Files
mercury/compiler/structure_reuse.versions.m
Peter Wang b86f973fa9 Allow the use of Mercury abstract machine float registers for passing
Branches: main

Allow the use of Mercury abstract machine float registers for passing
double-precision float arguments in higher order calls.

In of itself this is not so useful for typical Mercury code.  However, as
all non-local procedures are potentially the targets of higher order calls,
without this change first order calls to non-local procedures could not use
float registers either.  That is the actual motivation for this change.

The basic mechanism is straightforward.  As before, do_call_closure_* is
invoked to place the closure's hidden arguments into r1, ..., rN, and extra
input arguments shifted into rN+1, etc.  With float registers, extra input
arguments may also be in f1, f2, etc. and the closure may also have hidden
float arguments.  Optimising for calls, we order the closure's hidden
arguments so that all float register arguments come after all regular
register arguments in the vector.  Having the arguments out of order does
complicate code which needs to deconstruct closures, but that is not so
important.

Polymorphism complicates things.  A closure with type pred(float) may be
passed to a procedure expecting pred(T).  Due to the `float' argument type,
the closure expects its argument in a float register.  But when passed to the
procedure, the polymorphic argument type means it would be called with the
argument in a regular register.

Higher-order insts already contain information about the calling convention,
without which a higher-order term cannot be called.  We extend higher-order
insts to include information about the register class required for each
argument.  For example, we can distinguish between:

	pred(in) is semidet /* arg regs: [reg_f] */
and
	pred(in) is semidet /* arg regs: [reg_r] */

Using this information, we can create a wrapper around a higher-order
variable if it appears in a context requiring a different calling convention.
We do this in a new HLDS pass, called float_regs.m.

Note: Mercury code has a tendency to lose insts for higher-order terms, then
"recover" them by hacky means.  The float_regs pass depends on higher-order
insts; it is impossible to create a wrapper for a procedure without knowing
how to call it.  The float_regs pass will report errors which we otherwise
accepted, due to higher-order insts being unavailable.  It should be possible
for the user to adjust the code to satisfy the pass, though the user may not
understand why it should be necessary.  In most cases, it probably really
*is* unnecessary.  We may be able to make the float_regs pass more tolerant
of missing higher-order insts in the future.

Class method calls do not use float registers because I didn't want to deal
with them yet.


compiler/options.m:
compiler/handle_options.m:
	Always enable float registers in low-level C grades when floats are
	wider than a word.

compiler/make_hlds_passes.m:
	Always allow double word floats to be stored unboxed in cells on C
	grades.

compiler/hlds_goal.m:
	Add an extra field to `generic_call' which gives the register class
	to use for each argument.  This is set by the float_regs pass.

compiler/prog_data.m:
	Add an extra field to `pred_inst_info' which records the register class
	to use for each argument.  This is set by the float_regs pass.

compiler/hlds_pred.m:
	Add a field to `proc_sub_info' which lists the headvars which must be
	passed via regular registers despite their types.

	Add a field to `pred_sub_info' to record the original unsubstituted
	argument types for instance method predicates.

compiler/check_typeclass.m:
	In the pred_info of an instance method predicate, record the original
	argument types before substituting the type variables for the instance.

compiler/float_regs.m:
compiler/transform_hlds.m:
	Add the new HLDS pass.

compiler/mercury_compile_middle_passes.m:
	Run the new pass if float registers are enabled.

compiler/lambda.m:
	Export the predicate to produce a predicate from a lambda.
	This is reused by float_regs.m to create wrapper closures.

	Add an argument to `expand_lambda' to set the reg_r_headvars field on
	the newly created procedure.

	Delete some unused fields from `lambda_info'.

compiler/arg_info.m:
	Make `generate_proc_arg_info' no longer always use regular registers
	for calls to exported procedures.  Do always use regular registers for
	class methods calls.

	Add a version of `make_arg_infos' which takes an explicit list of
	argument registers.  Rename the previous version.

	Add `generic_call_arg_reg_types' to return the argument registers
	for a generic call.

	Add a version of `compute_in_and_out_vars' which additionally separates
	arguments for float and regular registers.

compiler/call_gen.m:
	Use float registers for argument passing in higher-order calls, as
	directed by the new field in `generic_call'.

compiler/code_util.m:
	Add a function to encode the number of regular and float register
	arguments when making a higher-order call.

compiler/llds.m:
	Say that the `do_call_closure_N' functions only work for zero float
	register arguments.

compiler/follow_vars.m:
compiler/interval.m:
	Account for the use of float registers by generic call goals in these
	passes.

compiler/unify_gen.m:
	Move float register arguments to the end of a closure's hidden
	arguments vector, after regular register arguments.

	Count hidden regular and float register arguments separately, but
	encode them in the same word in the closure.  This is preferable to
	using two words because it reduces the differences between grades
	with and without float registers present.

	Disable generating code which creates a closure from an existing
	closure, if float registers exist.  That code does not understand the
	reordered hidden arguments vector yet.

compiler/continuation_info.m:
	Replace an argument's type_info in the closure layout if the argument
	is a float *and* is passed via a regular register, when floats are
	normally passed via float registers.  Instead, give it the type_info
	for `private_builtin.float_box'.

compiler/builtin_lib_types.m:
	Add function to return the type of `private_builtin.float_box/0'.

compiler/hlds_out_goal.m:
compiler/hlds_out_pred.m:
compiler/mercury_to_mercury.m:
	Dump the new fields added to `generic_call', `pred_inst_info' and
	`proc_sub_info'.

compiler/prog_type.m:
	Add helper predicate.

compiler/*.m:
	Conform to changes.

library/private_builtin.m:
	Add a type `float_box'.

runtime/mercury_ho_call.h:
	Describe the modified closure representation.

	Rename the field which counts the number of hidden arguments to prevent
	it being used incorrectly, as it now encodes two numbers (potentially).

	Add macros to unpack the encoded field.

runtime/mercury_ho_call.c:
	Update the description of how higher-order calls work.

	Update code which extracts closure arguments to take account the
	arguments being reordered in the hidden arguments vector.

runtime/mercury_deep_copy.c:
runtime/mercury_deep_copy_body.h:
runtime/mercury_layout_util.c:
runtime/mercury_ml_expand_body.h:
	Update code which extracts closure arguments to take account the
	arguments being reordered in the hidden arguments vector.

runtime/mercury_type_info.c:
runtime/mercury_type_info.h:
	Add helper function.

tools/make_spec_ho_call:
	Update the generated do_call_closure_* functions to place float
	register arguments.

tests/hard_coded/Mercury.options:
tests/hard_coded/Mmakefile:
tests/hard_coded/ho_float_reg.exp:
tests/hard_coded/ho_float_reg.m:
	Add new test case.

tests/hard_coded/copy_pred.exp:
tests/hard_coded/copy_pred.m:
tests/hard_coded/deconstruct_arg.exp:
tests/hard_coded/deconstruct_arg.exp2:
tests/hard_coded/deconstruct_arg.m:
	Extend test cases with float arguments in closures.

tests/debugger/higher_order.exp2:
	Add alternative output, changed due to closure wrapping.

tests/hard_coded/ho_univ_to_type.m:
	Adjust test case so that the float_regs pass does not report errors
	about missing higher-order insts.

compiler/notes/compiler_design.html:
	Describe the new module.

	Delete a duplicated paragraph.

compiler/notes/todo.html:
TODO:
	Delete one hundred billion year old todos.
2012-02-13 00:11:57 +00:00

526 lines
22 KiB
Mathematica

%------------------------------------------------------------------------------%
% vim: ft=mercury ff=unix ts=4 sw=4 et
%------------------------------------------------------------------------------%
% Copyright (C) 2006-2012 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: structure_reuse.versions.m.
% Main authors: nancy.
%
% Provide the functionality to create optimised versions of those procedures
% for which reuse was detected.
%
%------------------------------------------------------------------------------%
:- module structure_reuse.versions.
:- interface.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module transform_hlds.ctgc.structure_reuse.domain.
%------------------------------------------------------------------------------%
% For each of the entries in the reuse table:
% * if the listed reuse is conditional, then duplicate the
% pred-info/proc-info of the original procedure, changing all potential
% reuse annotation to real reuses;
% * if the listed reuse is unconditional, then no duplication is needed,
% yet the goal needs to be traversed to correctly replace all
% procedure calls to calls to reuse versions whenever needed.
% * if the listed reuse is "no reuse", then obviously, nothing needs to
% be done.
%
% This process updates the module information by adding the new predicates,
% and recording the pred-proc-id to the reuse pred-proc-id mappings in
% module_info.
%
:- pred create_reuse_procedures(reuse_as_table::in, reuse_as_table::out,
module_info::in, module_info::out) is det.
% Create a copy of the predicate/procedure information specified by the
% given pred_proc_id, and return the pred_proc_id of that copy. The copy
% is not altered w.r.t. structure reuse. It is a plain copy, nothing more
% than that.
%
:- pred create_fresh_pred_proc_info_copy(pred_proc_id::in, no_clobber_args::in,
pred_proc_id::out, module_info::in, module_info::out) is det.
% Create a fake reuse procedure that simply calls the non-reuse procedure.
%
:- pred create_fake_reuse_procedure(pred_proc_id::in, no_clobber_args::in,
module_info::in, module_info::out) is det.
%------------------------------------------------------------------------------%
%------------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds.
:- import_module check_hlds.mode_util.
:- import_module hlds.hlds_goal.
:- import_module hlds.passes_aux.
:- import_module hlds.pred_table.
:- import_module hlds.quantification.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module mdbcomp.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_util.
:- import_module transform_hlds.ctgc.structure_reuse.analysis.
:- import_module bimap.
:- import_module bool.
:- import_module list.
:- import_module map.
:- import_module maybe.
:- import_module require.
:- import_module set.
%------------------------------------------------------------------------------%
:- type reuse_name == sym_name.
:- func generate_reuse_name(module_info, pred_proc_id, list(int)) = reuse_name.
generate_reuse_name(ModuleInfo, PPId, NoClobbers) = ReuseName :-
PPId = proc(_, ProcId),
module_info_pred_proc_info(ModuleInfo, PPId, PredInfo, _ProcInfo),
PredModule = pred_info_module(PredInfo),
PredOrFunc = pred_info_is_pred_or_func(PredInfo),
PredName = pred_info_name(PredInfo),
proc_id_to_int(ProcId, ProcInt),
make_pred_name(PredModule, "ctgc", yes(PredOrFunc), PredName,
newpred_structure_reuse(ProcInt, NoClobbers), ReuseName).
%------------------------------------------------------------------------------%
% This process can be split into separate steps:
% - determine all the pred-proc-ids of procedure with conditional reuse;
% - create duplicates of these procedures;
% - traverse all these procedures + the procedures with unconditional reuse
% to correctly update the reuse annotations.
%
create_reuse_procedures(!ReuseTable, !ModuleInfo) :-
% Get the list of conditional reuse procedures already created.
ExistingReusePPIds = bimap.coordinates(!.ReuseTable ^ reuse_version_map),
ExistingReusePPIdsSet = set.from_list(ExistingReusePPIds),
map.foldl2(divide_reuse_procs(ExistingReusePPIdsSet),
!.ReuseTable ^ reuse_info_map, [], CondOrigPPIds, [], UncondOrigPPIds),
% Create duplicates of the procedures which have conditional reuse. The
% "intermediate" reuse procedures will already have been created during the
% analysis, so this creates just the reuse versions where all possible
% arguments are potentially reusable.
list.map_foldl2(maybe_create_full_reuse_proc_copy,
CondOrigPPIds, ReuseCondPPIds, !ModuleInfo, !ReuseTable),
% Process all the goals to update the reuse annotations. In the reuse
% versions of procedures we can take advantage of potential reuse
% opportunities.
list.foldl(check_cond_process_proc(convert_potential_reuse, !.ReuseTable),
ReuseCondPPIds, !ModuleInfo),
list.foldl(check_cond_process_proc(convert_potential_reuse, !.ReuseTable),
ExistingReusePPIds, !ModuleInfo),
% In the original procedures, only the unconditional reuse opportunities
% can be taken.
list.foldl(process_proc(leave_potential_reuse, !.ReuseTable),
CondOrigPPIds, !ModuleInfo),
list.foldl(process_proc(leave_potential_reuse, !.ReuseTable),
UncondOrigPPIds, !ModuleInfo).
% Separate procedures in the reuse table into those with some conditional
% reuse opportunities, and those with only unconditional reuse.
% Skip any procedure which is already a reuse copy of another procedure.
%
:- pred divide_reuse_procs(set(pred_proc_id)::in,
pred_proc_id::in, reuse_as_and_status::in,
list(pred_proc_id)::in, list(pred_proc_id)::out,
list(pred_proc_id)::in, list(pred_proc_id)::out) is det.
divide_reuse_procs(ExistingReusePPIdsSet, PPId, ReuseAs_Status,
!CondPPIds, !UncondPPIds) :-
ReuseAs_Status = reuse_as_and_status(ReuseAs, _),
( set.contains(ExistingReusePPIdsSet, PPId) ->
true
; reuse_as_conditional_reuses(ReuseAs) ->
!:CondPPIds = [PPId | !.CondPPIds]
; reuse_as_all_unconditional_reuses(ReuseAs) ->
!:UncondPPIds = [PPId | !.UncondPPIds]
; reuse_as_no_reuses(ReuseAs) ->
true
;
unexpected($module, $pred, "conditions failed")
).
:- pred maybe_create_full_reuse_proc_copy(pred_proc_id::in, pred_proc_id::out,
module_info::in, module_info::out, reuse_as_table::in, reuse_as_table::out)
is det.
maybe_create_full_reuse_proc_copy(PPId, NewPPId, !ModuleInfo, !ReuseTable) :-
NoClobbers = [],
(
reuse_as_table_search_reuse_version_proc(!.ReuseTable,
PPId, NoClobbers, _)
->
unexpected($module, $pred, "procedure already exists")
;
true
),
create_fresh_pred_proc_info_copy(PPId, NoClobbers, NewPPId, !ModuleInfo),
( reuse_as_table_search(!.ReuseTable, PPId, ReuseAs_Status) ->
reuse_as_table_set(NewPPId, ReuseAs_Status, !ReuseTable),
reuse_as_table_insert_reuse_version_proc(PPId, NoClobbers, NewPPId,
!ReuseTable)
;
unexpected($module, $pred, "no reuse information")
).
%------------------------------------------------------------------------------%
create_fresh_pred_proc_info_copy(PPId, NoClobbers, NewPPId, !ModuleInfo) :-
module_info_pred_proc_info(!.ModuleInfo, PPId, PredInfo0, ProcInfo0),
ReusePredName = generate_reuse_name(!.ModuleInfo, PPId, NoClobbers),
PPId = proc(PredId, _),
create_fresh_pred_proc_info_copy_2(PredId, PredInfo0, ProcInfo0,
ReusePredName, ReusePredInfo, ReuseProcId),
NewPPId = proc(ReusePredId, ReuseProcId),
module_info_get_predicate_table(!.ModuleInfo, PredTable0),
predicate_table_insert(ReusePredInfo, ReusePredId, PredTable0, PredTable),
module_info_set_predicate_table(PredTable, !ModuleInfo),
module_info_get_structure_reuse_preds(!.ModuleInfo, ReusePreds0),
set.insert(ReusePredId, ReusePreds0, ReusePreds),
module_info_set_structure_reuse_preds(ReusePreds, !ModuleInfo).
:- pred create_fresh_pred_proc_info_copy_2(pred_id::in, pred_info::in,
proc_info::in, reuse_name::in, pred_info::out, proc_id::out) is det.
create_fresh_pred_proc_info_copy_2(PredId, PredInfo, ProcInfo, ReusePredName,
ReusePredInfo, ReuseProcId) :-
ModuleName = pred_info_module(PredInfo),
PredOrFunc = pred_info_is_pred_or_func(PredInfo),
pred_info_get_context(PredInfo, ProgContext),
pred_info_get_origin(PredInfo, PredOrigin),
pred_info_get_import_status(PredInfo, ImportStatus0),
% If the predicate was opt_imported then the specialised copy should be
% local otherwise it will be eliminated by dead proc elimination.
( ImportStatus0 = status_opt_imported ->
ImportStatus = status_local
;
ImportStatus = ImportStatus0
),
pred_info_get_markers(PredInfo, PredMarkers),
pred_info_get_arg_types(PredInfo, MerTypes),
pred_info_get_typevarset(PredInfo, TVarset),
pred_info_get_exist_quant_tvars(PredInfo, ExistQTVars),
pred_info_get_class_context(PredInfo, ProgConstraints),
pred_info_get_assertions(PredInfo, AssertIds),
pred_info_get_var_name_remap(PredInfo, VarNameRemap),
NewPredOrigin = origin_transformed(transform_structure_reuse, PredOrigin,
PredId),
pred_info_create(ModuleName, ReusePredName, PredOrFunc, ProgContext,
NewPredOrigin, ImportStatus, PredMarkers, MerTypes, TVarset,
ExistQTVars, ProgConstraints, AssertIds, VarNameRemap,
ProcInfo, ReuseProcId, ReusePredInfo).
%------------------------------------------------------------------------------%
:- type convert_potential_reuse
---> convert_potential_reuse
; leave_potential_reuse.
% When generating target code, we may find a set of reuse conditions on a
% procedure which are *harsher* than the reuse conditions that we found
% during the `--make-analysis-registry' step. This can happen due extra
% analysis information gathered for other modules in the meantime. In that
% case, we may have external callers to the procedure which have verified
% only against the *laxer* reuse conditions.
%
% Hence we need to be careful that we don't generate any code which
% violates the weaker reuse conditions. One (conservative) way to do that
% is to ignore all the potential reuse annotations and only use the
% unconditional reuse annotations.
%
% XXX the same problem occurs with `--intermodule-optimisation'
%
:- pred check_cond_process_proc(convert_potential_reuse::in,
reuse_as_table::in, pred_proc_id::in, module_info::in, module_info::out)
is det.
check_cond_process_proc(ConvertPotentialReuse, ReuseTable, ReusePPId,
!ModuleInfo) :-
module_info_get_globals(!.ModuleInfo, Globals),
globals.lookup_bool_option(Globals, intermodule_analysis,
IntermodAnalysis),
globals.lookup_bool_option(Globals, make_analysis_registry,
MakeAnalysisReg),
(
IntermodAnalysis = yes,
MakeAnalysisReg = no
->
structure_reuse_answer_harsher_than_in_analysis_registry(!.ModuleInfo,
ReuseTable, ReusePPId, IsHarsher)
;
IsHarsher = no
),
(
IsHarsher = yes,
% Ignoring potential reuse is equivalent to having only unconditional
% structure reuse.
process_proc(leave_potential_reuse, ReuseTable, ReusePPId, !ModuleInfo)
;
IsHarsher = no,
process_proc(ConvertPotentialReuse, ReuseTable, ReusePPId, !ModuleInfo)
).
% Process the goal of the procedure with the given pred_proc_id so that
% all potential reuses are replaced by real reuses, and all calls to
% procedures that have a reuse version are replaced by calls to their
% reuse version (if of course, that is in accordance with the reuse
% annotations).
%
:- pred process_proc(convert_potential_reuse::in, reuse_as_table::in,
pred_proc_id::in, module_info::in, module_info::out) is det.
process_proc(ConvertPotentialReuse, ReuseTable, PPId, !ModuleInfo) :-
trace [io(!IO)] (
write_proc_progress_message("(reuse version) ", PPId, !.ModuleInfo,
!IO)
),
some [!ProcInfo] (
module_info_pred_proc_info(!.ModuleInfo, PPId, PredInfo0, !:ProcInfo),
pred_info_get_import_status(PredInfo0, ImportStatus),
( ImportStatus = status_imported(_) ->
% The bodies may contain junk, so don't try to process.
true
;
proc_info_get_goal(!.ProcInfo, Goal0),
process_goal(ConvertPotentialReuse, ReuseTable, !.ModuleInfo,
Goal0, Goal),
proc_info_set_goal(Goal, !ProcInfo),
% A dead variable needs to appear in the non-local set of the
% construction unification in which its space is reused, so we
% requantify. Then we recompute instmap deltas with the updated
% non-local sets.
requantify_proc_general(ordinary_nonlocals_no_lambda, !ProcInfo),
recompute_instmap_delta_proc(
do_not_recompute_atomic_instmap_deltas,
!ProcInfo, !ModuleInfo),
module_info_set_pred_proc_info(PPId, PredInfo0, !.ProcInfo,
!ModuleInfo)
)
).
:- pred process_goal(convert_potential_reuse::in, reuse_as_table::in,
module_info::in, hlds_goal::in, hlds_goal::out) is det.
process_goal(ConvertPotentialReuse, ReuseTable, ModuleInfo, !Goal) :-
!.Goal = hlds_goal(GoalExpr0, GoalInfo0),
(
GoalExpr0 = conj(ConjType, Goals0),
list.map(process_goal(ConvertPotentialReuse, ReuseTable, ModuleInfo),
Goals0, Goals),
GoalExpr = conj(ConjType, Goals),
!:Goal = hlds_goal(GoalExpr, GoalInfo0)
;
GoalExpr0 = plain_call(CalleePredId, CalleeProcId, Args, BI, UC,
CalleePredName),
ReuseDescription0 = goal_info_get_reuse(GoalInfo0),
(
% If the reuse description already says "reuse", then this is
% a call to a procedure which might have specified conditions, yet
% whose conditions are always met, hence do not imply conditions on
% the procedure in which this call appears. We must therefore
% make sure to call the appropriate version of the called
% procedure.
ReuseDescription0 = reuse(reuse_call(_CondDescr, NoClobbers))
->
determine_reuse_version(ReuseTable, ModuleInfo, CalleePredId,
CalleeProcId, CalleePredName, NoClobbers, ReuseCalleePredId,
ReuseCalleeProcId, ReuseCalleePredName),
GoalExpr = plain_call(ReuseCalleePredId, ReuseCalleeProcId,
Args, BI, UC, ReuseCalleePredName),
!:Goal = hlds_goal(GoalExpr, GoalInfo0)
;
ReuseDescription0 = potential_reuse(reuse_call(CondDescr,
NoClobbers)),
ConvertPotentialReuse = convert_potential_reuse
->
ConvertPotentialReuse = convert_potential_reuse,
% Replace the call to the reuse version, and change the
% potential reuse annotation to a real annotation.
determine_reuse_version(ReuseTable, ModuleInfo,
CalleePredId, CalleeProcId, CalleePredName, NoClobbers,
ReuseCalleePredId, ReuseCalleeProcId, ReuseCalleePredName),
GoalExpr = plain_call(ReuseCalleePredId, ReuseCalleeProcId,
Args, BI, UC, ReuseCalleePredName),
ReuseDescription = reuse(reuse_call(CondDescr, NoClobbers)),
goal_info_set_reuse(ReuseDescription, GoalInfo0, GoalInfo),
!:Goal = hlds_goal(GoalExpr, GoalInfo)
;
true
)
;
GoalExpr0 = generic_call(_, _, _, _, _)
;
GoalExpr0 = unify(_, _, _, Unification0, _),
ReuseDescription0 = goal_info_get_reuse(GoalInfo0),
(
(
ReuseDescription0 = reuse(Descr)
;
ReuseDescription0 = potential_reuse(Descr),
ConvertPotentialReuse = convert_potential_reuse
),
ReuseDescription = reuse(Descr),
unification_set_reuse(Descr, Unification0, Unification),
GoalExpr = GoalExpr0 ^ unify_kind := Unification,
goal_info_set_reuse(ReuseDescription, GoalInfo0, GoalInfo),
!:Goal = hlds_goal(GoalExpr, GoalInfo)
;
ReuseDescription0 = potential_reuse(_),
ConvertPotentialReuse = leave_potential_reuse
;
ReuseDescription0 = no_reuse_info
;
ReuseDescription0 = no_possible_reuse
;
ReuseDescription0 = missed_reuse(_)
)
;
GoalExpr0 = disj(Goals0),
list.map(process_goal(ConvertPotentialReuse, ReuseTable, ModuleInfo),
Goals0, Goals),
GoalExpr = disj(Goals),
!:Goal = hlds_goal(GoalExpr, GoalInfo0)
;
GoalExpr0 = switch(A, B, Cases0),
list.map(process_case(ConvertPotentialReuse, ReuseTable, ModuleInfo),
Cases0, Cases),
GoalExpr = switch(A, B, Cases),
!:Goal = hlds_goal(GoalExpr, GoalInfo0)
;
% XXX To check and compare with the theory.
GoalExpr0 = negation(_Goal)
;
GoalExpr0 = scope(Reason, SubGoal0),
( Reason = from_ground_term(_, from_ground_term_construct) ->
true
;
process_goal(ConvertPotentialReuse, ReuseTable, ModuleInfo,
SubGoal0, SubGoal),
GoalExpr = scope(Reason, SubGoal),
!:Goal = hlds_goal(GoalExpr, GoalInfo0)
)
;
GoalExpr0 = if_then_else(Vars, IfGoal0, ThenGoal0, ElseGoal0),
process_goal(ConvertPotentialReuse, ReuseTable, ModuleInfo,
IfGoal0, IfGoal),
process_goal(ConvertPotentialReuse, ReuseTable, ModuleInfo,
ThenGoal0, ThenGoal),
process_goal(ConvertPotentialReuse, ReuseTable, ModuleInfo,
ElseGoal0, ElseGoal),
GoalExpr = if_then_else(Vars, IfGoal, ThenGoal, ElseGoal),
!:Goal = hlds_goal(GoalExpr, GoalInfo0)
;
GoalExpr0 = call_foreign_proc(_Attrs, _ForeignPredId, _ForeignProcId,
_Args, _ExtraArgs, _MaybeTraceRuntimeCond, _Impl)
;
GoalExpr0 = shorthand(_),
% These should have been expanded out by now.
unexpected($module, $pred, "shorthand")
).
:- pred unification_set_reuse(short_reuse_description::in,
unification::in, unification::out) is det.
unification_set_reuse(ShortReuseDescription, !Unification) :-
(
HowToConstruct0 = !.Unification ^ construct_how,
ShortReuseDescription = cell_reused(DeadVar, _, PossibleConsIds,
CellsToUpdate)
->
(
HowToConstruct0 = construct_statically
% Leave static terms as-is.
;
( HowToConstruct0 = construct_dynamically
; HowToConstruct0 = construct_in_region(_)
; HowToConstruct0 = reuse_cell(_)
),
CellToReuse = cell_to_reuse(DeadVar, PossibleConsIds,
CellsToUpdate),
HowToConstruct = reuse_cell(CellToReuse),
!Unification ^ construct_how := HowToConstruct
)
;
true
).
:- pred determine_reuse_version(reuse_as_table::in, module_info::in,
pred_id::in, proc_id::in, sym_name::in, list(int)::in,
pred_id::out, proc_id::out, reuse_name::out) is det.
determine_reuse_version(ReuseTable, ModuleInfo, PredId, ProcId, PredName,
NoClobbers, ReusePredId, ReuseProcId, ReusePredName) :-
(
reuse_as_table_search_reuse_version_proc(ReuseTable,
proc(PredId, ProcId), NoClobbers, Result)
->
Result = proc(ReusePredId, ReuseProcId),
module_info_pred_info(ModuleInfo, ReusePredId, ReusePredInfo),
ModuleName = pred_info_module(ReusePredInfo),
Name = pred_info_name(ReusePredInfo),
ReusePredName = qualified(ModuleName, Name)
;
ReusePredId = PredId,
ReuseProcId = ProcId,
ReusePredName = PredName
).
:- pred process_case(convert_potential_reuse::in, reuse_as_table::in,
module_info::in, case::in, case::out) is det.
process_case(ConvertPotentialReuse, ReuseMap, ModuleInfo, Case0, Case) :-
Case0 = case(MainConsId, OtherConsIds, Goal0),
process_goal(ConvertPotentialReuse, ReuseMap, ModuleInfo, Goal0, Goal),
Case = case(MainConsId, OtherConsIds, Goal).
%------------------------------------------------------------------------------%
create_fake_reuse_procedure(PPId, NoClobbers, !ModuleInfo) :-
PPId = proc(PredId, ProcId),
module_info_pred_proc_info(!.ModuleInfo, PPId, OldPredInfo, OldProcInfo),
OldPredModule = pred_info_module(OldPredInfo),
OldPredName = pred_info_name(OldPredInfo),
proc_info_interface_determinism(OldProcInfo, Determinism),
create_fresh_pred_proc_info_copy(PPId, NoClobbers, NewPPId, !ModuleInfo),
some [!PredInfo, !ProcInfo] (
module_info_pred_proc_info(!.ModuleInfo, NewPPId, !:PredInfo,
!:ProcInfo),
proc_info_get_goal(!.ProcInfo, Body),
Body = hlds_goal(_, GoalInfo0),
proc_info_get_headvars(!.ProcInfo, HeadVars),
GoalExpr = plain_call(PredId, ProcId, HeadVars, not_builtin, no,
qualified(OldPredModule, OldPredName)),
goal_info_set_determinism(Determinism, GoalInfo0, GoalInfo),
Goal = hlds_goal(GoalExpr, GoalInfo),
proc_info_set_goal(Goal, !ProcInfo),
module_info_set_pred_proc_info(NewPPId, !.PredInfo, !.ProcInfo,
!ModuleInfo)
).
%------------------------------------------------------------------------------%
:- end_module structure_reuse.versions.
%------------------------------------------------------------------------------%