Happened).
|
|
|
|
merge_nodes_reached_by_same_labelled_edges(Edge, [Ed | Eds], Rest, !Graph,
|
|
Happened) :-
|
|
% We do not allow two edges with the same label from one node to another.
|
|
% So End and E below must be definitely different nodes and we only need
|
|
% to compare labels.
|
|
rptg_get_edge_contents(!.Graph, Edge, _Start, End, EdgeContent),
|
|
rptg_get_edge_contents(!.Graph, Ed, _S, E, EdC),
|
|
( if
|
|
EdgeContent = EdC
|
|
then
|
|
% Unify the two end nodes.
|
|
unify_operator(End, E, !.Graph, Graph1),
|
|
|
|
% Apply rule 1 after the above unification.
|
|
rule_1(End, Graph1, !:Graph),
|
|
Happened = bool.yes
|
|
else
|
|
% Still not found an edge with the same label, continue the
|
|
% inner loop.
|
|
merge_nodes_reached_by_same_labelled_edges(Edge, Eds, Rest, !Graph,
|
|
Happened)
|
|
).
|
|
|
|
% Rule P2:
|
|
% After an edge (N, Label, M) is added to a graph, it may happen
|
|
% that there exists another edge from N with the same label but
|
|
% pointing to a node different from M. This rule ensures that if that
|
|
% the case the node will be unified with M.
|
|
%
|
|
% This predicate is called whenever a new edge has been added to the
|
|
% graph. So when it is called there is at most one existing edge with
|
|
% the same label to a different node. Because of that the predicate
|
|
% need not be recursive.
|
|
%
|
|
:- pred rule_2(rptg_node::in, rptg_node::in, cons_id::in, int::in,
|
|
rpt_graph::in, rpt_graph::out) is det.
|
|
|
|
rule_2(Node1, Node2, ConsId, Component, !Graph) :-
|
|
rptg_get_node_by_node(!.Graph, Node1, N),
|
|
rptg_get_node_by_node(!.Graph, Node2, M),
|
|
Sel = [termsel(ConsId, Component)],
|
|
OutEdgeList = rptg_lookup_list_outedges(!.Graph, N),
|
|
merge_nodes_reached_by_same_labelled_edge(Sel, M, OutEdgeList, !Graph).
|
|
|
|
% If an edge (E) in OutEdgeList has the same label Sel then merge M
|
|
% with the node (MPrime) that E points to.
|
|
%
|
|
:- pred merge_nodes_reached_by_same_labelled_edge(selector::in,
|
|
rptg_node::in, list(rptg_edge)::in, rpt_graph::in, rpt_graph::out) is det.
|
|
|
|
merge_nodes_reached_by_same_labelled_edge(_, _, [], !Graph).
|
|
merge_nodes_reached_by_same_labelled_edge(Sel, M, [Ed | Eds], !Graph) :-
|
|
rptg_get_edge_contents(!.Graph, Ed, _, MPrime, EdgeContent),
|
|
( if
|
|
EdgeContent = rptg_edge_content(Selector),
|
|
Selector = Sel,
|
|
MPrime \= M
|
|
then
|
|
unify_operator(M, MPrime, !Graph),
|
|
rule_1(M, !Graph)
|
|
else
|
|
% Still not found an edge with the same label, continue the loop.
|
|
merge_nodes_reached_by_same_labelled_edge(Sel, M, Eds, !Graph)
|
|
).
|
|
|
|
% Rule P3:
|
|
% This rule is applied after an edge is added TO the Node to enforce
|
|
% the invariant that a subterm of the same type as the compounding
|
|
% term is stored in the same region as the compounding term. In
|
|
% the context of region points-to graph it means that there exists
|
|
% a path between 2 nodes of the same type. In that case, this rule
|
|
% will unify the 2 nodes.
|
|
%
|
|
% This algorithm may not be an efficient one because it checks all
|
|
% the nodes in the graph one by one to see if a node can reach the
|
|
% node or not.
|
|
%
|
|
% We enforce the invariant (in the sense that whenever the invariant
|
|
% is made invalid this rule will correct it) therefore whenever we
|
|
% find a satisfied node and unify it with Node we can stop. This is
|
|
% indicated by Happened.
|
|
%
|
|
:- pred rule_3(rptg_node::in, rpt_graph::in, rpt_graph::out) is det.
|
|
|
|
rule_3(Node, !Graph) :-
|
|
NodeMap = rptg_get_nodes(!.Graph),
|
|
map.keys(NodeMap, Nodes),
|
|
(
|
|
Nodes = [_N | _NS],
|
|
% The graph has some node(s), so check each node to see if it
|
|
% satisfies the condition of rule 3 or not, if yes unify it
|
|
% with NY. (NY is the node that Node may be merged into.)
|
|
rptg_get_node_by_node(!.Graph, Node, NY),
|
|
rule_3_2(Nodes, NY, !Graph, Happened),
|
|
|
|
% This predicate will quit when Happened = no, i.e. no more
|
|
% nodes need to be unified.
|
|
(
|
|
Happened = bool.yes,
|
|
% A node in Nodes has been unified with NY, so we start all
|
|
% over again. Note that the node that has been unified has
|
|
% been removed, so it will not be in the Graph1 in the below
|
|
% call. So this predicate can terminate at some point (due
|
|
% to the fact that the "size" of !.Graph is smaller than that
|
|
% of !:Graph).
|
|
rule_3(Node, !Graph)
|
|
;
|
|
% No node in Nodes has been unified with NY, which means that
|
|
% no more nodes need to be unified, so just quit.
|
|
Happened = bool.no
|
|
)
|
|
;
|
|
Nodes = [],
|
|
% No node in the graph, impossible.
|
|
unexpected($pred, "impossible having no node in graph")
|
|
).
|
|
|
|
% Check each node in the list to see if it satisfies the condition of
|
|
% rule 3 or not, i.e., link to another node with the same type.
|
|
% 1. If the predicate finds out such a node, it unifies it with NY
|
|
% (also apply rule 1 here) and quit with Happend = 1.
|
|
% 2. if no such a node found, it processes the rest of the list. The
|
|
% process continues like that until either 1. happens (the case above)
|
|
% or the list becomes empty and the predicate quits with Happened = 0.
|
|
%
|
|
:- pred rule_3_2(list(rptg_node)::in, rptg_node::in, rpt_graph::in,
|
|
rpt_graph::out, bool::out) is det.
|
|
|
|
rule_3_2([], _, !Graph, bool.no).
|
|
rule_3_2([NZ | NZs], NY, !Graph, Happened) :-
|
|
( if
|
|
rule_3_condition(NZ, NY, !.Graph, NZ1)
|
|
then
|
|
unify_operator(NZ, NZ1, !Graph),
|
|
|
|
% Apply rule 1.
|
|
rule_1(NZ, !Graph),
|
|
Happened = bool.yes
|
|
else
|
|
% Try with the rest, namely NS.
|
|
rule_3_2(NZs, NY, !Graph, Happened)
|
|
).
|
|
|
|
:- pred rule_3_condition(rptg_node::in, rptg_node::in, rpt_graph::in,
|
|
rptg_node::out) is semidet.
|
|
|
|
rule_3_condition(NZ, NY, Graph, NZ1) :-
|
|
rptg_path(Graph, NZ, NY, _),
|
|
rptg_lookup_node_type(Graph, NZ) = NZType,
|
|
% A node reachable from NY, with the same type as NZ, the node can
|
|
% be exactly NY.
|
|
rptg_reachable_and_having_type(Graph, NY, NZType, NZ1),
|
|
NZ \= NZ1.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Rule P4 and alpha mapping.
|
|
%
|
|
|
|
% Build up the alpha mapping (node -> node) and apply rule P4
|
|
% to ensure that it is actually a function.
|
|
%
|
|
:- pred alpha_mapping_at_call_site(list(prog_var)::in, list(prog_var)::in,
|
|
rpt_graph::in, rpt_graph::in, rpt_graph::out,
|
|
rpt_call_alpha_mapping::in, rpt_call_alpha_mapping::out) is det.
|
|
|
|
alpha_mapping_at_call_site([], [], _, !CallerGraph, !AlphaMap).
|
|
alpha_mapping_at_call_site([], [_ | _], _, _, _, _, _) :-
|
|
unexpected($pred, "mismatched lists").
|
|
alpha_mapping_at_call_site([_ | _], [], _, _, _, _, _) :-
|
|
unexpected($pred, "mismatched lists").
|
|
alpha_mapping_at_call_site([Xi | Xs], [Yi | Ys], CalleeGraph,
|
|
!CallerGraph, !AlphaMap) :-
|
|
% Xi's are formal arguments, Yi's are actual arguments at the call site.
|
|
rptg_get_node_by_variable(CalleeGraph, Xi, N_Xi),
|
|
rptg_get_node_by_variable(!.CallerGraph, Yi, N_Yi),
|
|
( if map.search(!.AlphaMap, N_Xi, N_Y) then
|
|
% alpha(N_Xi) = N_Y, alpha(N_Xi) = N_Yi, N_Y != N_Yi.
|
|
%
|
|
( if N_Y = N_Yi then
|
|
true
|
|
else
|
|
% Apply rule P4.
|
|
unify_operator(N_Y, N_Yi, !CallerGraph),
|
|
|
|
% Apply rule P1 after some nodes are unified.
|
|
rule_1(N_Y, !CallerGraph)
|
|
)
|
|
else
|
|
map.set(N_Xi, N_Yi, !AlphaMap),
|
|
|
|
% If N_Xi's is_allocated then N_Yi is also allocated.
|
|
% Otherwise leave N_Yi alone.
|
|
( if rptg_is_allocated_node(CalleeGraph, N_Xi) then
|
|
rptg_set_node_is_allocated(N_Yi, bool.yes, !CallerGraph)
|
|
else
|
|
true
|
|
)
|
|
),
|
|
alpha_mapping_at_call_site(Xs, Ys, CalleeGraph, !CallerGraph, !AlphaMap).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Rules P5-P8 complete the alpha mapping at a call site and integrate the
|
|
% parts rooted at the formal parameters in the callee's graph into the
|
|
% caller's graph.
|
|
%
|
|
% The application of those rules happens at a call site, so related to a
|
|
% caller and a callee.
|
|
%
|
|
% We will start from the rooted nodes, follow each outcoming edge in the
|
|
% callee's graph exactly once and apply the rules.
|
|
%
|
|
|
|
:- pred apply_rules(list(rptg_node)::in, program_point::in,
|
|
list(rptg_node)::in, rpta_info::in, rpta_info::in,
|
|
rpta_info::out) is det.
|
|
|
|
apply_rules([], _, _, _, !CallerRptaInfo).
|
|
apply_rules([CalleeNode | CalleeNodes0], CallSite, Processed, CalleeRptaInfo,
|
|
!CallerRptaInfo) :-
|
|
% The caller node corresponding to the callee node at this call site.
|
|
!.CallerRptaInfo = rpta_info(_, CallerAlphaMapping0),
|
|
map.lookup(CallerAlphaMapping0, CallSite, AlphaAtCallSite),
|
|
map.lookup(AlphaAtCallSite, CalleeNode, CallerNode),
|
|
|
|
% Follow CalleeNode and apply rules when traversing its edges.
|
|
apply_rules_node(CallSite, CalleeNode, CalleeRptaInfo, CallerNode,
|
|
!CallerRptaInfo),
|
|
|
|
% Continue with the nodes reached from Callee Node.
|
|
CalleeRptaInfo = rpta_info(CalleeGraph, _),
|
|
SuccessorsCalleeNode = rptg_successors(CalleeGraph, CalleeNode),
|
|
set.to_sorted_list(SuccessorsCalleeNode, SsList),
|
|
list.delete_elems(SsList, Processed, ToBeProcessed),
|
|
CalleeNodes = ToBeProcessed ++ CalleeNodes0,
|
|
apply_rules(CalleeNodes, CallSite, [CalleeNode | Processed],
|
|
CalleeRptaInfo, !CallerRptaInfo).
|
|
|
|
:- pred apply_rules_node(program_point::in, rptg_node::in, rpta_info::in,
|
|
rptg_node::in, rpta_info::in, rpta_info::out) is det.
|
|
|
|
apply_rules_node(CallSite, CalleeNode, CalleeRptaInfo, CallerNode,
|
|
!CallerRptaInfo) :-
|
|
CalleeRptaInfo = rpta_info(CalleeGraph, _),
|
|
|
|
% Apply rules P5-P8 for each out-edge of CalleeNode.
|
|
CalleeNodeOutEdges = rptg_lookup_list_outedges(CalleeGraph, CalleeNode),
|
|
apply_rules_outedges(CalleeNodeOutEdges, CallerNode, CallSite,
|
|
CalleeRptaInfo, !CallerRptaInfo).
|
|
|
|
:- pred apply_rules_outedges(list(rptg_edge)::in, rptg_node::in,
|
|
program_point::in, rpta_info::in, rpta_info::in, rpta_info::out) is det.
|
|
|
|
apply_rules_outedges([], _, _, _, !RptaInfoR).
|
|
apply_rules_outedges([Edge | Edges], CallerNode, CallSite, CalleeRptaInfo,
|
|
!CallerRptaInfo) :-
|
|
rule_5(Edge, CallSite, CalleeRptaInfo, CallerNode, !CallerRptaInfo),
|
|
rule_6(Edge, CallSite, CalleeRptaInfo, CallerNode, !CallerRptaInfo),
|
|
rule_7(Edge, CallSite, CalleeRptaInfo, CallerNode, !CallerRptaInfo),
|
|
rule_8(Edge, CallSite, CalleeRptaInfo, CallerNode, !CallerRptaInfo),
|
|
apply_rules_outedges(Edges, CallerNode, CallSite, CalleeRptaInfo,
|
|
!CallerRptaInfo).
|
|
|
|
:- pred rule_5(rptg_edge::in, program_point::in, rpta_info::in,
|
|
rptg_node::in, rpta_info::in, rpta_info::out) is det.
|
|
|
|
rule_5(Edge, CallSite, CalleeRptaInfo, CallerNode,
|
|
rpta_info(!.CallerGraph, CallerAlphaMapping),
|
|
rpta_info(!:CallerGraph, CallerAlphaMapping)) :-
|
|
% Find an out-edge in the caller's graph that has a same label
|
|
% the label of the out-edge in callee's graph.
|
|
CalleeRptaInfo = rpta_info(CalleeGraph, _),
|
|
rptg_get_edge_contents(CalleeGraph, Edge, _CalleeNode, CalleeM, Label),
|
|
%!.CallerRptaInfo = rpta_info(CallerGraph0, CallerAlphaMapping),
|
|
rptg_get_node_by_node(!.CallerGraph, CallerNode, RealCallerNode),
|
|
( if
|
|
rptg_find_edge_from_node_with_same_content(RealCallerNode, Label,
|
|
!.CallerGraph, CallerMPrime),
|
|
map.search(CallerAlphaMapping, CallSite, AlphaAtCallSite),
|
|
map.search(AlphaAtCallSite, CalleeM, CallerM),
|
|
rptg_get_node_by_node(!.CallerGraph, CallerM, RealCallerM),
|
|
CallerMPrime \= RealCallerM
|
|
then
|
|
% When the conditions of rule P5 are satisfied, nodes are unified and
|
|
% rule P1 applied to ensure invariants.
|
|
unify_operator(RealCallerM, CallerMPrime, !CallerGraph),
|
|
|
|
% Apply rule P1 after the unification.
|
|
rule_1(RealCallerM, !CallerGraph)
|
|
else
|
|
true
|
|
).
|
|
|
|
:- pred rule_6(rptg_edge::in, program_point::in, rpta_info::in,
|
|
rptg_node::in, rpta_info::in, rpta_info::out) is det.
|
|
|
|
rule_6(Edge, CallSite, CalleeRptaInfo, CallerNode,
|
|
rpta_info(!.CallerGraph, !.CallerAlphaMapping),
|
|
rpta_info(!:CallerGraph, !:CallerAlphaMapping)) :-
|
|
% Find an out-edge in the caller's graph that has a same label
|
|
% the label of the out-edge in callee's graph.
|
|
CalleeRptaInfo = rpta_info(CalleeGraph, _),
|
|
rptg_get_edge_contents(CalleeGraph, Edge, _CalleeNode, CalleeM, Label),
|
|
rptg_get_node_by_node(!.CallerGraph, CallerNode, RealCallerNode),
|
|
( if
|
|
rptg_find_edge_from_node_with_same_content(RealCallerNode, Label,
|
|
!.CallerGraph, CallerM)
|
|
then
|
|
% (CallerNode, sel, CallerM) in the graph.
|
|
map.lookup(!.CallerAlphaMapping, CallSite, AlphaAtCallSite0),
|
|
( if map.search(AlphaAtCallSite0, CalleeM, _) then
|
|
% alpha(CalleeM) = CallerM so ignore.
|
|
true
|
|
else
|
|
% Apply rule P6: when its conditions are satisfied
|
|
% record alpha(CalleeM) = CallerM.
|
|
map.set(CalleeM, CallerM, AlphaAtCallSite0, AlphaAtCallSite1),
|
|
map.set(CallSite, AlphaAtCallSite1, !CallerAlphaMapping),
|
|
|
|
% If CalleeM's is_allocated then CallerM is also allocated.
|
|
% Otherwise leave CallerM alone.
|
|
( if rptg_is_allocated_node(CalleeGraph, CalleeM) then
|
|
rptg_set_node_is_allocated(CallerM, bool.yes, !CallerGraph)
|
|
else
|
|
true
|
|
)
|
|
)
|
|
else
|
|
true
|
|
).
|
|
|
|
:- pred rule_7(rptg_edge::in, program_point::in, rpta_info::in,
|
|
rptg_node::in, rpta_info::in, rpta_info::out) is det.
|
|
|
|
rule_7(Edge, CallSite, CalleeRptaInfo, CallerNode,
|
|
rpta_info(!.CallerGraph, CallerAlphaMapping),
|
|
rpta_info(!:CallerGraph, CallerAlphaMapping)) :-
|
|
% Find an out-edge in the caller's graph that has a same label
|
|
% the label of the out-edge in callee's graph.
|
|
CalleeRptaInfo = rpta_info(CalleeGraph, _),
|
|
rptg_get_edge_contents(CalleeGraph, Edge, _CalleeNode, CalleeM, Label),
|
|
rptg_get_node_by_node(!.CallerGraph, CallerNode, RealCallerNode),
|
|
( if
|
|
rptg_find_edge_from_node_with_same_content(RealCallerNode, Label,
|
|
!.CallerGraph, _)
|
|
then
|
|
true
|
|
else
|
|
% No edge from CallerNode with the label exists.
|
|
( if
|
|
map.lookup(CallerAlphaMapping, CallSite, AlphaAtCallSite),
|
|
map.search(AlphaAtCallSite, CalleeM, CallerM)
|
|
then
|
|
% Reach here means all the conditions of rule P7 are satisfied,
|
|
% add (CallerNode, sel, CallerM).
|
|
rptg_get_node_by_node(!.CallerGraph, CallerM, RealCallerM),
|
|
edge_operator(RealCallerNode, RealCallerM, Label, !CallerGraph),
|
|
|
|
% Need to apply rule 3.
|
|
rule_3(RealCallerM, !CallerGraph)
|
|
else
|
|
true
|
|
)
|
|
).
|
|
|
|
:- pred rule_8(rptg_edge::in, program_point::in, rpta_info::in,
|
|
rptg_node::in, rpta_info::in, rpta_info::out) is det.
|
|
|
|
rule_8(Edge, CallSite, CalleeRptaInfo, CallerNode,
|
|
rpta_info(!.CallerGraph, !.CallerAlphaMapping),
|
|
rpta_info(!:CallerGraph, !:CallerAlphaMapping)) :-
|
|
% Find an out-edge in the caller's graph that has a same label
|
|
% the label of the out-edge in callee's graph.
|
|
CalleeRptaInfo = rpta_info(CalleeGraph, _),
|
|
rptg_get_edge_contents(CalleeGraph, Edge, _CalleeNode, CalleeM, Label),
|
|
rptg_get_node_by_node(!.CallerGraph, CallerNode, RealCallerNode),
|
|
( if
|
|
rptg_find_edge_from_node_with_same_content(RealCallerNode, Label,
|
|
!.CallerGraph, _)
|
|
then
|
|
true
|
|
else
|
|
% No edge from CallerNode with the label exists.
|
|
( if
|
|
map.lookup(!.CallerAlphaMapping, CallSite, AlphaAtCallSite0),
|
|
map.search(AlphaAtCallSite0, CalleeM, _)
|
|
then
|
|
true
|
|
else
|
|
% rule 8: add node CallerM, alpha(CalleeM) = CallerM,
|
|
% edge(CallerNode, sel, CallerM)
|
|
%
|
|
CallerNextNodeId = rptg_get_next_node_id(!.CallerGraph),
|
|
string.append("R", string.int_to_string(CallerNextNodeId),
|
|
RegName),
|
|
CallerMContent = rptg_node_content(set.init, RegName, set.init,
|
|
rptg_lookup_node_type(CalleeGraph, CalleeM),
|
|
rptg_lookup_node_is_allocated(CalleeGraph, CalleeM)),
|
|
rptg_add_node(CallerMContent, CallerM, !CallerGraph),
|
|
edge_operator(RealCallerNode, CallerM, Label, !CallerGraph),
|
|
|
|
map.lookup(!.CallerAlphaMapping, CallSite, AlphaAtCallSite0),
|
|
map.set(CalleeM, CallerM, AlphaAtCallSite0, AlphaAtCallSite),
|
|
map.set(CallSite, AlphaAtCallSite, !CallerAlphaMapping),
|
|
|
|
rule_3(CallerM, !CallerGraph)
|
|
)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Fixpoint table used in region points-to analysis.
|
|
%
|
|
|
|
% The fixpoint table used by the region points-to analysis.
|
|
%
|
|
:- type rpta_fixpoint_table == fixpoint_table(pred_proc_id, rpta_info).
|
|
|
|
% Initialise the fixpoint table for the given set of pred_proc_ids.
|
|
%
|
|
:- func init_rpta_fixpoint_table(list(pred_proc_id), rpta_info_table)
|
|
= rpta_fixpoint_table.
|
|
|
|
init_rpta_fixpoint_table(Keys, InfoTable) = Table :-
|
|
Table = init_fixpoint_table(wrapped_init(InfoTable), Keys).
|
|
|
|
% Enter the newly computed region points-to information for a given
|
|
% procedure.
|
|
% If the description is different from the one that was already stored
|
|
% for that procedure, the stability of the fixpoint table is set to
|
|
% "unstable".
|
|
% Aborts if the procedure is not already in the fixpoint table.
|
|
%
|
|
:- pred rpta_fixpoint_table_new_rpta_info(
|
|
pred_proc_id::in, rpta_info::in,
|
|
rpta_fixpoint_table::in, rpta_fixpoint_table::out) is det.
|
|
|
|
rpta_fixpoint_table_new_rpta_info(PPId, RptaInfo, !Table) :-
|
|
EqualityTest = (pred(TabledElem::in, Elem::in) is semidet :-
|
|
rpta_info_equal(Elem, TabledElem)
|
|
),
|
|
add_to_fixpoint_table(EqualityTest, PPId, RptaInfo, !Table).
|
|
|
|
:- func wrapped_init(rpta_info_table, pred_proc_id) = rpta_info.
|
|
|
|
wrapped_init(InfoTable, PPId) = Entry :-
|
|
( if Entry0 = rpta_info_table_search_rpta_info(PPId, InfoTable) then
|
|
Entry = Entry0
|
|
else
|
|
% The information we are looking for should be there after the
|
|
% intraprocedural analysis.
|
|
unexpected($pred, "no rpta_info")
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
:- end_module transform_hlds.rbmm.points_to_analysis.
|
|
%-----------------------------------------------------------------------------%
|