Files
mercury/compiler/det_analysis.m
Zoltan Somogyi 3224e94532 A new pass to remove unnecessary assignment unifications.
excess:
	A new pass to remove unnecessary assignment unifications.

mercury_compile:
	Call the new excess assignment module.

options:
	Add a new option, excess_assign, to control the new optimization.
	Add another, num-real-regs, to specify how many of r1, r2 etc are
	actually real registers. The default is now set to 5 for kryten;
	later it should be supplied by the mc script, with a value determined
	at configuration time.

tag_switch:
	Use num-real-regs to figure out whether it is likely to be worthwhile
	to eliminate the common subexpression of taking the primary tag of
	a variable. Also fix an old performance bug: the test for when a
	jump table is worthwhile was reversed.

value_number, vn_block:
	Do value numbering on extended basic blocks, not basic blocks.

vn_debug:
	Modify an information message.

labelopt:
	Clean up an export an internal predicate for value numbering. Replace
	bintree_set with set.

middle_rec:
	Prepare for the generalization of middle recursion optimization
	to include predicates with an if-then-else structure.

cse_detection:
	Fix a bug: when hoisting a common desconstruction X = f(Yi), create
	new variables for the Yi. This avoids problems with any of the Yis
	appearing in other branches of the code.

goal_util:
	Add a new predicate for use by cse_detection.

common:
	Fix a bug: recompute instmap deltas, since they may be affected by the
	optimization of common structures.

code_info:
	Make an error message more explicit.

det_analysis:
	Restrict import list to the needed modules.

*.m:
	Import assoc_list.
1995-10-27 09:39:28 +00:00

856 lines
32 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1995 University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% det_analysis.m - the determinism analysis pass.
% Main authors: conway, fjh, zs.
% This pass has three components:
%
% o Segregate the procedures into those that have determinism
% declarations, and those that don't
%
% o A step of performing a local analysis pass on each procedure
% without a determinism declaration is iterated until
% a fixpoint is reached
%
% o A checking step is performed on all the procedures that have
% determinism declarations to ensure that they are at
% least as deterministic as their declaration. This uses
% a form of the local analysis pass.
% If we are to avoid global analysis for predicates with
% declarations, then it must be an error, not just a warning,
% if the determinism checking step detects that the determinism
% annotation was wrong. If we were to issue just a warning, then
% we would have to override the determinism annotation, and that
% would force us to re-check the inferred determinism for all
% calling predicates.
%
% Alternately, we could leave it as a warning, but then we would
% have to _make_ the predicate deterministic (or semideterministic)
% by inserting run-time checking code which calls error/1 if the
% predicate really isn't deterministic (semideterministic).
%-----------------------------------------------------------------------------%
:- module det_analysis.
:- interface.
:- import_module hlds, io.
:- pred determinism_pass(module_info, module_info, io__state, io__state).
:- mode determinism_pass(in, out, di, uo) is det.
:- pred det_conjunction_maxsoln(soln_count, soln_count, soln_count).
:- mode det_conjunction_maxsoln(in, in, out) is det.
:- pred det_conjunction_canfail(can_fail, can_fail, can_fail).
:- mode det_conjunction_canfail(in, in, out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module list, map, set, std_util, require.
:- import_module det_report, prog_io, mode_util, globals, options.
%-----------------------------------------------------------------------------%
determinism_pass(ModuleInfo0, ModuleInfo) -->
{ determinism_declarations(ModuleInfo0, DeclaredProcs,
UndeclaredProcs) },
globals__io_lookup_bool_option(verbose, Verbose),
maybe_write_string(Verbose, "% Doing determinism analysis pass(es).."),
maybe_flush_output(Verbose),
% Note that `global_analysis_pass' can actually be several
% passes. It prints out a `.' for each pass.
global_analysis_pass(ModuleInfo0, UndeclaredProcs, ModuleInfo1),
maybe_write_string(Verbose, " done.\n"),
maybe_write_string(Verbose, "% Doing determinism checking pass...\n"),
maybe_flush_output(Verbose),
global_final_pass(ModuleInfo1, DeclaredProcs, ModuleInfo),
maybe_write_string(Verbose, "% done.\n").
%-----------------------------------------------------------------------------%
% determinism_declarations takes a module_info as input and
% returns two lists of procedure ids, the first being those
% with determinism declarations, and the second being those without.
:- pred determinism_declarations(module_info, predproclist, predproclist).
:- mode determinism_declarations(in, out, out) is det.
determinism_declarations(ModuleInfo, DeclaredProcs, UndeclaredProcs) :-
get_all_pred_procs(ModuleInfo, PredProcs),
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs, UndeclaredProcs).
% get_all_pred_procs takes a module_info and returns a list
% of all the procedures ids for that module.
:- pred get_all_pred_procs(module_info, predproclist).
:- mode get_all_pred_procs(in, out) is det.
get_all_pred_procs(ModuleInfo, PredProcs) :-
module_info_predids(ModuleInfo, PredIds),
module_info_preds(ModuleInfo, Preds),
get_all_pred_procs_2(Preds, PredIds, [], PredProcs).
:- pred get_all_pred_procs_2(pred_table, list(pred_id),
predproclist, predproclist).
:- mode get_all_pred_procs_2(in, in, in, out) is det.
get_all_pred_procs_2(_Preds, [], PredProcs, PredProcs).
get_all_pred_procs_2(Preds, [PredId|PredIds], PredProcs0, PredProcs) :-
map__lookup(Preds, PredId, Pred),
pred_info_non_imported_procids(Pred, ProcIds),
fold_pred_modes(PredId, ProcIds, PredProcs0, PredProcs1),
get_all_pred_procs_2(Preds, PredIds, PredProcs1, PredProcs).
:- pred fold_pred_modes(pred_id, list(proc_id), predproclist, predproclist).
:- mode fold_pred_modes(in, in, in, out) is det.
fold_pred_modes(_PredId, [], PredProcs, PredProcs).
fold_pred_modes(PredId, [ProcId|ProcIds], PredProcs0, PredProcs) :-
fold_pred_modes(PredId, ProcIds, [PredId - ProcId|PredProcs0],
PredProcs).
% segregate_procs(ModuleInfo, PredProcs, DeclaredProcs, UndeclaredProcs)
% splits the list of procedures PredProcs into DeclaredProcs and
% UndeclaredProcs.
:- pred segregate_procs(module_info, predproclist, predproclist, predproclist).
:- mode segregate_procs(in, in, out, out) is det.
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs, UndeclaredProcs) :-
segregate_procs_2(ModuleInfo, PredProcs, [], DeclaredProcs,
[], UndeclaredProcs).
:- pred segregate_procs_2(module_info, predproclist, predproclist,
predproclist, predproclist, predproclist).
:- mode segregate_procs_2(in, in, in, out, in, out) is det.
segregate_procs_2(_ModuleInfo, [], DeclaredProcs, DeclaredProcs,
UndeclaredProcs, UndeclaredProcs).
segregate_procs_2(ModuleInfo, [PredId - PredMode|PredProcs],
DeclaredProcs0, DeclaredProcs,
UndeclaredProcs0, UndeclaredProcs) :-
module_info_preds(ModuleInfo, Preds),
map__lookup(Preds, PredId, Pred),
pred_info_procedures(Pred, Procs),
map__lookup(Procs, PredMode, Proc),
proc_info_declared_determinism(Proc, MaybeDetism),
(
MaybeDetism = no,
UndeclaredProcs1 = [PredId - PredMode|UndeclaredProcs0],
DeclaredProcs1 = DeclaredProcs0
;
MaybeDetism = yes(_),
DeclaredProcs1 = [PredId - PredMode|DeclaredProcs0],
UndeclaredProcs1 = UndeclaredProcs0
),
segregate_procs_2(ModuleInfo, PredProcs, DeclaredProcs1, DeclaredProcs,
UndeclaredProcs1, UndeclaredProcs).
%-----------------------------------------------------------------------------%
:- pred global_analysis_pass(module_info, predproclist, module_info,
io__state, io__state).
:- mode global_analysis_pass(in, in, out, di, uo) is det.
% Iterate until a fixpoint is reached. This can be expensive
% if a module has many predicates with undeclared determinisms.
% If this ever becomes a problem, we should switch to doing
% iterations only on strongly connected components of the
% dependency graph.
global_analysis_pass(ModuleInfo0, ProcList, ModuleInfo) -->
globals__io_lookup_bool_option(verbose, Verbose),
maybe_write_string(Verbose, "."),
maybe_flush_output(Verbose),
global_analysis_single_pass(ProcList, ModuleInfo0, ModuleInfo1,
unchanged, Changed),
( { Changed = changed } ->
global_analysis_pass(ModuleInfo1, ProcList, ModuleInfo)
;
{ ModuleInfo = ModuleInfo1 }
).
:- pred global_analysis_single_pass(predproclist,
module_info, module_info, maybe_changed, maybe_changed,
io__state, io__state).
:- mode global_analysis_single_pass(in, in, out, in, out, di, uo)
is det.
global_analysis_single_pass([], ModuleInfo, ModuleInfo,
Changed, Changed) --> [].
global_analysis_single_pass([PredId - PredMode | PredProcs],
ModuleInfo0, ModuleInfo, Changed0, Changed) -->
{ det_infer_proc(PredId, PredMode, ModuleInfo0, ModuleInfo1,
Changed0, Changed1, Msgs) },
( { Msgs \= [] } ->
det_report_msgs(Msgs),
( globals__io_lookup_bool_option(halt_at_warn, yes) ->
{ module_info_incr_errors(ModuleInfo1, ModuleInfo2) }
;
{ ModuleInfo2 = ModuleInfo1 }
)
;
{ ModuleInfo2 = ModuleInfo1 }
),
global_analysis_single_pass(PredProcs,
ModuleInfo2, ModuleInfo, Changed1, Changed).
:- pred global_final_pass(module_info, list(pair(pred_id, proc_id)),
module_info, io__state, io__state).
:- mode global_final_pass(in, in, out, di, uo) is det.
global_final_pass(ModuleInfo0, ProcList, ModuleInfo) -->
global_analysis_single_pass(ProcList, ModuleInfo0, ModuleInfo1,
unchanged, _),
global_checking_pass(ProcList, ModuleInfo1, ModuleInfo).
%-----------------------------------------------------------------------------%
% Infer the determinism of a procedure.
:- pred det_infer_proc(pred_id, proc_id, module_info, module_info,
maybe_changed, maybe_changed, list(det_msg)).
:- mode det_infer_proc(in, in, in, out, in, out, out) is det.
det_infer_proc(PredId, PredMode, ModuleInfo0, ModuleInfo, Changed0, Changed,
Msgs) :-
% Get the proc_info structure for this procedure
module_info_preds(ModuleInfo0, Preds0),
map__lookup(Preds0, PredId, Pred0),
pred_info_procedures(Pred0, Procs0),
map__lookup(Procs0, PredMode, Proc0),
% Remember the old inferred determinism of this procedure
proc_info_inferred_determinism(Proc0, Detism0),
% Infer the determinism of the goal
proc_info_goal(Proc0, Goal0),
proc_info_get_initial_instmap(Proc0, ModuleInfo0, InstMap0),
MiscInfo = misc_info(ModuleInfo0, PredId, PredMode),
det_infer_goal(Goal0, InstMap0, MiscInfo, Goal, _InstMap, Detism1,
Msgs),
% Take the worst of the old and new detisms.
% This is needed to prevent loops on p :- not(p)
% at least if the initial assumed detism is det.
determinism_components(Detism0, CanFail0, MaxSoln0),
determinism_components(Detism1, CanFail1, MaxSoln1),
det_switch_canfail(CanFail0, CanFail1, CanFail),
det_switch_maxsoln(MaxSoln0, MaxSoln1, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln),
% Check whether the determinism of this procedure changed
(
Detism = Detism0
->
Changed = Changed0
;
Changed = changed
),
% Save the newly inferred information
proc_info_set_goal(Proc0, Goal, Proc1),
proc_info_set_inferred_determinism(Proc1, Detism, Proc),
map__set(Procs0, PredMode, Proc, Procs),
pred_info_set_procedures(Pred0, Procs, Pred),
map__set(Preds0, PredId, Pred, Preds),
module_info_set_preds(ModuleInfo0, Preds, ModuleInfo).
%-----------------------------------------------------------------------------%
% Infers the determinism of `Goal0' and returns this in `Detism'.
% It annotates the goal and all its subgoals with their determinism
% and returns the annotated goal in `Goal'.
:- pred det_infer_goal(hlds__goal, instmap, misc_info,
hlds__goal, instmap, determinism, list(det_msg)).
:- mode det_infer_goal(in, in, in, out, out, out, out) is det.
det_infer_goal(Goal0 - GoalInfo0, InstMap0, MiscInfo,
Goal - GoalInfo, InstMap, Detism, Msgs) :-
goal_info_get_nonlocals(GoalInfo0, NonLocalVars),
goal_info_get_instmap_delta(GoalInfo0, DeltaInstMap),
apply_instmap_delta(InstMap0, DeltaInstMap, InstMap),
det_infer_goal_2(Goal0, GoalInfo0, InstMap0, MiscInfo, NonLocalVars,
DeltaInstMap, Goal1, InternalDetism, Msgs1),
% If a goal with possibly multiple solutions doesn't have any
% output variables, then we make it succeed at most once.
( no_output_vars(NonLocalVars, InstMap0, DeltaInstMap, MiscInfo) ->
OutputVars = no
;
OutputVars = yes
),
determinism_components(InternalDetism, InternalCanFail, InternalSolns),
(
InternalSolns = at_most_many,
OutputVars = no
->
determinism_components(Detism, InternalCanFail, at_most_one)
;
Detism = InternalDetism
),
% See how we should introduce the commit operator, if one is needed.
(
Goal1 = disj(Disjuncts),
Disjuncts \= [],
determinism_components(Detism, _, ExternalSolns),
\+ ExternalSolns = at_most_many
->
goal_info_set_determinism(GoalInfo0, Detism, GoalInfo),
det_fixup_disj(Disjuncts, InternalDetism, OutputVars, GoalInfo,
InstMap0, MiscInfo, Goal, Msgs1, Msgs)
;
Detism \= InternalDetism,
Goal1 \= some(_, _)
->
goal_info_set_determinism(GoalInfo0, InternalDetism, InnerInfo),
goal_info_set_determinism(GoalInfo0, Detism, GoalInfo),
Goal = some([], Goal1 - InnerInfo),
Msgs = Msgs1
;
goal_info_set_determinism(GoalInfo0, Detism, GoalInfo),
Goal = Goal1,
Msgs = Msgs1
).
%-----------------------------------------------------------------------------%
% Disjunctions that cannot succeed more than once when viwed from the
% outside generally need some fixing up, and/or some warnings to be
% issued.
%
% For locally multidet disjunctions without output vars, which are det
% from the outside, generate a warning, then replace the whole
% disjunction with a disjunct that cannot fail.
%
% For locally det disjunctions with or without output var(s), generate
% a warning, and find the first disjunct which cannot fail and replace
% the whole disjunction with that disjunct.
%
% For locally nondet disjunctions without output vars, which are
% semidet from outside, replace them with an if-then-else.
%
% For locally semidet disjunctions with or without output var(s), leave
% the disjunction as semidet; the code generator must handle such
% semidet disjunctions by emitting code equivalent to an if-then-else
% chain. If the disjunction has output vars, generate a warning.
%
% For locally semidet disjunctions without output var(s), we should
% pick whichever of approaches 3 and 4 generates smaller code.
%
% For disjunctions that cannot succeed, generate a warning.
%
% The second argument is the *internal* determinism of the dijunction.
:- pred det_fixup_disj(list(hlds__goal), determinism, bool, hlds__goal_info,
instmap, misc_info, hlds__goal_expr, list(det_msg), list(det_msg)).
:- mode det_fixup_disj(in, in, in, in, in, in, out, in, out) is det.
det_fixup_disj(Disjuncts, multidet, _OutputVars, GoalInfo, _, _, Goal,
Msgs0, Msgs) :-
% Same considerations apply to GoalInfos as for det disjunctions
% above.
Msgs = [multidet_disj(GoalInfo, Disjuncts) | Msgs0],
det_pick_no_fail_disjunct(Disjuncts, Goal - _).
det_fixup_disj(Disjuncts, nondet, _, GoalInfo, InstMap, MiscInfo, Goal,
Msgs0, Msgs) :-
Msgs = Msgs0,
det_disj_to_ite(Disjuncts, GoalInfo, Goal1),
det_infer_goal(Goal1, InstMap, MiscInfo, Goal - _, _, NewDetism, _),
( NewDetism = semidet ->
true
;
error("transformation of pruned disj to ite changes its determinism")
).
det_fixup_disj(Disjuncts, det, _OutputVars, GoalInfo, _, _, Goal,
Msgs0, Msgs) :-
% We are discarding the GoalInfo of the picked goal; we will
% replace it with the GoalInfo inferred for the disjunction
% as a whole. Although the disjunction may be det while the
% picked disjunct is erroneous, this is OK, since erronoues
% and det use the same code model. The replacement of the
% GoalInfo is necessary to prevent spurious determinism
% errors outside the disjunction.
Msgs = [det_disj(GoalInfo, Disjuncts) | Msgs0],
det_pick_no_fail_disjunct(Disjuncts, Goal - _).
det_fixup_disj(Disjuncts, semidet, OutputVars, GoalInfo, _, _, Goal,
Msgs0, Msgs) :-
( OutputVars = yes ->
Msgs = [semidet_disj(GoalInfo, Disjuncts) | Msgs0]
;
Msgs = Msgs0
),
Goal = disj(Disjuncts).
det_fixup_disj(Disjuncts, erroneous, _OutputVars, GoalInfo, _, _, Goal,
Msgs0, Msgs) :-
% Same considerations apply to GoalInfos as for det disjunctions
% above.
Msgs = [zero_soln_disj(GoalInfo, Disjuncts) | Msgs0],
det_pick_no_fail_disjunct(Disjuncts, Goal - _).
det_fixup_disj(Disjuncts, failure, _OutputVars, GoalInfo, _, _, Goal,
Msgs0, Msgs) :-
Msgs = [zero_soln_disj(GoalInfo, Disjuncts) | Msgs0],
( Disjuncts = [Goal1 - _ | _] ->
% Here we also discard the GoalInfo, but a disjunction can
% be failure only if all the disjuncts are failure.
Goal = Goal1
;
error("empty list of disjuncts in det_fixup_disj")
).
:- pred det_pick_no_fail_disjunct(list(hlds__goal), hlds__goal).
:- mode det_pick_no_fail_disjunct(in, out) is det.
det_pick_no_fail_disjunct([], _) :-
error("cannot find a disjunct that cannot fail").
det_pick_no_fail_disjunct([Goal0 | Goals0], Goal) :-
Goal0 = _ - GoalInfo0,
goal_info_get_determinism(GoalInfo0, Detism),
determinism_components(Detism, CanFail, _),
( CanFail = cannot_fail ->
Goal = Goal0
;
det_pick_no_fail_disjunct(Goals0, Goal)
).
:- pred det_disj_to_ite(list(hlds__goal), hlds__goal_info, hlds__goal).
% :- mode det_disj_to_ite(di, in, uo) is det.
:- mode det_disj_to_ite(in, in, out) is det.
% det_disj_to_ite is used to transform disjunctions that occur
% in prunable contexts into if-then-elses.
% For example, it would transform
%
% ( Disjunct1
% ; Disjunct2
% ; Disjunct3
% )
% into
% ( Disjunct1 ->
% true
% ; Disjunct2 ->
% true
% ;
% Disjunct3
% ).
det_disj_to_ite([], GoalInfo, disj([]) - GoalInfo).
det_disj_to_ite([Disjunct | Disjuncts], GoalInfo, Goal) :-
( Disjuncts = [] ->
Goal = Disjunct
;
Cond = Disjunct,
Cond = _CondGoal - CondGoalInfo,
goal_info_init(InitGoalInfo0),
map__init(InstMap1),
goal_info_set_instmap_delta(InitGoalInfo0,
reachable(InstMap1), InitGoalInfo),
Then = conj([]) - InitGoalInfo,
det_disj_to_ite(Disjuncts, GoalInfo, Rest),
Rest = _RestGoal - RestGoalInfo,
goal_info_get_nonlocals(CondGoalInfo, CondNonLocals),
goal_info_get_nonlocals(RestGoalInfo, RestNonLocals),
set__union(CondNonLocals, RestNonLocals, NonLocals),
goal_info_set_nonlocals(GoalInfo, NonLocals, NewGoalInfo0),
goal_info_get_instmap_delta(GoalInfo, InstMapDelta0),
(
InstMapDelta0 = reachable(InstMap0),
map__select(InstMap0, NonLocals, InstMap),
InstMapDelta = reachable(InstMap)
;
InstMapDelta0 = unreachable,
InstMapDelta = InstMapDelta0
),
goal_info_set_instmap_delta(NewGoalInfo0,
InstMapDelta, NewGoalInfo),
Goal = if_then_else([], Cond, Then, Rest) - NewGoalInfo
).
%-----------------------------------------------------------------------------%
:- pred det_infer_goal_2(hlds__goal_expr, hlds__goal_info, instmap, misc_info,
set(var), instmap_delta, hlds__goal_expr, determinism, list(det_msg)).
:- mode det_infer_goal_2(in, in, in, in, in, in, out, out, out) is det.
% The determinism of a conjunction is the worst case of the elements
% of that conjuction.
det_infer_goal_2(conj(Goals0), GoalInfo0, InstMap0, MiscInfo, _, _,
Goal, Detism, Msgs) :-
( Goals0 = [SingleGoal0] ->
% a singleton conjunction is equivalent to the goal itself
det_infer_goal(SingleGoal0, InstMap0, MiscInfo,
SingleGoal, _InstMap, Detism, Msgs),
Goal = conj([SingleGoal])
;
det_infer_conj(Goals0, InstMap0, MiscInfo,
cannot_fail, at_most_one, Goals1, Detism, Msgs),
% Conjunctions that cannot produce solutions may nevertheless
% contain nondet and multidet goals. If this happens, the part
% of the conjunction up to and including the always-failing
% goal are put inside a some to appease the code generator.
( determinism_components(Detism, CanFail, at_most_zero) ->
det_fixup_nosoln_conj(Goals1, Goals, no, NeedCut),
( NeedCut = yes ->
determinism_components(InnerDetism,
CanFail, at_most_many),
goal_info_set_determinism(GoalInfo0,
InnerDetism, InnerInfo),
InnerGoal = conj(Goals) - InnerInfo,
Goal = some([], InnerGoal)
;
Goal = conj(Goals)
)
;
Goal = conj(Goals1)
)
).
det_infer_goal_2(disj(Goals0), _, InstMap0, MiscInfo, _, _,
Goal, Detism, Msgs) :-
( Goals0 = [SingleGoal0] ->
% a singleton disjunction is equivalent to the goal itself
det_infer_goal(SingleGoal0, InstMap0, MiscInfo,
Goal - _, _InstMap, Detism, Msgs)
;
det_infer_disj(Goals0, InstMap0, MiscInfo,
can_fail, at_most_zero, Goals, Detism, Msgs),
Goal = disj(Goals)
).
% The determinism of a switch is the worst of the determinism of each
% of the cases. Also, if only a subset of the constructors are handled,
% then it is semideterministic or worse - this is determined
% in switch_detection.m and handled via the SwitchCanFail field.
det_infer_goal_2(switch(Var, SwitchCanFail, Cases0), _, InstMap0, MiscInfo,
_, _, switch(Var, SwitchCanFail, Cases), Detism, Msgs) :-
det_infer_switch(Cases0, InstMap0, MiscInfo, cannot_fail, at_most_zero,
Cases, CasesDetism, Msgs),
determinism_components(CasesDetism, CasesCanFail, CasesSolns),
det_conjunction_canfail(SwitchCanFail, CasesCanFail, CanFail),
determinism_components(Detism, CanFail, CasesSolns).
% Look up the determinism entry associated with the call.
% This is the point at which annotations start changing
% when we iterate to fixpoint for global determinism analysis.
det_infer_goal_2(call(PredId, ModeId, A, B, C, N, F), _, _, MiscInfo, _, _,
call(PredId, ModeId, A, B, C, N, F), Detism, []) :-
det_lookup_detism(MiscInfo, PredId, ModeId, Detism).
% unifications are either deterministic or semideterministic.
% (see det_infer_unify).
det_infer_goal_2(unify(LT, RT, M, U, C), _, _, MiscInfo, _, _,
unify(LT, RT, M, U, C), Detism, []) :-
det_infer_unify(U, MiscInfo, Detism).
% Question: should we warn about if-then-elses with deterministic
% and erroneous conditions?
% Answer: yes, probably, but it's not a high priority.
det_infer_goal_2(if_then_else(Vars, Cond0, Then0, Else0), GoalInfo0, InstMap0,
MiscInfo, NonLocalVars, DeltaInstMap, Goal, Detism, Msgs) :-
det_infer_goal(Cond0, InstMap0, MiscInfo, Cond, InstMap1, CondDetism,
CondMsgs),
determinism_components(CondDetism, CondCanFail, CondSolns),
( CondCanFail = cannot_fail ->
% Optimize away the `else' part.
% (We should actually convert this to a _sequential_
% conjunction, because if-then-else has an ordering
% constraint, whereas conjunction doesn't; however,
% currently reordering is only done in mode analysis,
% not in the code generator, so we don't have a
% sequential conjunction construct.)
goal_to_conj_list(Cond, CondList),
goal_to_conj_list(Then0, ThenList),
list__append(CondList, ThenList, List),
det_infer_goal_2(conj(List), GoalInfo0, InstMap0, MiscInfo,
NonLocalVars, DeltaInstMap, Goal, Detism, Msgs)
/***********
% The following optimization is not semantically valid if Cond can raise
% an exception. Since this part of the compiler doesn't (yet) know about
% the possibilities of exceptions, we forego the optimization.
% ; CondSolns = at_most_zero ->
% % Optimize away the condition and the `then' part.
% Else0 = ElseGoal0 - _,
% det_infer_goal_2(ElseGoal0, InstMap0, MiscInfo,
% NonLocalVars, DeltaInstMap, Goal, Detism)
************/
;
det_infer_goal(Then0, InstMap1, MiscInfo, Then, _, ThenDetism,
ThenMsgs),
det_infer_goal(Else0, InstMap0, MiscInfo, Else, _, ElseDetism,
ElseMsgs),
list__append(ThenMsgs, ElseMsgs, AfterMsgs),
list__append(CondMsgs, AfterMsgs, Msgs),
Goal = if_then_else(Vars, Cond, Then, Else),
determinism_components(ThenDetism, ThenCanFail, ThenSolns),
determinism_components(ElseDetism, ElseCanFail, ElseSolns),
det_conjunction_maxsoln(CondSolns, ThenSolns, AllThenSolns),
det_switch_maxsoln(AllThenSolns, ElseSolns, Solns),
det_switch_canfail(ThenCanFail, ElseCanFail, CanFail),
determinism_components(Detism, CanFail, Solns)
).
% Negations are almost always semideterministic. It is an error for
% a negation to further instantiate any non-local variable. Such
% errors will be reported by the mode analysis.
%
% Question: should we warn about the negation of goals that either
% cannot succeed or cannot fail?
% Answer: yes, probably, but it's not a high priority.
det_infer_goal_2(not(Goal0), _, InstMap0, MiscInfo, _, _, Goal, Det, Msgs) :-
det_infer_goal(Goal0, InstMap0, MiscInfo, Goal1, _InstMap, NegDet,
Msgs),
det_negation_det(NegDet, MaybeDet),
(
MaybeDet = no,
error("inappropriate determinism inside a negation")
;
MaybeDet = yes(Det),
(
% replace `not true' with `fail'
Goal1 = conj([]) - _GoalInfo
->
Goal = disj([])
;
% replace `not fail' with `true'
Goal1 = disj([]) - _GoalInfo2
->
Goal = conj([])
;
Goal = not(Goal1)
)
).
% The following optimizations are generic versions of the ones above,
% but they are semantically valid only if we know that the goal
% concerned cannot raise exceptions.
% determinism_components(NegDet, NegCanFail, NegSolns),
% ( NegCanFail = cannot_fail, NegDet \= erroneous ->
% Goal = disj([])
% ; NegSolns = at_most_zero ->
% Goal = conj([])
% ;
% Goal = not(Goal1)
% ).
% Existential quantification may require a cut to throw away solutions,
% but we cannot rely on explicit quantification to detect this.
% Therefore cuts are handled in det_infer_goal.
det_infer_goal_2(some(Vars, Goal0), _, InstMap0, MiscInfo, _, _,
some(Vars, Goal), Det, Msgs) :-
det_infer_goal(Goal0, InstMap0, MiscInfo, Goal, _InstMap, Det, Msgs).
% pragma_c_code must be deterministic.
det_infer_goal_2(pragma_c_code(C_Code, PredId, ProcId, Args, ArgNameMap),
_, _, _, _, _,
pragma_c_code(C_Code, PredId, ProcId, Args, ArgNameMap),
det, []).
%-----------------------------------------------------------------------------%
:- pred det_infer_conj(list(hlds__goal), instmap, misc_info,
can_fail, soln_count, list(hlds__goal), determinism, list(det_msg)).
:- mode det_infer_conj(in, in, in, in, in, out, out, out) is det.
det_infer_conj([], _InstMap0, _MiscInfo, CanFail, MaxSolns, [], Detism, []) :-
determinism_components(Detism, CanFail, MaxSolns).
det_infer_conj([Goal0 | Goals0], InstMap0, MiscInfo, CanFail0, MaxSolns0,
[Goal | Goals], Detism, Msgs) :-
% We should look to see when we get to a not_reached point
% and optimize away the remaining elements of the conjunction.
% But that optimization is done in the code generation anyway.
det_infer_goal(Goal0, InstMap0, MiscInfo, Goal, InstMap1, Detism1,
Msgs1),
determinism_components(Detism1, CanFail1, MaxSolns1),
det_conjunction_canfail(CanFail0, CanFail1, CanFail2),
det_conjunction_maxsoln(MaxSolns0, MaxSolns1, MaxSolns2),
det_infer_conj(Goals0, InstMap1, MiscInfo, CanFail2, MaxSolns2,
Goals, Detism, Msgs2),
list__append(Msgs1, Msgs2, Msgs).
:- pred det_fixup_nosoln_conj(list(hlds__goal), list(hlds__goal), bool, bool).
:- mode det_fixup_nosoln_conj(in, out, in, out) is det.
det_fixup_nosoln_conj([], _, _, _) :-
error("conjunction without solutions has no failing goal").
det_fixup_nosoln_conj([Goal0 | Goals0], Goals, NeedCut0, NeedCut) :-
Goal0 = _ - GoalInfo0,
goal_info_get_determinism(GoalInfo0, Detism0),
determinism_components(Detism0, _, MaxSolns0),
( MaxSolns0 = at_most_zero ->
Goals = [Goal0],
NeedCut = NeedCut0
;
( MaxSolns0 = at_most_many ->
NeedCut1 = yes
;
NeedCut1 = NeedCut0
),
det_fixup_nosoln_conj(Goals0, Goals1, NeedCut1, NeedCut),
Goals = [Goal0 | Goals1]
).
:- pred det_infer_disj(list(hlds__goal), instmap, misc_info,
can_fail, soln_count, list(hlds__goal), determinism, list(det_msg)).
:- mode det_infer_disj(in, in, in, in, in, out, out, out) is det.
det_infer_disj([], _InstMap0, _MiscInfo, CanFail, MaxSolns, [], Detism, []) :-
determinism_components(Detism, CanFail, MaxSolns).
det_infer_disj([Goal0 | Goals0], InstMap0, MiscInfo, CanFail0, MaxSolns0,
[Goal | Goals1], Detism, Msgs) :-
det_infer_goal(Goal0, InstMap0, MiscInfo, Goal, _InstMap, Detism1,
Msgs1),
determinism_components(Detism1, CanFail1, MaxSolns1),
det_disjunction_canfail(CanFail0, CanFail1, CanFail2),
det_disjunction_maxsoln(MaxSolns0, MaxSolns1, MaxSolns2),
det_infer_disj(Goals0, InstMap0, MiscInfo, CanFail2, MaxSolns2,
Goals1, Detism, Msgs2),
list__append(Msgs1, Msgs2, Msgs3),
( MaxSolns1 = at_most_zero ->
Goal0 = _ - GoalInfo0,
Msgs = [zero_soln_disjunct(GoalInfo0) | Msgs3]
;
Msgs = Msgs3
).
:- pred det_infer_switch(list(case), instmap, misc_info,
can_fail, soln_count, list(case), determinism, list(det_msg)).
:- mode det_infer_switch(in, in, in, in, in, out, out, out) is det.
det_infer_switch([], _InstMap0, _MiscInfo, CanFail, MaxSolns, [], Detism, []) :-
determinism_components(Detism, CanFail, MaxSolns).
det_infer_switch([Case0 | Cases0], InstMap0, MiscInfo, CanFail0, MaxSolns0,
[Case | Cases], Detism, Msgs) :-
% Technically, we should update the instmap to reflect the
% knowledge that the var is bound to this particular
% constructor, but we wouldn't use that information here anyway,
% so we don't bother.
Case0 = case(ConsId, Goal0),
det_infer_goal(Goal0, InstMap0, MiscInfo, Goal, _InstMap, Detism1,
Msgs1),
Case = case(ConsId, Goal),
determinism_components(Detism1, CanFail1, MaxSolns1),
det_switch_canfail(CanFail0, CanFail1, CanFail2),
det_switch_maxsoln(MaxSolns0, MaxSolns1, MaxSolns2),
det_infer_switch(Cases0, InstMap0, MiscInfo, CanFail2, MaxSolns2,
Cases, Detism, Msgs2),
list__append(Msgs1, Msgs2, Msgs).
:- pred det_infer_unify(unification, misc_info, determinism).
:- mode det_infer_unify(in, in, out) is det.
% Deconstruction unifications are deterministic if the type
% only has one constructor, or if the variable is known to be
% already bound to the appropriate functor.
%
% This is handled (modulo bugs) by modes.m, which sets
% the determinism field in the deconstruct(...) to semidet for
% those deconstruction unifications which might fail.
% But switch_detection.m may set it back to det again, if it moves
% the functor test into a switch instead.
det_infer_unify(deconstruct(_, _, _, _, CanFail), _MiscInfo, Detism) :-
determinism_components(Detism, CanFail, at_most_one).
det_infer_unify(assign(_, _), _MiscInfo, det).
det_infer_unify(construct(_, _, _, _), _MiscInfo, det).
det_infer_unify(simple_test(_, _), _MiscInfo, semidet).
det_infer_unify(complicated_unify(_, CanFail, _), _MiscInfo, Detism) :-
determinism_components(Detism, CanFail, at_most_one).
%-----------------------------------------------------------------------------%
det_conjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_one, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_many, at_most_zero).
det_conjunction_maxsoln(at_most_one, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_one, at_most_one, at_most_one).
det_conjunction_maxsoln(at_most_one, at_most_many, at_most_many).
det_conjunction_maxsoln(at_most_many, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_many, at_most_one, at_most_many).
det_conjunction_maxsoln(at_most_many, at_most_many, at_most_many).
det_conjunction_canfail(can_fail, can_fail, can_fail).
det_conjunction_canfail(can_fail, cannot_fail, can_fail).
det_conjunction_canfail(cannot_fail, can_fail, can_fail).
det_conjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
:- pred det_disjunction_maxsoln(soln_count, soln_count, soln_count).
:- mode det_disjunction_maxsoln(in, in, out) is det.
det_disjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_disjunction_maxsoln(at_most_zero, at_most_one, at_most_one).
det_disjunction_maxsoln(at_most_zero, at_most_many, at_most_many).
det_disjunction_maxsoln(at_most_one, at_most_zero, at_most_one).
det_disjunction_maxsoln(at_most_one, at_most_one, at_most_many).
det_disjunction_maxsoln(at_most_one, at_most_many, at_most_many).
det_disjunction_maxsoln(at_most_many, at_most_zero, at_most_many).
det_disjunction_maxsoln(at_most_many, at_most_one, at_most_many).
det_disjunction_maxsoln(at_most_many, at_most_many, at_most_many).
:- pred det_disjunction_canfail(can_fail, can_fail, can_fail).
:- mode det_disjunction_canfail(in, in, out) is det.
det_disjunction_canfail(can_fail, can_fail, can_fail).
det_disjunction_canfail(can_fail, cannot_fail, cannot_fail).
det_disjunction_canfail(cannot_fail, can_fail, cannot_fail).
det_disjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
:- pred det_switch_maxsoln(soln_count, soln_count, soln_count).
:- mode det_switch_maxsoln(in, in, out) is det.
det_switch_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_switch_maxsoln(at_most_zero, at_most_one, at_most_one).
det_switch_maxsoln(at_most_zero, at_most_many, at_most_many).
det_switch_maxsoln(at_most_one, at_most_zero, at_most_one).
det_switch_maxsoln(at_most_one, at_most_one, at_most_one).
det_switch_maxsoln(at_most_one, at_most_many, at_most_many).
det_switch_maxsoln(at_most_many, at_most_zero, at_most_many).
det_switch_maxsoln(at_most_many, at_most_one, at_most_many).
det_switch_maxsoln(at_most_many, at_most_many, at_most_many).
:- pred det_switch_canfail(can_fail, can_fail, can_fail).
:- mode det_switch_canfail(in, in, out) is det.
det_switch_canfail(can_fail, can_fail, can_fail).
det_switch_canfail(can_fail, cannot_fail, can_fail).
det_switch_canfail(cannot_fail, can_fail, can_fail).
det_switch_canfail(cannot_fail, cannot_fail, cannot_fail).
:- pred det_negation_det(determinism, maybe(determinism)).
:- mode det_negation_det(in, out) is det.
det_negation_det(det, yes(failure)).
det_negation_det(semidet, yes(semidet)).
det_negation_det(multidet, no).
det_negation_det(nondet, no).
det_negation_det(erroneous, yes(erroneous)).
det_negation_det(failure, yes(det)).
%-----------------------------------------------------------------------------%