Files
mercury/compiler/assertion.m
Zoltan Somogyi c4dce74bb4 Improve the treatment of promises.
compiler/check_promise.m:
    Fix github issue #50. If a promise is imported from another module,
    do not process it. Processing would require the pred_id/proc_id slots
    in plain_calls to have been filled in by typechecking, but we don't
    invoke the typechecker on imported code.

compiler/assertion.m:
    Improve the documentation of the predicates that test whether
    an assertion falls into a given category of assertion. Provide variants
    of those predicates that work on goals as well as on assert_ids, so later
    we can test whether assertions fall into any of those categories.

    Add an XXX for what I am pretty sure is a bug.

compiler/hlds_module.m:
compiler/make_hlds_passes.m:
compiler/prog_data.m:
compiler/typecheck.m:
    Improve some comments.

tests/valid/github_50.m:
tests/valid/github_50.submodule.m:
    The two-module test case from github, changed to reflect our coding
    standards.

tests/valid/Mmakefile:
    Test that compiling the new test case does not cause a compiler abort.
2018-10-01 06:54:00 +10:00

891 lines
34 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1999-2012 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Module: assertion.m.
% Main authors: petdr.
%
% This module is an abstract interface to the assertion table.
% Note that this is a first design and will probably change
% substantially in the future.
%
%-----------------------------------------------------------------------------%
:- module hlds.assertion.
:- interface.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module hlds.hlds_promise.
:- import_module parse_tree.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.set_of_var.
:- import_module list.
%-----------------------------------------------------------------------------%
% Get the hlds_goal which represents the assertion.
%
:- pred assert_id_goal(module_info::in, assert_id::in, hlds_goal::out) is det.
% Record into the pred_info of each pred used in the assertion
% the assert_id.
%
:- pred record_preds_used_in(hlds_goal::in, assert_id::in,
module_info::in, module_info::out) is det.
% is_commutativity_assertion(ModuleInfo, AssertId, CallVars, CommuteVars):
% is_commutativity_assertion_goal(Goal, CallVars, CommuteVars):
%
% Does the assertion represented by AssertId or Goal say that
% the one predicate or function called in the code is commutative?
% If so, given CallVars, the argument list of a call to this predicate
% or function, this predicate returns (in CommuteVars) the two variables
% which can be swapped. (This identifies the two commutative argument
% positions.)
%
% The assertion must be in a form similar to this
%
% all [Is,A,B,C] ( p(Is,A,B,C) <=> p(Is,B,A,C) )
%
% for this predicate to return true.
%
% We extend the usual definition of commutativity to apply to predicates
% or functions with more than two input arguments by allowing extra
% input arguments which must be invariant. The invariant arguments, Is,
% can be anywhere, providing they are in identical locations on both sides
% of the equivalence.
%
:- pred is_commutativity_assertion(module_info::in, assert_id::in,
list(prog_var)::in, set_of_progvar::out) is semidet.
:- pred is_commutativity_assertion_goal(hlds_goal::in,
list(prog_var)::in, set_of_progvar::out) is semidet.
:- type associative_vars_output_var
---> associative_vars_output_var(
% The associative vars.
set_of_progvar,
% The output var.
prog_var
).
% is_associativity_assertion(ModuleInfo, AssertId, CallVars,
% AssocVarsOutputVar):
% is_associativity_assertion_goal(Goal, CallVars,
% AssocVarsOutputVar):
%
% Does the assertion represented by AssertId or Goal say that
% the one predicate or function called in the code is associative?
% If so, this predicate returns
%
% associative_vars_output_var(AssocVars, OutputVar)
%
% Given CallVars, the argument list of a call to this predicate or function
% (which may be e.g. [Is, A, B, C] in the example below), AssocVars will
% indicate the positions of the two input variables which can be swapped,
% and OutputVar will indicate the position of the output variable.
%
% The assertion must be in a form similar to this
%
% all [Is,A,B,C,ABC]
% (
% some [AB] p(Is,A,B,AB), p(Is,AB,C,ABC)
% <=>
% some [BC] p(Is,B,C,BC), p(Is,A,BC,ABC)
% )
%
% for this predicate to return true.
%
% We extend the usual definition of associativity to apply to predicates
% or functions with more than two input arguments by allowing extra
% input arguments which must be invariant. The invariant arguments, Is,
% can be anywhere, providing they are in identical locations on both sides
% of the equivalence.
%
:- pred is_associativity_assertion(module_info::in, assert_id::in,
list(prog_var)::in, associative_vars_output_var::out) is semidet.
:- pred is_associativity_assertion_goal(hlds_goal::in,
list(prog_var)::in, associative_vars_output_var::out) is semidet.
:- type state_update_vars
---> state_update_vars(prog_var, prog_var).
% is_update_assertion(ModuleInfo, AssertId, PredId, CallVars, StateVars):
% is_update_assertion_goal(Goal, PredId, CallVars, StateVars):
%
% Does the assertion represented by AssertId or Goal say that
% predicate PredId is a predicate that updates some state
% (taking one version of the state as input and returning another
% version as output) for which we are guaranteed to get the *same*
% final state regardless of the order in which the state updates
% are applied? Given the full list of arguments of a call to PredId
% in CallVars, return in StateVars the pair of variables which represent
% the initial and updated versions of the state. In the example below,
% given a call update(S0, A, SA), these would be S0 and SA.
%
% The assertion must be in a form similar to this
%
% :- promise all [A,B,SO,S]
% (
% (some [SA] (update(S0,A,SA), update(SA,B,S)))
% <=>
% (some [SB] (update(S0,B,SB), update(SB,A,S)))
% ).
%
% for this predicate to return true. Note that A and B could be
% vectors of variables.
%
:- pred is_update_assertion(module_info::in, assert_id::in,
pred_id::in, list(prog_var)::in, state_update_vars::out) is semidet.
:- pred is_update_assertion_goal(hlds_goal::in,
pred_id::in, list(prog_var)::in, state_update_vars::out) is semidet.
% is_construction_equivalence_assertion(ModuleInfo, AssertId,
% ConsId, PredId):
% is_construction_equivalence_assertion_goal(Goal, ConsId, PredId):
%
% Can a single construction unification whose functor is ConsId
% be expressed as a call to PredId, with possibly some construction
% unifications to initialise its arguments?
%
% The assertion must be in a form similar to this
%
% all [L,H,T] ( L = [H | T] <=> append([H], T, L) )
%
% for this predicate to return true.
%
:- pred is_construction_equivalence_assertion(module_info::in, assert_id::in,
cons_id::in, pred_id::in) is semidet.
:- pred is_construction_equivalence_assertion_goal(hlds_goal::in,
cons_id::in, pred_id::in) is semidet.
% Place a hlds_goal into a standard form. Currently all the code does
% is replace conj([G]) with G.
%
:- pred normalise_goal(hlds_goal::in, hlds_goal::out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_clauses.
:- import_module mdbcomp.
:- import_module mdbcomp.sym_name.
:- import_module assoc_list.
:- import_module map.
:- import_module maybe.
:- import_module pair.
:- import_module require.
:- import_module set.
:- import_module solutions.
:- type subst == map(prog_var, prog_var).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
is_commutativity_assertion(ModuleInfo, AssertId, CallVars, CommutativeVars) :-
assert_id_goal(ModuleInfo, AssertId, Goal),
is_commutativity_assertion_goal(Goal, CallVars, CommutativeVars).
is_commutativity_assertion_goal(Goal, CallVars, CommutativeVars) :-
goal_is_equivalence(Goal, P, Q),
P = hlds_goal(plain_call(PredId, _, VarsP, _, _, _), _),
Q = hlds_goal(plain_call(PredId, _, VarsQ, _, _, _), _),
commutative_var_ordering(VarsP, VarsQ, CallVars, CommutativeVars).
% commutative_var_ordering(Ps, Qs, Vs, CommutativeVs):
%
% Check that the two list of variables are identical except that
% the position of two variables has been swapped.
% For example, commutative_var_ordering is true for [A,B,C] and [B,A,C].
% It also takes a list of variables, Vs, to a call and returns
% the two variables in that list that can be swapped. In this case,
% that will be [A,B].
%
:- pred commutative_var_ordering(list(prog_var)::in, list(prog_var)::in,
list(prog_var)::in, set_of_progvar::out) is semidet.
commutative_var_ordering([P | Ps], [Q | Qs], [V | Vs], CommutativeVars) :-
( if P = Q then
commutative_var_ordering(Ps, Qs, Vs, CommutativeVars)
else
commutative_var_ordering_2(P, Q, Ps, Qs, Vs, CallVarB),
CommutativeVars = set_of_var.list_to_set([V, CallVarB])
).
:- pred commutative_var_ordering_2(prog_var::in, prog_var::in,
list(prog_var)::in, list(prog_var)::in,
list(prog_var)::in, prog_var::out) is semidet.
commutative_var_ordering_2(VarP, VarQ, [P | Ps], [Q | Qs],
[V | Vs], CallVarB) :-
( if P = Q then
commutative_var_ordering_2(VarP, VarQ, Ps, Qs, Vs, CallVarB)
else
CallVarB = V,
P = VarQ,
Q = VarP,
Ps = Qs
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
is_associativity_assertion(ModuleInfo, AssertId, CallVars,
AssociativeVarsOutputVar) :-
assert_id_goal(ModuleInfo, AssertId, Goal),
is_associativity_assertion_goal(Goal, CallVars, AssociativeVarsOutputVar).
is_associativity_assertion_goal(Goal, CallVars, AssociativeVarsOutputVar) :-
goal_is_equivalence(Goal, P, Q),
Goal = hlds_goal(_GoalExpr, GoalInfo),
UniversiallyQuantifiedVars = goal_info_get_nonlocals(GoalInfo),
get_conj_goals(P, PCalls),
get_conj_goals(Q, QCalls),
promise_equivalent_solutions [AssociativeVarsOutputVar] (
associative(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars,
AssociativeVarsOutputVar)
).
% associative(Ps, Qs, Us, R):
%
% If the assertion was in the form
% all [Us] (some [] (Ps)) <=> (some [] (Qs))
% try and rearrange the order of Ps and Qs so that the assertion
% is in the standard from
%
% compose( A, B, AB), compose(B, C, BC),
% compose(AB, C, ABC) <=> compose(A, BC, ABC)
%
:- pred associative(list(hlds_goal)::in, list(hlds_goal)::in,
set_of_progvar::in, list(prog_var)::in,
associative_vars_output_var::out) is cc_nondet.
associative(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars,
AssociativeVarsOutputVar) :-
reorder(PCalls, QCalls, LHSCalls, RHSCalls),
process_one_side(LHSCalls, UniversiallyQuantifiedVars, PredId,
AB, PairsL, Vs),
process_one_side(RHSCalls, UniversiallyQuantifiedVars, PredId,
BC, PairsR, _),
% If you read the predicate documentation, you will note that
% for each pair of variables on the left hand side, there is an equivalent
% pair of variables on the right hand side. As the pairs of variables
% are not symmetric, the call to list.perm will only succeed once,
% if at all.
assoc_list.from_corresponding_lists(PairsL, PairsR, Pairs),
list.perm(Pairs, [(A - AB) - (B - A), (B - C) - (C - BC),
(AB - ABC) - (BC - ABC)]),
assoc_list.from_corresponding_lists(Vs, CallVars, AssocList),
list.filter((pred(X - _Y::in) is semidet :- X = AB),
AssocList, [_AB - OutputVar]),
list.filter((pred(X - _Y::in) is semidet :- X = A),
AssocList, [_A - CallVarA]),
list.filter((pred(X - _Y::in) is semidet :- X = B),
AssocList, [_B - CallVarB]),
AssociativeVars = set_of_var.list_to_set([CallVarA, CallVarB]),
AssociativeVarsOutputVar =
associative_vars_output_var(AssociativeVars, OutputVar).
% reorder(Ps, Qs, Ls, Rs):
%
% Given both sides of the equivalence return another possible ordering.
%
:- pred reorder(list(hlds_goal)::in, list(hlds_goal)::in,
list(hlds_goal)::out, list(hlds_goal)::out) is multi.
reorder(PCalls, QCalls, LHSCalls, RHSCalls) :-
list.perm(PCalls, LHSCalls),
list.perm(QCalls, RHSCalls).
reorder(PCalls, QCalls, LHSCalls, RHSCalls) :-
list.perm(PCalls, RHSCalls),
list.perm(QCalls, LHSCalls).
% process_one_side(Gs, Us, L, Ps):
%
% Given the list of goals, Gs, which are one side of a possible
% associative equivalence, and the universally quantified
% variables, Us, of the goals return L the existentially
% quantified variable that links the two calls and Ps the list
% of variables which are not invariants.
%
% i.e. for app(TypeInfo, X, Y, XY), app(TypeInfo, XY, Z, XYZ)
% L <= XY and Ps <= [X - XY, Y - Z, XY - XYZ]
%
:- pred process_one_side(list(hlds_goal)::in, set_of_progvar::in, pred_id::out,
prog_var::out, assoc_list(prog_var)::out, list(prog_var)::out) is semidet.
process_one_side(Goals, UniversiallyQuantifiedVars, PredId,
LinkingVar, Vars, VarsA) :-
process_two_linked_calls(Goals, UniversiallyQuantifiedVars, PredId,
LinkingVar, Vars0, VarsA),
% Filter out all the invariant arguments, and then make sure that
% there are only 3 arguments left.
list.filter((pred(X - Y::in) is semidet :- X \= Y), Vars0, Vars),
list.length(Vars, number_of_associative_vars).
:- func number_of_associative_vars = int.
number_of_associative_vars = 3.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
is_update_assertion(ModuleInfo, AssertId, PredId, CallVars, StateVars) :-
assert_id_goal(ModuleInfo, AssertId, Goal),
is_update_assertion_goal(Goal, PredId, CallVars, StateVars).
is_update_assertion_goal(Goal, _PredId, CallVars, StateVars) :-
% XXX Ignoring _PredId looks like a bug.
goal_is_equivalence(Goal, P, Q),
Goal = hlds_goal(_GoalExpr, GoalInfo),
UniversiallyQuantifiedVars = goal_info_get_nonlocals(GoalInfo),
get_conj_goals(P, PCalls),
get_conj_goals(Q, QCalls),
solutions.solutions(
update(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars),
[StateVars | _]).
% compose(S0, A, SA), compose(SB, A, S),
% compose(SA, B, S) <=> compose(S0, B, SB)
%
:- pred update(list(hlds_goal)::in, list(hlds_goal)::in, set_of_progvar::in,
list(prog_var)::in, state_update_vars::out) is nondet.
update(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars,
StateVars) :-
reorder(PCalls, QCalls, LHSCalls, RHSCalls),
process_two_linked_calls(LHSCalls, UniversiallyQuantifiedVars, PredId,
SA, PairsL, Vs),
process_two_linked_calls(RHSCalls, UniversiallyQuantifiedVars, PredId,
SB, PairsR, _),
assoc_list.from_corresponding_lists(PairsL, PairsR, Pairs0),
list.filter((pred(X - Y::in) is semidet :- X \= Y), Pairs0, Pairs),
list.length(Pairs) = 2,
% If you read the predicate documentation, you will note that
% for each pair of variables on the left hand side, there is an equivalent
% pair of variables on the right hand side. As the pairs of variables
% are not symmetric, the call to list.perm will only succeed once,
% if at all.
list.perm(Pairs, [(S0 - SA) - (SB - S0), (SA - S) - (S - SB)]),
assoc_list.from_corresponding_lists(Vs, CallVars, AssocList),
list.filter((pred(X - _Y::in) is semidet :- X = S0),
AssocList, [_S0 - StateA]),
list.filter((pred(X - _Y::in) is semidet :- X = SA),
AssocList, [_SA - StateB]),
StateVars = state_update_vars(StateA, StateB).
%-----------------------------------------------------------------------------%
% process_two_linked_calls(Goals, UQVs, PredId, LinkingVar, AL, VAs):
%
% is true iff the list of goals Goals, with universally quantified
% variables, UQVs, is two calls to the same predicate, PredId, with
% one variable that links them, LinkingVar. AL will be an assoc list
% that pairs each variable from the first call with its corresponding
% variable in the second call, and VAs are the variables of the first call.
%
% XXX To me (zs), this looks like a strange way to return the arg vars.
%
:- pred process_two_linked_calls(list(hlds_goal)::in, set_of_progvar::in,
pred_id::out, prog_var::out, assoc_list(prog_var)::out,
list(prog_var)::out) is semidet.
process_two_linked_calls(Goals, UniversiallyQuantifiedVars, PredId,
LinkingVar, VarsAB, VarsA) :-
Goals = [
hlds_goal(plain_call(PredId, _, VarsA, _, _, _), _),
hlds_goal(plain_call(PredId, _, VarsB, _, _, _), _)
],
% Determine the linking variable, L. By definition, it must be
% existentially quantified, and a member of both variable lists.
SetVarsA = set_of_var.list_to_set(VarsA),
SetVarsB = set_of_var.list_to_set(VarsB),
CommonVars = set_of_var.intersect(SetVarsA, SetVarsB),
set_of_var.is_singleton(
set_of_var.difference(CommonVars, UniversiallyQuantifiedVars),
LinkingVar),
% Set up mapping between the variables in the two calls.
assoc_list.from_corresponding_lists(VarsA, VarsB, VarsAB).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
is_construction_equivalence_assertion(ModuleInfo, AssertId, ConsId, PredId) :-
assert_id_goal(ModuleInfo, AssertId, Goal),
is_construction_equivalence_assertion_goal(Goal, ConsId, PredId).
is_construction_equivalence_assertion_goal(Goal, ConsId, PredId) :-
goal_is_equivalence(Goal, P, Q),
( if single_construction(P, ConsId) then
predicate_call(Q, PredId)
else
single_construction(Q, ConsId),
predicate_call(P, PredId)
).
% One side of the equivalence must be just the single unification
% with the correct cons_id.
%
:- pred single_construction(hlds_goal::in, cons_id::in) is semidet.
single_construction(Goal, ConsId) :-
Goal = hlds_goal(GoalExpr, _),
GoalExpr = unify(_, UnifyRHS, _, _, _),
UnifyRHS = rhs_functor(cons(UnqualifiedSymName, Arity, _TypeCtorA), _, _),
ConsId = cons(QualifiedSymName, Arity, _TypeCtorB),
% Before post-typecheck, TypeCtorA and TypeCtorB would be dummies,
% and would thus match even if the two functors are NOT of the same type.
% Note that by insisting on cons, we effectively disallow assertions
% about tuples.
partial_sym_name_matches_full(UnqualifiedSymName, QualifiedSymName).
% The side containing the predicate call must be a single call
% to the predicate with 0 or more construction unifications
% which setup the arguments to the predicates.
%
:- pred predicate_call(hlds_goal::in, pred_id::in) is semidet.
predicate_call(Goal, PredId) :-
( if Goal = hlds_goal(conj(plain_conj, Goals), _) then
list.member(Call, Goals),
Call = hlds_goal(plain_call(PredId, _, _, _, _, _), _),
list.delete(Goals, Call, Unifications),
P =
( pred(G::in) is semidet :-
not (
G = hlds_goal(unify(_, UnifyRhs, _, _, _), _),
UnifyRhs = rhs_functor(_, _, _)
)
),
list.filter(P, Unifications, [])
else
Goal = hlds_goal(plain_call(PredId, _, _, _, _, _), _)
).
%-----------------------------------------------------------------------------%
:- pred get_conj_goals(hlds_goal::in, list(hlds_goal)::out) is semidet.
get_conj_goals(Goal0, ConjList) :-
% The user may have explicitly quantified the goals.
ignore_exist_quant_scope(Goal0, Goal),
Goal = hlds_goal(conj(plain_conj, ConjList), _).
:- pred ignore_exist_quant_scope(hlds_goal::in, hlds_goal::out) is det.
ignore_exist_quant_scope(Goal0, Goal) :-
Goal0 = hlds_goal(GoalExpr0, _Context),
( if
GoalExpr0 = scope(Reason, Goal1),
Reason = exist_quant(_)
then
Goal = Goal1
else
Goal = Goal0
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
assert_id_goal(ModuleInfo, AssertId, Goal) :-
module_info_get_assertion_table(ModuleInfo, AssertTable),
assertion_table_lookup(AssertTable, AssertId, PredId),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_get_clauses_info(PredInfo, ClausesInfo),
clauses_info_get_clauses_rep(ClausesInfo, ClausesRep, _ItemNumbers),
get_clause_list_maybe_repeated(ClausesRep, Clauses),
(
Clauses = [Clause],
Goal0 = Clause ^ clause_body,
normalise_goal(Goal0, Goal)
;
( Clauses = []
; Clauses = [_, _ | _]
),
unexpected($module, $pred, "goal is not an assertion")
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- pred goal_is_implication(hlds_goal::in, hlds_goal::out, hlds_goal::out)
is semidet.
goal_is_implication(Goal, P, Q) :-
% Goal = (P => Q)
Goal = hlds_goal(negation(hlds_goal(conj(plain_conj, GoalList), _)), GI),
list.reverse(GoalList) = [NotQ | Ps],
( if Ps = [P0] then
P = P0
else
P = hlds_goal(conj(plain_conj, list.reverse(Ps)), GI)
),
NotQ = hlds_goal(negation(Q), _).
:- pred goal_is_equivalence(hlds_goal::in, hlds_goal::out, hlds_goal::out)
is semidet.
goal_is_equivalence(Goal, P, Q) :-
% Goal = P <=> Q
Goal = hlds_goal(conj(plain_conj, [A, B]), _GoalInfo),
map.init(Subst),
goal_is_implication(A, PA, QA),
goal_is_implication(B, QB, PB),
equal_goals(PA, PB, Subst, _),
equal_goals(QA, QB, Subst, _),
P = PA,
Q = QA.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% equal_goals(GA, GB, !Subst):
%
% Do these two goals represent the same hlds_goal modulo renaming?
%
:- pred equal_goals(hlds_goal::in, hlds_goal::in,
subst::in, subst::out) is semidet.
equal_goals(GoalA, GoalB, !Subst) :-
GoalA = hlds_goal(GoalExprA, _GoalInfoA),
GoalB = hlds_goal(GoalExprB, _GoalInfoB),
require_complete_switch [GoalExprA]
(
GoalExprA = conj(ConjType, GoalsA),
GoalExprB = conj(ConjType, GoalsB),
equal_goals_list(GoalsA, GoalsB, !Subst)
;
GoalExprA = plain_call(PredId, _, ArgVarsA, _, _, _),
GoalExprB = plain_call(PredId, _, ArgVarsB, _, _, _),
equal_vars(ArgVarsA, ArgVarsB, !Subst)
;
GoalExprA = generic_call(CallDetails, ArgVarsA, _, _, _),
GoalExprB = generic_call(CallDetails, ArgVarsB, _, _, _),
equal_vars(ArgVarsA, ArgVarsB, !Subst)
;
GoalExprA = switch(Var, CanFail, CasesA),
GoalExprB = switch(Var, CanFail, CasesB),
equal_goals_cases(CasesA, CasesB, !Subst)
;
GoalExprA = unify(VarA, RHSA, _, _, _),
GoalExprB = unify(VarB, RHSB, _, _, _),
equal_var(VarA, VarB, !Subst),
equal_unification(RHSA, RHSB, !Subst)
;
GoalExprA = disj(GoalsA),
GoalExprB = disj(GoalsB),
equal_goals_list(GoalsA, GoalsB, !Subst)
;
GoalExprA = negation(SubGoalA),
GoalExprB = negation(SubGoalB),
equal_goals(SubGoalA, SubGoalB, !Subst)
;
GoalExprA = scope(ReasonA, SubGoalA),
GoalExprB = scope(ReasonB, SubGoalB),
equal_reason(ReasonA, ReasonB, !Subst),
equal_goals(SubGoalA, SubGoalB, !Subst)
;
GoalExprA = if_then_else(VarsA, CondA, ThenA, ElseA),
GoalExprB = if_then_else(VarsB, CondB, ThenB, ElseB),
equal_vars(VarsA, VarsB, !Subst),
equal_goals(CondA, CondB, !Subst),
equal_goals(ThenA, ThenB, !Subst),
equal_goals(ElseA, ElseB, !Subst)
;
GoalExprA = call_foreign_proc(Attributes, PredId, _,
ArgsA, ExtraA, MaybeTraceA, _),
GoalExprB = call_foreign_proc(Attributes, PredId, _,
ArgsB, ExtraB, MaybeTraceB, _),
% Foreign_procs with extra args and trace runtime conditions are
% compiler generated, and as such will not participate in assertions.
ExtraA = [],
ExtraB = [],
MaybeTraceA = no,
MaybeTraceB = no,
VarsA = list.map(foreign_arg_var, ArgsA),
VarsB = list.map(foreign_arg_var, ArgsB),
equal_vars(VarsA, VarsB, !Subst)
;
GoalExprA = shorthand(ShortHandA),
GoalExprB = shorthand(ShortHandB),
equal_goals_shorthand(ShortHandA, ShortHandB, !Subst)
).
:- pred equal_reason(scope_reason::in, scope_reason::in, subst::in, subst::out)
is semidet.
equal_reason(ReasonA, ReasonB, !Subst) :-
require_complete_switch [ReasonA]
(
ReasonA = exist_quant(VarsA),
ReasonB = exist_quant(VarsB),
equal_vars(VarsA, VarsB, !Subst)
;
ReasonA = disable_warnings(HeadWarning, TailWarnings),
ReasonB = disable_warnings(HeadWarning, TailWarnings)
;
ReasonA = promise_solutions(VarsA, Kind),
ReasonB = promise_solutions(VarsB, Kind),
equal_vars(VarsA, VarsB, !Subst)
;
ReasonA = promise_purity(Purity),
ReasonB = promise_purity(Purity)
;
ReasonA = require_detism(Detism),
ReasonB = require_detism(Detism)
;
ReasonA = require_complete_switch(VarA),
ReasonB = require_complete_switch(VarB),
equal_var(VarA, VarB, !Subst)
;
ReasonA = require_switch_arms_detism(VarA, Detism),
ReasonB = require_switch_arms_detism(VarB, Detism),
equal_var(VarA, VarB, !Subst)
;
ReasonA = commit(ForcePruning),
ReasonB = commit(ForcePruning)
;
ReasonA = barrier(Removable),
ReasonB = barrier(Removable)
;
ReasonA = from_ground_term(VarA, Kind),
ReasonB = from_ground_term(VarB, Kind),
equal_var(VarA, VarB, !Subst)
;
ReasonA = trace_goal(_CompileTime, _Runtime, _MaybeIO,
_MutableVars, _QuantVars),
% We could match all the vars, but there would be no point;
% trace goals should not occur in assertions.
fail
;
ReasonA = loop_control(_LCVar, _LCSVar, _UseParentStack),
% We could match the vars, but there would be no point.
% These scopes can never occur in user-written code;
% they can only added by the compiler itself.
fail
).
:- pred equal_goals_shorthand(shorthand_goal_expr::in, shorthand_goal_expr::in,
subst::in, subst::out) is semidet.
equal_goals_shorthand(ShortHandA, ShortHandB, !Subst) :-
ShortHandA = bi_implication(LeftGoalA, RightGoalA),
ShortHandB = bi_implication(LeftGoalB, RightGoalB),
equal_goals(LeftGoalA, LeftGoalB, !Subst),
equal_goals(RightGoalA, RightGoalB, !Subst).
:- pred equal_var(prog_var::in, prog_var::in, subst::in, subst::out)
is semidet.
equal_var(VA, VB, !Subst) :-
( if map.search(!.Subst, VA, SubstVA) then
SubstVA = VB
else
map.insert(VA, VB, !Subst)
).
:- pred equal_vars(list(prog_var)::in, list(prog_var)::in,
subst::in, subst::out) is semidet.
equal_vars([], [], !Subst).
equal_vars([VA | VAs], [VB | VBs], !Subst) :-
equal_var(VA, VB, !Subst),
equal_vars(VAs, VBs, !Subst).
:- pred equal_unification(unify_rhs::in, unify_rhs::in, subst::in, subst::out)
is semidet.
equal_unification(RhsA, RhsB, !Subst) :-
(
RhsA = rhs_var(A),
RhsB = rhs_var(B),
equal_var(A, B, !Subst)
;
RhsA = rhs_functor(ConsId, E, VarsA),
RhsB = rhs_functor(ConsId, E, VarsB),
equal_vars(VarsA, VarsB, !Subst)
;
RhsA = rhs_lambda_goal(Purity, Groundness, PredOrFunc, EvalMethod,
NLVarsA, LVarsA, Modes, Det, GoalA),
RhsB = rhs_lambda_goal(Purity, Groundness, PredOrFunc, EvalMethod,
NLVarsB, LVarsB, Modes, Det, GoalB),
equal_vars(NLVarsA, NLVarsB, !Subst),
equal_vars(LVarsA, LVarsB, !Subst),
equal_goals(GoalA, GoalB, !Subst)
).
:- pred equal_goals_list(list(hlds_goal)::in, list(hlds_goal)::in,
subst::in, subst::out) is semidet.
equal_goals_list([], [], !Subst).
equal_goals_list([GoalA | GoalAs], [GoalB | GoalBs], !Subst) :-
equal_goals(GoalA, GoalB, !Subst),
equal_goals_list(GoalAs, GoalBs, !Subst).
:- pred equal_goals_cases(list(case)::in, list(case)::in,
subst::in, subst::out) is semidet.
equal_goals_cases([], [], !Subst).
equal_goals_cases([CaseA | CaseAs], [CaseB | CaseBs], !Subst) :-
CaseA = case(MainConsIdA, OtherConsIdsA, GoalA),
CaseB = case(MainConsIdB, OtherConsIdsB, GoalB),
list.sort([MainConsIdA | OtherConsIdsA], SortedConsIds),
list.sort([MainConsIdB | OtherConsIdsB], SortedConsIds),
equal_goals(GoalA, GoalB, !Subst),
equal_goals_cases(CaseAs, CaseBs, !Subst).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
record_preds_used_in(Goal, AssertId, !ModuleInfo) :-
pred_ids_called_from_goal(Goal, CalleePredIds),
% Sanity check.
( if list.member(invalid_pred_id, CalleePredIds) then
unexpected($module, $pred, "invalid pred_id")
else
true
),
list.foldl(record_use_in_assertion(AssertId), CalleePredIds, !ModuleInfo).
% record_use_in_assertion(AssertId, PredId, !ModuleInfo):
%
% Record in PredId's pred_info that that predicate is used
% in assertion AssertId.
%
:- pred record_use_in_assertion(assert_id::in, pred_id::in,
module_info::in, module_info::out) is det.
record_use_in_assertion(AssertId, PredId, !ModuleInfo) :-
module_info_pred_info(!.ModuleInfo, PredId, PredInfo0),
pred_info_get_assertions(PredInfo0, Assertions0),
set.insert(AssertId, Assertions0, Assertions),
pred_info_set_assertions(Assertions, PredInfo0, PredInfo),
module_info_set_pred_info(PredId, PredInfo, !ModuleInfo).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
normalise_goal(Goal0, Goal) :-
Goal0 = hlds_goal(GoalExpr0, GoalInfo),
(
( GoalExpr0 = plain_call(_, _, _, _, _, _)
; GoalExpr0 = generic_call(_, _, _, _, _)
; GoalExpr0 = unify(_, _, _, _, _)
; GoalExpr0 = call_foreign_proc(_, _, _, _, _, _, _)
),
GoalExpr = GoalExpr0
;
GoalExpr0 = conj(ConjType, SubGoals0),
(
ConjType = plain_conj,
normalise_conj(SubGoals0, SubGoals)
;
ConjType = parallel_conj,
normalise_goals(SubGoals0, SubGoals)
),
( if SubGoals = [SubGoal] then
SubGoal = hlds_goal(SubGoalExpr, _),
GoalExpr = SubGoalExpr
else
GoalExpr = conj(ConjType, SubGoals)
)
;
GoalExpr0 = switch(Var, CanFail, Cases0),
normalise_cases(Cases0, Cases),
GoalExpr = switch(Var, CanFail, Cases)
;
GoalExpr0 = disj(SubGoals0),
normalise_goals(SubGoals0, SubGoals),
GoalExpr = disj(SubGoals)
;
GoalExpr0 = negation(SubGoal0),
normalise_goal(SubGoal0, SubGoal),
GoalExpr = negation(SubGoal)
;
GoalExpr0 = scope(Reason, SubGoal0),
normalise_goal(SubGoal0, SubGoal),
GoalExpr = scope(Reason, SubGoal)
;
GoalExpr0 = if_then_else(Vars, Cond0, Then0, Else0),
normalise_goal(Cond0, Cond),
normalise_goal(Then0, Then),
normalise_goal(Else0, Else),
GoalExpr = if_then_else(Vars, Cond, Then, Else)
;
GoalExpr0 = shorthand(ShortHand0),
(
ShortHand0 = atomic_goal(GoalType, Outer, Inner, Vars,
MainGoal0, OrElseAlternatives0, OrElseInners),
normalise_goal(MainGoal0, MainGoal),
normalise_goals(OrElseAlternatives0, OrElseAlternatives),
ShortHand = atomic_goal(GoalType, Outer, Inner, Vars, MainGoal,
OrElseAlternatives, OrElseInners)
;
ShortHand0 = try_goal(MaybeIO, ResultVar, SubGoal0),
normalise_goal(SubGoal0, SubGoal),
ShortHand = try_goal(MaybeIO, ResultVar, SubGoal)
;
ShortHand0 = bi_implication(LHS0, RHS0),
normalise_goal(LHS0, LHS),
normalise_goal(RHS0, RHS),
ShortHand = bi_implication(LHS, RHS)
),
GoalExpr = shorthand(ShortHand)
),
Goal = hlds_goal(GoalExpr, GoalInfo).
%-----------------------------------------------------------------------------%
:- pred normalise_conj(list(hlds_goal)::in, list(hlds_goal)::out) is det.
normalise_conj([], []).
normalise_conj([Goal0 | Goals0], Goals) :-
goal_to_conj_list(Goal0, ConjGoals),
normalise_conj(Goals0, Goals1),
list.append(ConjGoals, Goals1, Goals).
:- pred normalise_cases(list(case)::in, list(case)::out) is det.
normalise_cases([], []).
normalise_cases([Case0 | Cases0], [Case | Cases]) :-
Case0 = case(MainConsId, OtherConsIds, Goal0),
normalise_goal(Goal0, Goal),
Case = case(MainConsId, OtherConsIds, Goal),
normalise_cases(Cases0, Cases).
:- pred normalise_goals(list(hlds_goal)::in, list(hlds_goal)::out) is det.
normalise_goals([], []).
normalise_goals([Goal0 | Goals0], [Goal | Goals]) :-
normalise_goal(Goal0, Goal),
normalise_goals(Goals0, Goals).
%-----------------------------------------------------------------------------%
:- end_module hlds.assertion.
%-----------------------------------------------------------------------------%