Files
mercury/compiler/ml_string_switch.m
Fergus Henderson 4be69fa961 Eliminated a lot of the dependencies on the the `code_model' type,
Estimated hours taken: 6

Eliminated a lot of the dependencies on the the `code_model' type,
and move that type from llds.m into a new module `code_model'.
The aim of this change is to improve the modularity of the compiler by
reducing the number of places in the compiler front-end that depend
on back-end concepts and the number of places in the MLDS back-end
which depend on the LLDS.

compiler/code_model.m:
	New module.  Contains the code_model type and associated
	procedures.

compiler/llds.m:
	Move the code_model type into code_model.m.

compiler/hlds_goal.m:
	Move the goal_info_get_code_model procedure into code_model.m,
	to avoid having the HLDS modules import code_model.

compiler/hlds_out.m:
	Delete `hlds_out__write_code_model', since it wasn't being used.

compiler/hlds_pred.m:
	Move the proc_info_interface_code_model procedure into code_model.m,
	to avoid having the HLDS modules import code_model.

compiler/goal_path.m:
	When computing the `maybe_cut' field for `some' goals,
	compute it by comparing the determinism rather than by
	comparing the goal_infos.

compiler/unique_modes.m:
	Use determinism and test for soln_count = at_most_many
	rather than using code_model and testing for model_non.

compiler/inlining.m:
	Test for determinism nondet/multi rather than testing
	for code_model model_non.

compiler/hlds_pred.m:
compiler/det_report.m:
	Change valid_code_model_for_eval_method, which succeeded unless
	the eval_method was minimal_model and the code_model was model_det,
	to valid_determinism_for_eval_method, which succeeds unless the
	eval_method is minimal_model and the determinism cannot fail.
	As well as avoiding a dependency on code_model in the HLDS
	modules, this also fixes a bug where det_report could give
	misleading error messages, saying that `multi' was a valid
	determinism for `minimal_model' predicates, when in fact the
	compiler will always report a determinism error if you declare
	a `minimal_model' predicate with determinism `multi'.
	(Actually the code in which this bug occurs is in fact
	unreachable, but this is no doubt also a bug... I'll address
	that one in a separate change.)

compiler/lookup_switch.m:
	Simplify the code a bit by using globals__lookup_*_option
	rather than globals__get_option and then getopt__lookup_option.

compiler/*.m:
	Add `import_module' declarations for `code_model', and in some
	cases remove `import_module' declarations for `llds'.
2000-11-23 04:32:51 +00:00

295 lines
9.0 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% file: ml_string_switch.m
% author: fjh (adapted from string_switch.m)
% For switches on strings, we generate a hash table using open addressing
% to resolve hash conflicts.
% WARNING: the code here is quite similar to the code in string_switch.m.
% Any changes here may require similar changes there and vice versa.
%-----------------------------------------------------------------------------%
:- module ml_string_switch.
:- interface.
:- import_module prog_data.
:- import_module hlds_data, switch_util.
:- import_module code_model.
:- import_module mlds, ml_code_util.
:- pred ml_string_switch__generate(cases_list::in, prog_var::in,
code_model::in, can_fail::in, prog_context::in,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module ml_code_gen, ml_switch_gen, ml_simplify_switch.
:- import_module builtin_ops, type_util.
:- import_module globals, options.
:- import_module bool, int, string, list, map, std_util, assoc_list, require.
ml_string_switch__generate(Cases, Var, CodeModel, _CanFail, Context,
MLDS_Decls, MLDS_Statements) -->
{ MLDS_Context = mlds__make_context(Context) },
%
% Compute the value we're going to switch on
%
ml_gen_var(Var, VarLval),
{ VarRval = lval(VarLval) },
%
% Generate the following local variable declarations:
% int slot;
% MR_String str;
%
ml_gen_info_new_cond_var(SlotVarSeq),
{ SlotVarName = string__format("slot_%d", [i(SlotVarSeq)]) },
{ SlotVarDefn = ml_gen_mlds_var_decl(var(SlotVarName),
mlds__native_int_type, MLDS_Context) },
ml_qualify_var(SlotVarName, SlotVarLval),
ml_gen_info_new_cond_var(StringVarSeq),
{ StringVarName = string__format("str_%d", [i(StringVarSeq)]) },
{ StringVarDefn = ml_gen_mlds_var_decl(var(StringVarName),
ml_string_type, MLDS_Context) },
ml_qualify_var(StringVarName, StringVarLval),
%
% Generate new labels
%
ml_gen_new_label(EndLabel),
{ GotoEndStatement = mlds__statement(
goto(EndLabel),
MLDS_Context) },
{
% Determine how big to make the hash table.
% Currently we round the number of cases up to the nearest power
% of two, and then double it. This should hopefully ensure that
% we don't get too many hash collisions.
%
list__length(Cases, NumCases),
int__log2(NumCases, LogNumCases),
int__pow(2, LogNumCases, RoundedNumCases),
TableSize is 2 * RoundedNumCases,
HashMask is TableSize - 1,
% Compute the hash table
%
switch_util__string_hash_cases(Cases, HashMask, HashValsMap),
map__to_assoc_list(HashValsMap, HashValsList),
switch_util__calc_hash_slots(HashValsList, HashValsMap,
HashSlotsMap)
},
% Generate the code for when the hash lookup fails.
%
ml_gen_failure(CodeModel, Context, FailStatements),
% Generate the code etc. for the hash table
%
ml_string_switch__gen_hash_slots(0, TableSize, HashSlotsMap, CodeModel,
Context, Strings, NextSlots, SlotsCases),
%
% Generate the following local constant declarations:
% static const int next_slots_table = { <NextSlots> };
% static const MR_String string_table = { <Strings> };
%
ml_gen_info_new_const(NextSlotsSeq),
ml_format_static_const_name("next_slots_table", NextSlotsSeq,
NextSlotsName),
{ NextSlotsType = mlds__array_type(mlds__native_int_type) },
{ NextSlotsDefn = ml_gen_static_const_defn(NextSlotsName,
NextSlotsType,
init_array(NextSlots), Context) },
ml_qualify_var(NextSlotsName, NextSlotsLval),
ml_gen_info_new_const(StringTableSeq),
ml_format_static_const_name("string_table", StringTableSeq,
StringTableName),
{ StringTableType = mlds__array_type(ml_string_type) },
{ StringTableDefn = ml_gen_static_const_defn(StringTableName,
StringTableType, init_array(Strings), Context) },
ml_qualify_var(StringTableName, StringTableLval),
%
% Generate code which does the hash table lookup.
%
{ SwitchStmt0 = switch(mlds__native_int_type, lval(SlotVarLval),
range(0, TableSize - 1),
SlotsCases, default_is_unreachable) },
ml_simplify_switch(SwitchStmt0, MLDS_Context, SwitchStatement),
{
FoundMatchCond =
binop(and,
binop(ne,
lval(StringVarLval),
const(null(ml_string_type))),
binop(str_eq,
lval(StringVarLval),
VarRval)
),
FoundMatchCode = mlds__statement(
block([], [
mlds__statement(atomic(comment(
"we found a match")),
MLDS_Context),
mlds__statement(atomic(comment(
"dispatch to the corresponding code")),
MLDS_Context),
SwitchStatement,
GotoEndStatement
]),
MLDS_Context),
LoopBody = ml_gen_block([], [
mlds__statement(atomic(comment(
"lookup the string for this hash slot")),
MLDS_Context),
mlds__statement(
atomic(assign(StringVarLval,
binop(array_index,
lval(StringTableLval),
lval(SlotVarLval)))),
MLDS_Context),
mlds__statement(atomic(comment(
"did we find a match?")),
MLDS_Context),
mlds__statement(
if_then_else(FoundMatchCond, FoundMatchCode,
no),
MLDS_Context),
mlds__statement(atomic(comment(
"no match yet, so get next slot in hash chain")),
MLDS_Context),
mlds__statement(
atomic(assign(SlotVarLval,
binop(array_index,
lval(NextSlotsLval),
lval(SlotVarLval)))),
MLDS_Context)
],
Context),
HashLookupStatements = [
mlds__statement(
atomic(comment("hashed string switch")),
MLDS_Context),
mlds__statement(atomic(comment(
"compute the hash value of the input string")),
MLDS_Context),
mlds__statement(
atomic(assign(SlotVarLval, binop(&,
unop(std_unop(hash_string), VarRval),
const(int_const(HashMask))))),
MLDS_Context),
mlds__statement(atomic(comment(
"hash chain loop")),
MLDS_Context),
mlds__statement(
while(binop(>=, lval(SlotVarLval),
const(int_const(0))),
LoopBody,
yes), % this is a do...while loop
MLDS_Context)
],
FailComment =
mlds__statement(
atomic(comment("no match, so fail")),
MLDS_Context),
EndLabelStatement =
mlds__statement(
label(EndLabel),
MLDS_Context),
EndComment =
mlds__statement(
atomic(comment("end of hashed string switch")),
MLDS_Context)
},
%
% Collect all the generated variable/constant declarations
% and code fragments together.
%
{ MLDS_Decls = [NextSlotsDefn, StringTableDefn,
SlotVarDefn, StringVarDefn] },
{ MLDS_Statements = HashLookupStatements ++
[FailComment | FailStatements] ++
[EndLabelStatement, EndComment] }.
%-----------------------------------------------------------------------------%
:- pred ml_string_switch__gen_hash_slots(int::in, int::in,
map(int, hash_slot)::in, code_model::in, prog_context::in,
list(mlds__initializer)::out, list(mlds__initializer)::out,
list(mlds__switch_case)::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_string_switch__gen_hash_slots(Slot, TableSize, HashSlotMap, CodeModel,
Context, Strings, NextSlots, MLDS_Cases) -->
( { Slot = TableSize } ->
{ Strings = [] },
{ NextSlots = [] },
{ MLDS_Cases = [] }
;
{ MLDS_Context = mlds__make_context(Context) },
ml_string_switch__gen_hash_slot(Slot, HashSlotMap,
CodeModel, MLDS_Context, String, NextSlot, SlotCases),
ml_string_switch__gen_hash_slots(Slot + 1, TableSize,
HashSlotMap, CodeModel, Context,
Strings0, NextSlots0, MLDS_Cases0),
{ Strings = [String | Strings0] },
{ NextSlots = [NextSlot | NextSlots0] },
{ MLDS_Cases = SlotCases ++ MLDS_Cases0 }
).
:- pred ml_string_switch__gen_hash_slot(int::in, map(int, hash_slot)::in,
code_model::in, mlds__context::in, mlds__initializer::out,
mlds__initializer::out, list(mlds__switch_case)::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_string_switch__gen_hash_slot(Slot, HashSlotMap, CodeModel, MLDS_Context,
init_obj(StringRval), init_obj(NextSlotRval), MLDS_Cases) -->
(
{ map__search(HashSlotMap, Slot, hash_slot(Case, Next)) }
->
{ NextSlotRval = const(int_const(Next)) },
{ Case = case(_, ConsTag, _, Goal) },
{ ConsTag = string_constant(String0) ->
String = String0
;
error("ml_string_switch__gen_hash_slots: string expected")
},
{ StringRval = const(string_const(String)) },
ml_gen_goal(CodeModel, Goal, GoalStatement),
{ string__append_list(["case """, String, """"],
CommentString) },
{ Comment = mlds__statement(
atomic(comment(CommentString)),
MLDS_Context) },
{ CaseStatement = mlds__statement(
block([], [Comment, GoalStatement]),
MLDS_Context) },
{ MLDS_Cases = [[match_value(const(int_const(Slot)))] -
CaseStatement] }
;
{ StringRval = const(null(ml_string_type)) },
{ NextSlotRval = const(int_const(-2)) },
{ MLDS_Cases = [] }
).
:- func ml_string_type = mlds__type.
ml_string_type = mercury_type(string_type, str_type).