mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-20 00:15:27 +00:00
Estimated hours taken: 30
Implement builtin tuple types, similar to those in Haskell.
Tuples are constructed and deconstructed using
the syntax X = {Arg1, Arg2, ...}.
Tuples have type `{Arg1, Arg2, ...}'.
Unary tuples (X = {Arg}) do work, unlike in Haskell. The rationale
for this is that it is useful to be able to construct unary tuples
to be passed to a polymorphic predicate which uses std_util__deconstruct
to deal with a tuple of any arity. Since this is probably the only
use for unary tuples, it's not really worth the effort of treating
them as no_tag types, so we don't.
The type-infos for tuples have the same structure as for higher-order
types. There is a single type_ctor_info for tuples, and the arity
is placed before the argument type_infos.
library/parser.m:
Change the way '{}/N' terms are parsed, so that the parsed
representation is consistent with the way other functors
are represented (previously the arguments were left as
unparsed ','/2 terms). This avoids special case code
in prog_io__parse_qualified_term, term__term_to_type
and term__type_to_term.
compiler/prog_io_dcg.m:
compiler/prog_io_util.m:
Handle the new structure of '{}/N' terms when parsing DCG escapes
by converting the argument list back into a single ','/2 term.
compiler/module_qual.m:
Treat tuples as a builtin type.
compiler/typecheck.m:
Typecheck tuple constructors.
compiler/mode_util.m:
Propagate types into tuple bound insts.
compiler/type_util.m:
Add type_is_tuple/2 and type_id_is_tuple/1 to identify tuple types.
Add tuples to the list of types which are not atomic types.
Handle tuple types in `type_constructors' and
`get_cons_id_arg_types' and `switch_type_num_functors'.
compiler/tabling.m:
Handle tabling of tuples.
compiler/term_util.m:
Handle tuples in the code to compute functor norms.
compiler/magic_util.m:
compiler/rl.m:
compiler/rl_key.m:
Handle tuple types in the Aditi back end.
compiler/mercury_to_mercury.m:
library/io.m:
library/term_io.m:
Handle output of '{}/N' terms.
compiler/higher_order.m:
compiler/simplify.m:
Don't specialize complicated unifications of tuple
types into calls to a specific unification procedure --
even if the procedure were implemented, it probably
wouldn't be that much more efficient.
compiler/unify_proc.m:
Generate unification procedures for complicated unifications
of tuples (other than in-in unifications). These are generated
lazily as required.
compiler/make_hlds.m:
Export add_special_pred for use by unify_proc.m.
compiler/polymorphism.m:
Export polymorphism__process_pred for use by unify_proc.m.
compiler/bytecode_gen.m:
compiler/code_util.m:
compiler/ml_code_util.m:
Handle unify procedure names and tags for tuple types.
compiler/mlds_to_c.m:
Output tuple types as MR_Tuple.
compiler/ml_unify_gen.m:
Compute the field types for tuples.
compiler/polymorphism.m:
compiler/pseudo_type_info.m:
Treat tuple type_infos in a similar way to higher-order type_infos.
compiler/hlds_data.m:
Document how cons_ids for tuple types are represented.
compiler/switch_gen.m:
compiler/table_gen.m:
Add tuple types to switches on type_util__builtin_type.
compiler/llds_out.m:
util/mdemangle.c:
profiler/demangle.m:
Transform items named "{}" to "f_tuple" when mangling symbols.
library/builtin.m:
Define the type_ctor_info used for tuples.
library/private_builtin.m:
Add `builtin_unify_tuple/2' and `builtin_compare_tuple/3',
both of which abort. All comparisons and in-in unifications
of tuples are performed by the generic unification functions
in runtime/mercury_ho_call.c and runtime/mercury.c.
library/std_util.m:
Implement the various RTTI functions for tuples.
Encode tuple `TypeCtorDesc's in a similar way to that
used for higher-order types. This has the consequence that the limit
on the arity of higher-order types is now MAX_VIRTUAL_REG,
rather than 2*MAX_VIRTUAL_REG.
Avoid calling MR_GC_free for the type-info vector returned
from ML_expand() for tuples because unlike the vectors
for du types, it is not copied.
runtime/mercury_type_info.h:
Add macros for extracting fields from tuple type-infos.
These just call the macros for extracting fields from higher-order
type-infos.
Add a macro MR_type_ctor_rep_is_variable_arity(), which
returns TRUE for tuples and higher-order types.
The distinction between higher-order and first-order types
is now misnamed -- the distinction is really between fixed arity
types and builtin variable arity types. I'm not sure whether
it's worth renaming everything.
runtime/mercury.h:
runtime/mercury.c:
Define unification and comparison of tuples in
high-level code grades.
runtime/mercury_deep_copy_body.h:
runtime/mercury_make_type_info_body.h:
runtime/mercury_tabling.c:
runtime/mercury_unify_compare_body.h:
Handle tuple types in code which traverses data using RTTI.
tests/hard_coded/construct.{m,exp}:
tests/hard_coded/expand.{m,exp}:
Test RTTI functions from std_util.m applied to tuples.
tests/hard_coded/tuple_test.{m,exp}:
Test unification, comparison, term_to_type etc. applied to tuples.
tests/hard_coded/deep_copy.{m,exp}:
Test deep copy of tuples.
tests/hard_coded/typeclasses/tuple_instance.{m,exp}:
Test instance declarations for tuples.
tests/tabling/expand_tuple.{m,exp}:
Test tabling of tuples.
tests/hard_coded/write.m:
Add some module qualifications for code which uses
`{}/1' constructors which are not tuples.
tests/invalid/errors2.{m,err_exp,err_exp2}:
Test handling of tuples in type errors messages.
NEWS:
doc/reference_manual.texi:
w3/news/newsdb.inc:
Document tuples.
doc/transition_guide.texi:
Document the change to the parsing of '{}/N' terms.
515 lines
16 KiB
Mathematica
515 lines
16 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1996-2000 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% File: prog_io_util.m.
|
|
% Main author: fjh.
|
|
%
|
|
% This module defines the types used by prog_io and its subcontractors
|
|
% to return the results of parsing, and some utility predicates needed
|
|
% by several of prog_io's submodules.
|
|
%
|
|
% Most parsing predicates must check for errors. They return either the
|
|
% item(s) they were looking for, or an error indication.
|
|
%
|
|
% Most of the parsing predicates return a `maybe1(T)'
|
|
% or a `maybe2(T1, T2)', which will either be the
|
|
% `ok(ParseTree)' (or `ok(ParseTree1, ParseTree2)'),
|
|
% if the parse is successful, or `error(Message, Term)'
|
|
% if it is not. The `Term' there should be the term which
|
|
% is syntactically incorrect.
|
|
|
|
:- module prog_io_util.
|
|
|
|
:- interface.
|
|
|
|
:- import_module prog_data, (inst).
|
|
:- import_module list, map, std_util, term, io.
|
|
|
|
:- type maybe2(T1, T2) ---> error(string, term)
|
|
; ok(T1, T2).
|
|
|
|
:- type maybe1(T) == maybe1(T, generic).
|
|
:- type maybe1(T, U) ---> error(string, term(U))
|
|
; ok(T).
|
|
|
|
:- type maybe_functor == maybe_functor(generic).
|
|
:- type maybe_functor(T) == maybe2(sym_name, list(term(T))).
|
|
|
|
% ok(SymName, Args - MaybeFuncRetArg) ; error(Msg, Term).
|
|
:- type maybe_pred_or_func(T) == maybe2(sym_name, pair(list(T), maybe(T))).
|
|
|
|
:- type maybe_item_and_context
|
|
== maybe2(item, prog_context).
|
|
|
|
:- type var2tvar == map(var, tvar).
|
|
|
|
:- type var2pvar == map(var, prog_var).
|
|
|
|
:- pred add_context(maybe1(item), prog_context, maybe_item_and_context).
|
|
:- mode add_context(in, in, out) is det.
|
|
|
|
%
|
|
% Various predicates to parse small bits of syntax.
|
|
% These predicates simply fail if they encounter a syntax error.
|
|
%
|
|
|
|
:- pred parse_list_of_vars(term(T), list(var(T))).
|
|
:- mode parse_list_of_vars(in, out) is semidet.
|
|
|
|
:- pred parse_name_and_arity(module_name, term(_T), sym_name, arity).
|
|
:- mode parse_name_and_arity(in, in, out, out) is semidet.
|
|
|
|
:- pred parse_name_and_arity(term(_T), sym_name, arity).
|
|
:- mode parse_name_and_arity(in, out, out) is semidet.
|
|
|
|
:- pred parse_pred_or_func_name_and_arity(module_name,
|
|
term(_T), pred_or_func, sym_name, arity).
|
|
:- mode parse_pred_or_func_name_and_arity(in, in, out, out, out) is semidet.
|
|
|
|
:- pred parse_pred_or_func_name_and_arity(term(_T), pred_or_func,
|
|
sym_name, arity).
|
|
:- mode parse_pred_or_func_name_and_arity(in, out, out, out) is semidet.
|
|
|
|
:- pred parse_pred_or_func_and_args(maybe(module_name), term(_T), term(_T),
|
|
string, maybe_pred_or_func(term(_T))).
|
|
:- mode parse_pred_or_func_and_args(in, in, in, in, out) is det.
|
|
|
|
:- pred parse_pred_or_func_and_args(term(_T), pred_or_func, sym_name,
|
|
list(term(_T))).
|
|
:- mode parse_pred_or_func_and_args(in, out, out, out) is semidet.
|
|
|
|
:- pred convert_mode_list(list(term), list(mode)).
|
|
:- mode convert_mode_list(in, out) is semidet.
|
|
|
|
:- pred convert_mode(term, mode).
|
|
:- mode convert_mode(in, out) is semidet.
|
|
|
|
:- pred convert_inst_list(list(term), list(inst)).
|
|
:- mode convert_inst_list(in, out) is semidet.
|
|
|
|
:- pred convert_inst(term, inst).
|
|
:- mode convert_inst(in, out) is semidet.
|
|
|
|
:- pred standard_det(string, determinism).
|
|
:- mode standard_det(in, out) is semidet.
|
|
|
|
% convert a "disjunction" (bunch of terms separated by ';'s) to a list
|
|
|
|
:- pred disjunction_to_list(term(T), list(term(T))).
|
|
:- mode disjunction_to_list(in, out) is det.
|
|
|
|
% convert a "conjunction" (bunch of terms separated by ','s) to a list
|
|
|
|
:- pred conjunction_to_list(term(T), list(term(T))).
|
|
:- mode conjunction_to_list(in, out) is det.
|
|
|
|
% list_to_conjunction(Context, First, Rest, Term).
|
|
% convert a list to a "conjunction" (bunch of terms separated by ','s)
|
|
|
|
:- pred list_to_conjunction(prog_context, term(T), list(term(T)), term(T)).
|
|
:- mode list_to_conjunction(in, in, in, out) is det.
|
|
|
|
% convert a "sum" (bunch of terms separated by '+' operators) to a list
|
|
|
|
:- pred sum_to_list(term(T), list(term(T))).
|
|
:- mode sum_to_list(in, out) is det.
|
|
|
|
% The following /3, /4 and /5 predicates are to be used for reporting
|
|
% warnings to stderr. This is preferable to using io__write_string, as
|
|
% this checks the halt-at-warn option.
|
|
%
|
|
% This predicate is best used by predicates that do not have access to
|
|
% module_info for a particular module. It sets the exit status to error
|
|
% when a warning is encountered in a module, and the --halt-at-warn
|
|
% option is set.
|
|
|
|
:- pred report_warning(string::in, io__state::di, io__state::uo) is det.
|
|
|
|
:- pred report_warning(io__output_stream::in, string::in, io__state::di,
|
|
io__state::uo) is det.
|
|
|
|
:- pred report_warning(string::in, int::in, string::in, io__state::di,
|
|
io__state::uo) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module prog_io, prog_io_goal, options, globals.
|
|
|
|
% XXX we should not need to import hlds*.m here.
|
|
% But currently we need to import hlds_data.m for the `cons_id' type
|
|
% that is used in insts.
|
|
:- import_module hlds_data.
|
|
|
|
:- import_module bool, string, std_util, term.
|
|
|
|
add_context(error(M, T), _, error(M, T)).
|
|
add_context(ok(Item), Context, ok(Item, Context)).
|
|
|
|
parse_name_and_arity(ModuleName, PredAndArityTerm, SymName, Arity) :-
|
|
PredAndArityTerm = term__functor(term__atom("/"),
|
|
[PredNameTerm, ArityTerm], _),
|
|
parse_implicitly_qualified_term(ModuleName,
|
|
PredNameTerm, PredNameTerm, "", ok(SymName, [])),
|
|
ArityTerm = term__functor(term__integer(Arity), [], _).
|
|
|
|
parse_name_and_arity(PredAndArityTerm, SymName, Arity) :-
|
|
parse_name_and_arity(unqualified(""),
|
|
PredAndArityTerm, SymName, Arity).
|
|
|
|
parse_pred_or_func_name_and_arity(ModuleName, PorFPredAndArityTerm,
|
|
PredOrFunc, SymName, Arity) :-
|
|
PorFPredAndArityTerm = term__functor(term__atom(PredOrFuncStr),
|
|
Args, _),
|
|
( PredOrFuncStr = "pred", PredOrFunc = predicate
|
|
; PredOrFuncStr = "func", PredOrFunc = function
|
|
),
|
|
Args = [Arg],
|
|
parse_name_and_arity(ModuleName, Arg, SymName, Arity).
|
|
|
|
parse_pred_or_func_name_and_arity(PorFPredAndArityTerm,
|
|
PredOrFunc, SymName, Arity) :-
|
|
parse_pred_or_func_name_and_arity(unqualified(""),
|
|
PorFPredAndArityTerm, PredOrFunc, SymName, Arity).
|
|
|
|
parse_pred_or_func_and_args(Term, PredOrFunc, SymName, ArgTerms) :-
|
|
parse_pred_or_func_and_args(no, Term, Term, "",
|
|
ok(SymName, ArgTerms0 - MaybeRetTerm)),
|
|
(
|
|
MaybeRetTerm = yes(RetTerm),
|
|
PredOrFunc = function,
|
|
list__append(ArgTerms0, [RetTerm], ArgTerms)
|
|
;
|
|
MaybeRetTerm = no,
|
|
PredOrFunc = predicate,
|
|
ArgTerms = ArgTerms0
|
|
).
|
|
|
|
parse_pred_or_func_and_args(MaybeModuleName, PredAndArgsTerm, ErrorTerm,
|
|
Msg, PredAndArgsResult) :-
|
|
(
|
|
PredAndArgsTerm = term__functor(term__atom("="),
|
|
[FuncAndArgsTerm, FuncResultTerm], _)
|
|
->
|
|
FunctorTerm = FuncAndArgsTerm,
|
|
MaybeFuncResult = yes(FuncResultTerm)
|
|
;
|
|
FunctorTerm = PredAndArgsTerm,
|
|
MaybeFuncResult = no
|
|
),
|
|
(
|
|
MaybeModuleName = yes(ModuleName),
|
|
parse_implicitly_qualified_term(ModuleName, FunctorTerm,
|
|
ErrorTerm, Msg, Result)
|
|
;
|
|
MaybeModuleName = no,
|
|
parse_qualified_term(FunctorTerm, ErrorTerm, Msg, Result)
|
|
),
|
|
(
|
|
Result = ok(SymName, Args),
|
|
PredAndArgsResult = ok(SymName, Args - MaybeFuncResult)
|
|
;
|
|
Result = error(ErrorMsg, Term),
|
|
PredAndArgsResult = error(ErrorMsg, Term)
|
|
).
|
|
|
|
parse_list_of_vars(term__functor(term__atom("[]"), [], _), []).
|
|
parse_list_of_vars(term__functor(term__atom("."), [Head, Tail], _), [V|Vs]) :-
|
|
Head = term__variable(V),
|
|
parse_list_of_vars(Tail, Vs).
|
|
|
|
convert_mode_list([], []).
|
|
convert_mode_list([H0|T0], [H|T]) :-
|
|
convert_mode(H0, H),
|
|
convert_mode_list(T0, T).
|
|
|
|
|
|
%
|
|
% The new operator for mode declarations is >>.
|
|
% Previously we used ->, but this required a high-precedence
|
|
% operator such as :: for the :- mode delcaration.
|
|
%
|
|
% Using >> allows us to use == for the :- mode declaration.
|
|
%
|
|
% Eventually we can stop supporting :: and -> in :- mode
|
|
% declarations altogether.
|
|
%
|
|
convert_mode(Term, Mode) :-
|
|
(
|
|
(
|
|
Term = term__functor(term__atom(">>"),
|
|
[InstA, InstB], _)
|
|
;
|
|
Term = term__functor(term__atom("->"),
|
|
[InstA, InstB], _)
|
|
)
|
|
->
|
|
convert_inst(InstA, ConvertedInstA),
|
|
convert_inst(InstB, ConvertedInstB),
|
|
Mode = (ConvertedInstA -> ConvertedInstB)
|
|
;
|
|
% Handle higher-order predicate modes:
|
|
% a mode of the form
|
|
% pred(<Mode1>, <Mode2>, ...) is <Det>
|
|
% is an abbreviation for the inst mapping
|
|
% ( pred(<Mode1>, <Mode2>, ...) is <Det>
|
|
% -> pred(<Mode1>, <Mode2>, ...) is <Det>
|
|
% )
|
|
|
|
Term = term__functor(term__atom("is"), [PredTerm, DetTerm], _),
|
|
PredTerm = term__functor(term__atom("pred"), ArgModesTerms, _)
|
|
->
|
|
DetTerm = term__functor(term__atom(DetString), [], _),
|
|
standard_det(DetString, Detism),
|
|
convert_mode_list(ArgModesTerms, ArgModes),
|
|
PredInstInfo = pred_inst_info(predicate, ArgModes, Detism),
|
|
Inst = ground(shared, yes(PredInstInfo)),
|
|
Mode = (Inst -> Inst)
|
|
;
|
|
% Handle higher-order function modes:
|
|
% a mode of the form
|
|
% func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
|
|
% is an abbreviation for the inst mapping
|
|
% ( func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
|
|
% -> func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
|
|
% )
|
|
|
|
Term = term__functor(term__atom("is"), [EqTerm, DetTerm], _),
|
|
EqTerm = term__functor(term__atom("="),
|
|
[FuncTerm, RetModeTerm], _),
|
|
FuncTerm = term__functor(term__atom("func"), ArgModesTerms, _)
|
|
->
|
|
DetTerm = term__functor(term__atom(DetString), [], _),
|
|
standard_det(DetString, Detism),
|
|
convert_mode_list(ArgModesTerms, ArgModes0),
|
|
convert_mode(RetModeTerm, RetMode),
|
|
list__append(ArgModes0, [RetMode], ArgModes),
|
|
FuncInstInfo = pred_inst_info(function, ArgModes, Detism),
|
|
Inst = ground(shared, yes(FuncInstInfo)),
|
|
Mode = (Inst -> Inst)
|
|
;
|
|
parse_qualified_term(Term, Term, "mode definition", R),
|
|
R = ok(Name, Args), % should improve error reporting
|
|
convert_inst_list(Args, ConvertedArgs),
|
|
Mode = user_defined_mode(Name, ConvertedArgs)
|
|
).
|
|
|
|
convert_inst_list([], []).
|
|
convert_inst_list([H0|T0], [H|T]) :-
|
|
convert_inst(H0, H),
|
|
convert_inst_list(T0, T).
|
|
|
|
convert_inst(term__variable(V0), inst_var(V)) :-
|
|
term__coerce_var(V0, V).
|
|
convert_inst(Term, Result) :-
|
|
Term = term__functor(Name, Args0, _Context),
|
|
% `free' insts
|
|
( Name = term__atom("free"), Args0 = [] ->
|
|
Result = free
|
|
|
|
% `any' insts
|
|
; Name = term__atom("any"), Args0 = [] ->
|
|
Result = any(shared)
|
|
; Name = term__atom("unique_any"), Args0 = [] ->
|
|
Result = any(unique)
|
|
; Name = term__atom("mostly_unique_any"), Args0 = [] ->
|
|
Result = any(mostly_unique)
|
|
; Name = term__atom("clobbered_any"), Args0 = [] ->
|
|
Result = any(clobbered)
|
|
; Name = term__atom("mostly_clobbered_any"), Args0 = [] ->
|
|
Result = any(mostly_clobbered)
|
|
|
|
% `ground' insts
|
|
; Name = term__atom("ground"), Args0 = [] ->
|
|
Result = ground(shared, no)
|
|
; Name = term__atom("unique"), Args0 = [] ->
|
|
Result = ground(unique, no)
|
|
; Name = term__atom("mostly_unique"), Args0 = [] ->
|
|
Result = ground(mostly_unique, no)
|
|
; Name = term__atom("clobbered"), Args0 = [] ->
|
|
Result = ground(clobbered, no)
|
|
; Name = term__atom("mostly_clobbered"), Args0 = [] ->
|
|
Result = ground(mostly_clobbered, no)
|
|
;
|
|
% The syntax for a higher-order pred inst is
|
|
%
|
|
% pred(<Mode1>, <Mode2>, ...) is <Detism>
|
|
%
|
|
% where <Mode1>, <Mode2>, ... are a list of modes,
|
|
% and <Detism> is a determinism.
|
|
|
|
Name = term__atom("is"), Args0 = [PredTerm, DetTerm],
|
|
PredTerm = term__functor(term__atom("pred"), ArgModesTerm, _)
|
|
->
|
|
DetTerm = term__functor(term__atom(DetString), [], _),
|
|
standard_det(DetString, Detism),
|
|
convert_mode_list(ArgModesTerm, ArgModes),
|
|
PredInst = pred_inst_info(predicate, ArgModes, Detism),
|
|
Result = ground(shared, yes(PredInst))
|
|
;
|
|
|
|
% The syntax for a higher-order func inst is
|
|
%
|
|
% func(<Mode1>, <Mode2>, ...) = <RetMode> is <Detism>
|
|
%
|
|
% where <Mode1>, <Mode2>, ... are a list of modes,
|
|
% <RetMode> is a mode, and <Detism> is a determinism.
|
|
|
|
Name = term__atom("is"), Args0 = [EqTerm, DetTerm],
|
|
EqTerm = term__functor(term__atom("="),
|
|
[FuncTerm, RetModeTerm], _),
|
|
FuncTerm = term__functor(term__atom("func"), ArgModesTerm, _)
|
|
->
|
|
DetTerm = term__functor(term__atom(DetString), [], _),
|
|
standard_det(DetString, Detism),
|
|
convert_mode_list(ArgModesTerm, ArgModes0),
|
|
convert_mode(RetModeTerm, RetMode),
|
|
list__append(ArgModes0, [RetMode], ArgModes),
|
|
FuncInst = pred_inst_info(function, ArgModes, Detism),
|
|
Result = ground(shared, yes(FuncInst))
|
|
|
|
% `not_reached' inst
|
|
; Name = term__atom("not_reached"), Args0 = [] ->
|
|
Result = not_reached
|
|
|
|
% `bound' insts
|
|
; Name = term__atom("bound"), Args0 = [Disj] ->
|
|
parse_bound_inst_list(Disj, shared, Result)
|
|
/* `bound_unique' is for backwards compatibility - use `unique' instead */
|
|
; Name = term__atom("bound_unique"), Args0 = [Disj] ->
|
|
parse_bound_inst_list(Disj, unique, Result)
|
|
; Name = term__atom("unique"), Args0 = [Disj] ->
|
|
parse_bound_inst_list(Disj, unique, Result)
|
|
; Name = term__atom("mostly_unique"), Args0 = [Disj] ->
|
|
parse_bound_inst_list(Disj, mostly_unique, Result)
|
|
|
|
% anything else must be a user-defined inst
|
|
;
|
|
parse_qualified_term(Term, Term, "inst",
|
|
ok(QualifiedName, Args1)),
|
|
convert_inst_list(Args1, Args),
|
|
Result = defined_inst(user_inst(QualifiedName, Args))
|
|
).
|
|
|
|
standard_det("det", det).
|
|
standard_det("cc_nondet", cc_nondet).
|
|
standard_det("cc_multi", cc_multidet).
|
|
standard_det("nondet", nondet).
|
|
standard_det("multi", multidet).
|
|
standard_det("multidet", multidet).
|
|
standard_det("semidet", semidet).
|
|
standard_det("erroneous", erroneous).
|
|
standard_det("failure", failure).
|
|
|
|
:- pred parse_bound_inst_list(term::in, uniqueness::in, (inst)::out) is semidet.
|
|
|
|
parse_bound_inst_list(Disj, Uniqueness, bound(Uniqueness, Functors)) :-
|
|
disjunction_to_list(Disj, List),
|
|
convert_bound_inst_list(List, Functors0),
|
|
list__sort(Functors0, Functors),
|
|
% check that the list doesn't specify the same functor twice
|
|
\+ (
|
|
list__append(_, SubList, Functors),
|
|
SubList = [F1, F2 | _],
|
|
F1 = functor(ConsId, _),
|
|
F2 = functor(ConsId, _)
|
|
).
|
|
|
|
:- pred convert_bound_inst_list(list(term), list(bound_inst)).
|
|
:- mode convert_bound_inst_list(in, out) is semidet.
|
|
|
|
convert_bound_inst_list([], []).
|
|
convert_bound_inst_list([H0|T0], [H|T]) :-
|
|
convert_bound_inst(H0, H),
|
|
convert_bound_inst_list(T0, T).
|
|
|
|
:- pred convert_bound_inst(term, bound_inst).
|
|
:- mode convert_bound_inst(in, out) is semidet.
|
|
|
|
convert_bound_inst(InstTerm, functor(ConsId, Args)) :-
|
|
InstTerm = term__functor(Functor, Args0, _),
|
|
( Functor = term__atom(_) ->
|
|
parse_qualified_term(InstTerm, InstTerm, "inst",
|
|
ok(SymName, Args1)),
|
|
list__length(Args1, Arity),
|
|
ConsId = cons(SymName, Arity)
|
|
;
|
|
Args1 = Args0,
|
|
list__length(Args1, Arity),
|
|
make_functor_cons_id(Functor, Arity, ConsId)
|
|
),
|
|
convert_inst_list(Args1, Args).
|
|
|
|
disjunction_to_list(Term, List) :-
|
|
binop_term_to_list(";", Term, List).
|
|
|
|
conjunction_to_list(Term, List) :-
|
|
binop_term_to_list(",", Term, List).
|
|
|
|
list_to_conjunction(_, Term, [], Term).
|
|
list_to_conjunction(Context, First, [Second | Rest], Term) :-
|
|
list_to_conjunction(Context, Second, Rest, Tail),
|
|
Term = term__functor(term__atom(","), [First, Tail], Context).
|
|
|
|
sum_to_list(Term, List) :-
|
|
binop_term_to_list("+", Term, List).
|
|
|
|
% general predicate to convert terms separated by any specified
|
|
% operator into a list
|
|
|
|
:- pred binop_term_to_list(string, term(T), list(term(T))).
|
|
:- mode binop_term_to_list(in, in, out) is det.
|
|
|
|
binop_term_to_list(Op, Term, List) :-
|
|
binop_term_to_list_2(Op, Term, [], List).
|
|
|
|
:- pred binop_term_to_list_2(string, term(T), list(term(T)), list(term(T))).
|
|
:- mode binop_term_to_list_2(in, in, in, out) is det.
|
|
|
|
binop_term_to_list_2(Op, Term, List0, List) :-
|
|
(
|
|
Term = term__functor(term__atom(Op), [L, R], _Context)
|
|
->
|
|
binop_term_to_list_2(Op, R, List0, List1),
|
|
binop_term_to_list_2(Op, L, List1, List)
|
|
;
|
|
List = [Term|List0]
|
|
).
|
|
|
|
report_warning(Message) -->
|
|
io__stderr_stream(StdErr),
|
|
globals__io_lookup_bool_option(halt_at_warn, HaltAtWarn),
|
|
( { HaltAtWarn = yes } ->
|
|
io__set_exit_status(1)
|
|
;
|
|
[]
|
|
),
|
|
io__write_string(StdErr, Message).
|
|
|
|
report_warning(Stream, Message) -->
|
|
globals__io_lookup_bool_option(halt_at_warn, HaltAtWarn),
|
|
( { HaltAtWarn = yes } ->
|
|
io__set_exit_status(1)
|
|
;
|
|
[]
|
|
),
|
|
io__write_string(Stream, Message).
|
|
|
|
report_warning(FileName, LineNum, Message) -->
|
|
{ string__format("%s:%3d: Warning: %s\n",
|
|
[s(FileName), i(LineNum), s(Message)], FullMessage) },
|
|
io__stderr_stream(StdErr),
|
|
io__write_string(StdErr, FullMessage),
|
|
globals__io_lookup_bool_option(halt_at_warn, HaltAtWarn),
|
|
( { HaltAtWarn = yes } ->
|
|
io__set_exit_status(1)
|
|
;
|
|
[]
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|