Files
mercury/compiler/stack_layout.m
Julien Fischer 459847a064 Move the univ, maybe, pair and unit types from std_util into their own
Estimated hours taken: 18
Branches: main

Move the univ, maybe, pair and unit types from std_util into their own
modules.  std_util still contains the general purpose higher-order programming
constructs.

library/std_util.m:
	Move univ, maybe, pair and unit (plus any other related types
	and procedures) into their own modules.

library/maybe.m:
	New module.  This contains the maybe and maybe_error types and
	the associated procedures.

library/pair.m:
	New module.  This contains the pair type and associated procedures.

library/unit.m:
	New module. This contains the types unit/0 and unit/1.

library/univ.m:
	New module. This contains the univ type and associated procedures.

library/library.m:
	Add the new modules.

library/private_builtin.m:
	Update the declaration of the type_ctor_info struct for univ.

runtime/mercury.h:
	Update the declaration for the type_ctor_info struct for univ.

runtime/mercury_mcpp.h:
runtime/mercury_hlc_types.h:
	Update the definition of MR_Univ.

runtime/mercury_init.h:
	Fix a comment: ML_type_name is now exported from type_desc.m.

compiler/mlds_to_il.m:
	Update the the name of the module that defines univs (which are
	handled specially by the il code generator.)

library/*.m:
compiler/*.m:
browser/*.m:
mdbcomp/*.m:
profiler/*.m:
deep_profiler/*.m:
	Conform to the above changes.  Import the new modules where they
	are needed; don't import std_util where it isn't needed.

	Fix formatting in lots of modules.  Delete duplicate module
	imports.

tests/*:
	Update the test suite to confrom to the above changes.
2006-03-29 08:09:58 +00:00

1771 lines
68 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%---------------------------------------------------------------------------%
% Copyright (C) 1997-2006 University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
% File: stack_layout.m.
% Main authors: trd, zs.
% This module generates label, procedure, module and closure layout structures
% for code in the current module for the LLDS backend. Layout structures are
% used by the parts of the runtime system that need to look at the stacks
% (and sometimes the registers) and make sense of their contents. The parts
% of the runtime system that need to do this include exception handling,
% the debugger, and (eventually) the accurate garbage collector.
%
% The tables we generate are mostly of (Mercury) types defined in layout.m,
% which are turned into C code (global variable declarations and
% initializations) by layout_out.m.
%
% The C types of the structures we generate are defined and documented in
% runtime/mercury_stack_layout.h.
%---------------------------------------------------------------------------%
:- module ll_backend.stack_layout.
:- interface.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module ll_backend.continuation_info.
:- import_module ll_backend.global_data.
:- import_module ll_backend.llds.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module assoc_list.
:- import_module list.
:- import_module map.
%---------------------------------------------------------------------------%
% Process all the continuation information stored in the HLDS,
% converting it into LLDS data structures.
%
:- pred generate_llds(module_info::in, global_data::in, global_data::out,
list(comp_gen_c_data)::out, map(label, data_addr)::out) is det.
:- pred construct_closure_layout(proc_label::in, int::in,
closure_layout_info::in, proc_label::in, module_name::in,
string::in, int::in, pred_origin::in, string::in, static_cell_info::in,
static_cell_info::out, assoc_list(rval, llds_type)::out,
comp_gen_c_data::out) is det.
% Construct a representation of a variable location as a 32-bit
% integer.
%
:- pred represent_locn_as_int(layout_locn::in, int::out) is det.
% Construct a representation of the interface determinism of a procedure.
%
:- pred represent_determinism_rval(determinism::in, rval::out) is det.
:- type stack_layout_info.
:- pred lookup_string_in_table(string::in, int::out,
stack_layout_info::in, stack_layout_info::out) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- import_module backend_libs.rtti.
:- import_module check_hlds.type_util.
:- import_module hlds.code_model.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_data.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_pred.
:- import_module hlds.hlds_rtti.
:- import_module hlds.instmap.
:- import_module libs.compiler_util.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module libs.trace_params.
:- import_module ll_backend.code_util.
:- import_module ll_backend.layout.
:- import_module ll_backend.layout_out.
:- import_module ll_backend.llds_out.
:- import_module ll_backend.ll_pseudo_type_info.
:- import_module ll_backend.prog_rep.
:- import_module ll_backend.trace.
:- import_module mdbcomp.program_representation.
:- import_module parse_tree.prog_out.
:- import_module parse_tree.prog_util.
:- import_module bool.
:- import_module char.
:- import_module counter.
:- import_module int.
:- import_module map.
:- import_module maybe.
:- import_module pair.
:- import_module set.
:- import_module string.
:- import_module svmap.
:- import_module term.
:- import_module varset.
%---------------------------------------------------------------------------%
generate_llds(ModuleInfo0, !GlobalData, Layouts, LayoutLabels) :-
global_data_get_all_proc_layouts(!.GlobalData, ProcLayoutList),
module_info_get_globals(ModuleInfo0, Globals),
globals.lookup_bool_option(Globals, agc_stack_layout, AgcLayout),
globals.lookup_bool_option(Globals, trace_stack_layout, TraceLayout),
globals.lookup_bool_option(Globals, procid_stack_layout,
ProcIdLayout),
globals.get_trace_level(Globals, TraceLevel),
globals.get_trace_suppress(Globals, TraceSuppress),
globals.have_static_code_addresses(Globals, StaticCodeAddr),
map.init(LayoutLabels0),
map.init(StringMap0),
map.init(LabelTables0),
StringTable0 = string_table(StringMap0, [], 0),
global_data_get_static_cell_info(!.GlobalData, StaticCellInfo0),
counter.init(1, LabelCounter0),
LayoutInfo0 = stack_layout_info(ModuleInfo0,
AgcLayout, TraceLayout, ProcIdLayout, StaticCodeAddr,
LabelCounter0, [], [], [], LayoutLabels0, [],
StringTable0, LabelTables0, StaticCellInfo0),
lookup_string_in_table("", _, LayoutInfo0, LayoutInfo1),
lookup_string_in_table("<too many variables>", _,
LayoutInfo1, LayoutInfo2),
list.foldl(construct_layouts, ProcLayoutList, LayoutInfo2, LayoutInfo),
LabelsCounter = LayoutInfo ^ label_counter,
counter.allocate(NumLabels, LabelsCounter, _),
TableIoDecls = LayoutInfo ^ table_infos,
ProcLayouts = LayoutInfo ^ proc_layouts,
InternalLayouts = LayoutInfo ^ internal_layouts,
LayoutLabels = LayoutInfo ^ label_set,
ProcLayoutNames = LayoutInfo ^ proc_layout_name_list,
StringTable = LayoutInfo ^ string_table,
LabelTables = LayoutInfo ^ label_tables,
global_data_set_static_cell_info(LayoutInfo ^ static_cell_info,
!GlobalData),
StringTable = string_table(_, RevStringList, StringOffset),
list.reverse(RevStringList, StringList),
concat_string_list(StringList, StringOffset, ConcatStrings),
list.condense([TableIoDecls, ProcLayouts, InternalLayouts], Layouts0),
(
TraceLayout = yes,
module_info_get_name(ModuleInfo0, ModuleName),
globals.lookup_bool_option(Globals, rtti_line_numbers, LineNumbers),
(
LineNumbers = yes,
EffLabelTables = LabelTables
;
LineNumbers = no,
map.init(EffLabelTables)
),
format_label_tables(EffLabelTables, SourceFileLayouts),
SuppressedEvents = encode_suppressed_events(TraceSuppress),
ModuleLayout = layout_data(module_layout_data(ModuleName,
StringOffset, ConcatStrings, ProcLayoutNames,
SourceFileLayouts, TraceLevel, SuppressedEvents, NumLabels)),
Layouts = [ModuleLayout | Layouts0]
;
TraceLayout = no,
Layouts = Layouts0
).
:- pred valid_proc_layout(proc_layout_info::in) is semidet.
valid_proc_layout(ProcLayoutInfo) :-
EntryLabel = ProcLayoutInfo ^ entry_label,
ProcLabel = get_proc_label(EntryLabel),
(
ProcLabel = proc(_, _, DeclModule, Name, Arity, _),
\+ no_type_info_builtin(DeclModule, Name, Arity)
;
ProcLabel = special_proc(_, _, _, _, _, _)
).
%---------------------------------------------------------------------------%
% concat_string_list appends a list of strings together,
% appending a null character after each string.
% The resulting string will contain embedded null characters,
:- pred concat_string_list(list(string)::in, int::in,
string_with_0s::out) is det.
concat_string_list(Strings, Len, string_with_0s(Result)) :-
concat_string_list_2(Strings, Len, Result).
:- pred concat_string_list_2(list(string)::in, int::in, string::out) is det.
:- pragma foreign_decl("C", "
#include ""mercury_tags.h"" /* for MR_list_*() */
#include ""mercury_heap.h"" /* for MR_offset_incr_hp_atomic*() */
#include ""mercury_misc.h"" /* for MR_fatal_error() */
").
:- pragma foreign_proc("C",
concat_string_list_2(StringList::in, ArenaSize::in, Arena::out),
[will_not_call_mercury, promise_pure, thread_safe],
"{
MR_Word cur_node;
MR_Integer cur_offset;
MR_Word tmp;
MR_offset_incr_hp_atomic(tmp, 0,
(ArenaSize + sizeof(MR_Word)) / sizeof(MR_Word));
Arena = (char *) tmp;
cur_offset = 0;
cur_node = StringList;
while (! MR_list_is_empty(cur_node)) {
(void) strcpy(&Arena[cur_offset], (char *) MR_list_head(cur_node));
cur_offset += strlen((char *) MR_list_head(cur_node)) + 1;
cur_node = MR_list_tail(cur_node);
}
if (cur_offset != ArenaSize) {
char msg[256];
sprintf(msg, ""internal error in creating string table;\\n""
""cur_offset = %ld, ArenaSize = %ld\\n"",
(long) cur_offset, (long) ArenaSize);
MR_fatal_error(msg);
}
}").
% This version is only used if there is no matching foreign_proc version.
% Note that this version only works if the Mercury implementation's
% string representation allows strings to contain embedded null characters.
% So we check that.
concat_string_list_2(StringsList, _Len, StringWithNulls) :-
(
char.to_int(NullChar, 0),
NullCharString = string.char_to_string(NullChar),
string.length(NullCharString, 1)
->
StringsWithNullsList = list.map(func(S) = S ++ NullCharString,
StringsList),
StringWithNulls = string.append_list(StringsWithNullsList)
;
% the Mercury implementation's string representation
% doesn't support strings containing null characters
private_builtin.sorry("stack_layout.concat_string_list")
).
%---------------------------------------------------------------------------%
:- pred format_label_tables(map(string, label_table)::in,
list(file_layout_data)::out) is det.
format_label_tables(LabelTableMap, SourceFileLayouts) :-
map.to_assoc_list(LabelTableMap, LabelTableList),
list.map(format_label_table, LabelTableList, SourceFileLayouts).
:- pred format_label_table(pair(string, label_table)::in,
file_layout_data::out) is det.
format_label_table(FileName - LineNoMap,
file_layout_data(FileName, FilteredList)) :-
% This step should produce a list ordered on line numbers.
map.to_assoc_list(LineNoMap, LineNoList),
% And this step should preserve that order.
flatten_label_table(LineNoList, [], FlatLineNoList),
Filter = (pred(LineNoInfo::in, FilteredLineNoInfo::out) is det :-
LineNoInfo = LineNo - (Label - _IsReturn),
FilteredLineNoInfo = LineNo - Label
),
list.map(Filter, FlatLineNoList, FilteredList).
:- pred flatten_label_table(assoc_list(int, list(line_no_info))::in,
assoc_list(int, line_no_info)::in,
assoc_list(int, line_no_info)::out) is det.
flatten_label_table([], RevList, List) :-
list.reverse(RevList, List).
flatten_label_table([LineNo - LinesInfos | Lines], RevList0, List) :-
list.foldl(add_line_no(LineNo), LinesInfos, RevList0, RevList1),
flatten_label_table(Lines, RevList1, List).
:- pred add_line_no(int::in, line_no_info::in,
assoc_list(int, line_no_info)::in,
assoc_list(int, line_no_info)::out) is det.
add_line_no(LineNo, LineInfo, RevList0, RevList) :-
RevList = [LineNo - LineInfo | RevList0].
%---------------------------------------------------------------------------%
% Construct the layouts that concern a single procedure:
% the procedure-specific layout and the layouts of the labels
% inside that procedure. Also update the module-wide label table
% with the labels defined in this procedure.
%
:- pred construct_layouts(proc_layout_info::in,
stack_layout_info::in, stack_layout_info::out) is det.
construct_layouts(ProcLayoutInfo, !Info) :-
ProcLayoutInfo = proc_layout_info(RttiProcLabel,
EntryLabel,
_Detism,
_StackSlots,
_SuccipLoc,
_EvalMethod,
_EffTraceLevel,
_MaybeCallLabel,
_MaxTraceReg,
HeadVars,
_ArgModes,
Goal,
_NeedGoalRep,
_InstMap,
_TraceSlotInfo,
ForceProcIdLayout,
VarSet,
_VarTypes,
InternalMap,
MaybeTableIoDecl,
_NeedsAllNames,
_MaybeDeepProfInfo),
map.to_assoc_list(InternalMap, Internals),
compute_var_number_map(HeadVars, VarSet, Internals, Goal, VarNumMap),
ProcLabel = get_proc_label(EntryLabel),
get_procid_stack_layout(!.Info, ProcIdLayout0),
bool.or(ProcIdLayout0, ForceProcIdLayout, ProcIdLayout),
(
( ProcIdLayout = yes
; MaybeTableIoDecl = yes(_)
)
->
Kind = proc_layout_proc_id(proc_label_user_or_uci(ProcLabel))
;
Kind = proc_layout_traversal
),
ProcLayoutName = proc_layout(RttiProcLabel, Kind),
(
( !.Info ^ agc_stack_layout = yes
; !.Info ^ trace_stack_layout = yes
),
valid_proc_layout(ProcLayoutInfo)
->
list.map_foldl(
construct_internal_layout(ProcLabel, ProcLayoutName, VarNumMap),
Internals, InternalLayouts, !Info)
;
InternalLayouts = []
),
get_label_tables(!.Info, LabelTables0),
list.foldl(update_label_table, InternalLayouts,
LabelTables0, LabelTables),
set_label_tables(LabelTables, !Info),
construct_proc_layout(ProcLayoutInfo, Kind, VarNumMap, !Info).
%---------------------------------------------------------------------------%
% Add the given label layout to the module-wide label tables.
:- pred update_label_table(
{proc_label, int, label_vars, internal_layout_info}::in,
map(string, label_table)::in, map(string, label_table)::out) is det.
update_label_table({ProcLabel, LabelNum, LabelVars, InternalInfo},
!LabelTables) :-
InternalInfo = internal_layout_info(Port, _, Return),
(
Return = yes(return_layout_info(TargetsContexts, _)),
find_valid_return_context(TargetsContexts, Target, Context, _GoalPath)
->
( Target = label(TargetLabel) ->
IsReturn = known_callee(TargetLabel)
;
IsReturn = unknown_callee
),
update_label_table_2(ProcLabel, LabelNum,
LabelVars, Context, IsReturn, !LabelTables)
;
Port = yes(trace_port_layout_info(Context, _, _, _, _)),
context_is_valid(Context)
->
update_label_table_2(ProcLabel, LabelNum, LabelVars, Context,
not_a_return, !LabelTables)
;
true
).
:- pred update_label_table_2(proc_label::in, int::in,
label_vars::in, context::in, is_label_return::in,
map(string, label_table)::in, map(string, label_table)::out) is det.
update_label_table_2(ProcLabel, LabelNum, LabelVars, Context,
IsReturn, !LabelTables) :-
term.context_file(Context, File),
term.context_line(Context, Line),
( map.search(!.LabelTables, File, LabelTable0) ->
LabelLayout = label_layout(ProcLabel, LabelNum, LabelVars),
( map.search(LabelTable0, Line, LineInfo0) ->
LineInfo = [LabelLayout - IsReturn | LineInfo0],
map.det_update(LabelTable0, Line, LineInfo, LabelTable),
svmap.det_update(File, LabelTable, !LabelTables)
;
LineInfo = [LabelLayout - IsReturn],
map.det_insert(LabelTable0, Line, LineInfo, LabelTable),
svmap.det_update(File, LabelTable, !LabelTables)
)
; context_is_valid(Context) ->
map.init(LabelTable0),
LabelLayout = label_layout(ProcLabel, LabelNum, LabelVars),
LineInfo = [LabelLayout - IsReturn],
map.det_insert(LabelTable0, Line, LineInfo, LabelTable),
svmap.det_insert(File, LabelTable, !LabelTables)
;
% We don't have a valid context for this label,
% so we don't enter it into any tables.
true
).
:- pred find_valid_return_context(
assoc_list(code_addr, pair(prog_context, hlds_goal.goal_path))::in,
code_addr::out, prog_context::out, hlds_goal.goal_path::out)
is semidet.
find_valid_return_context([TargetContext | TargetContexts],
ValidTarget, ValidContext, ValidGoalPath) :-
TargetContext = Target - (Context - GoalPath),
( context_is_valid(Context) ->
ValidTarget = Target,
ValidContext = Context,
ValidGoalPath = GoalPath
;
find_valid_return_context(TargetContexts, ValidTarget, ValidContext,
ValidGoalPath)
).
:- pred context_is_valid(prog_context::in) is semidet.
context_is_valid(Context) :-
term.context_file(Context, File),
term.context_line(Context, Line),
File \= "",
Line > 0.
%---------------------------------------------------------------------------%
:- pred construct_proc_traversal(label::in, determinism::in,
int::in, maybe(int)::in, proc_layout_stack_traversal::out,
stack_layout_info::in, stack_layout_info::out) is det.
construct_proc_traversal(EntryLabel, Detism, NumStackSlots,
MaybeSuccipLoc, Traversal, !Info) :-
(
MaybeSuccipLoc = yes(Location),
( determinism_components(Detism, _, at_most_many) ->
SuccipLval = framevar(Location)
;
SuccipLval = stackvar(Location)
),
represent_locn_as_int(direct(SuccipLval), SuccipInt),
MaybeSuccipInt = yes(SuccipInt)
;
MaybeSuccipLoc = no,
% Use a dummy location if there is no succip slot on the stack.
%
% This case can arise in two circumstances. First, procedures that
% use the nondet stack have a special slot for the succip, so the
% succip is not stored in a general purpose slot. Second, procedures
% that use the det stack but which do not call other procedures
% do not save the succip on the stack.
%
% The tracing system does not care about the location of the saved
% succip. The accurate garbage collector does. It should know from
% the determinism that the procedure uses the nondet stack, which
% takes care of the first possibility above. Procedures that do not
% call other procedures do not establish resumption points and thus
% agc is not interested in them. As far as stack dumps go, calling
% error counts as a call, so any procedure that may call error
% (directly or indirectly) will have its saved succip location
% recorded, so the stack dump will work.
%
% Future uses of stack layouts will have to have similar constraints.
MaybeSuccipInt = no
),
get_static_code_addresses(!.Info, StaticCodeAddr),
(
StaticCodeAddr = yes,
MaybeEntryLabel = yes(EntryLabel)
;
StaticCodeAddr = no,
MaybeEntryLabel = no
),
Traversal = proc_layout_stack_traversal(MaybeEntryLabel,
MaybeSuccipInt, NumStackSlots, Detism).
% Construct a procedure-specific layout.
%
:- pred construct_proc_layout(proc_layout_info::in,
proc_layout_kind::in, var_num_map::in,
stack_layout_info::in, stack_layout_info::out) is det.
construct_proc_layout(ProcLayoutInfo, Kind, VarNumMap, !Info) :-
ProcLayoutInfo = proc_layout_info(RttiProcLabel,
EntryLabel,
Detism,
StackSlots,
SuccipLoc,
EvalMethod,
EffTraceLevel,
MaybeCallLabel,
MaxTraceReg,
HeadVars,
ArgModes,
Goal,
NeedGoalRep,
InstMap,
TraceSlotInfo,
_ForceProcIdLayout,
VarSet,
VarTypes,
_InternalMap,
MaybeTableInfo,
NeedsAllNames,
MaybeProcStatic),
construct_proc_traversal(EntryLabel, Detism, StackSlots,
SuccipLoc, Traversal, !Info),
(
Kind = proc_layout_traversal,
More = no_proc_id
;
Kind = proc_layout_proc_id(_),
get_trace_stack_layout(!.Info, TraceStackLayout),
(
TraceStackLayout = yes,
given_trace_level_is_none(EffTraceLevel) = no,
valid_proc_layout(ProcLayoutInfo)
->
construct_trace_layout(RttiProcLabel, EvalMethod, EffTraceLevel,
MaybeCallLabel, MaxTraceReg, HeadVars, ArgModes, Goal,
NeedGoalRep, InstMap, TraceSlotInfo,
VarSet, VarTypes, MaybeTableInfo,
NeedsAllNames, VarNumMap, ExecTrace, !Info),
MaybeExecTrace = yes(ExecTrace)
;
MaybeExecTrace = no
),
More = proc_id(MaybeProcStatic, MaybeExecTrace)
),
ProcLayout = proc_layout_data(RttiProcLabel, Traversal, More),
Data = layout_data(ProcLayout),
LayoutName = proc_layout(RttiProcLabel, Kind),
add_proc_layout_data(Data, LayoutName, EntryLabel,
!Info),
(
MaybeTableInfo = no
;
MaybeTableInfo = yes(TableInfo),
get_static_cell_info(!.Info, StaticCellInfo0),
make_table_data(RttiProcLabel, Kind, TableInfo, TableData,
StaticCellInfo0, StaticCellInfo),
set_static_cell_info(StaticCellInfo, !Info),
add_table_data(TableData, !Info)
).
:- pred construct_trace_layout(rtti_proc_label::in,
eval_method::in, trace_level::in, maybe(label)::in, int::in,
list(prog_var)::in, list(mer_mode)::in, hlds_goal::in, bool::in,
instmap::in, trace_slot_info::in, prog_varset::in, vartypes::in,
maybe(proc_table_info)::in, bool::in, var_num_map::in,
proc_layout_exec_trace::out,
stack_layout_info::in, stack_layout_info::out) is det.
construct_trace_layout(RttiProcLabel, EvalMethod, EffTraceLevel,
MaybeCallLabel, MaxTraceReg, HeadVars, ArgModes,
Goal, NeedGoalRep, InstMap, TraceSlotInfo, _VarSet, VarTypes,
MaybeTableInfo, NeedsAllNames, VarNumMap, ExecTrace, !Info) :-
construct_var_name_vector(VarNumMap,
NeedsAllNames, MaxVarNum, VarNameVector, !Info),
list.map(convert_var_to_int(VarNumMap), HeadVars, HeadVarNumVector),
ModuleInfo = !.Info ^ module_info,
(
NeedGoalRep = no,
ProcBytes = []
;
NeedGoalRep = yes,
prog_rep.represent_proc(HeadVars, Goal, InstMap, VarTypes, VarNumMap,
ModuleInfo, !Info, ProcBytes)
),
(
MaybeCallLabel = yes(CallLabelPrime),
CallLabel = CallLabelPrime
;
MaybeCallLabel = no,
unexpected(this_file,
"construct_trace_layout: call label not present")
),
TraceSlotInfo = trace_slot_info(MaybeFromFullSlot, MaybeIoSeqSlot,
MaybeTrailSlots, MaybeMaxfrSlot, MaybeCallTableSlot),
% The label associated with an event must have variable info.
(
CallLabel = internal(CallLabelNum, CallProcLabel)
;
CallLabel = entry(_, _),
unexpected(this_file,
"construct_trace_layout: entry call label")
),
CallLabelLayout = label_layout(CallProcLabel, CallLabelNum,
label_has_var_info),
(
MaybeTableInfo = no,
MaybeTableName = no
;
MaybeTableInfo = yes(TableInfo),
(
TableInfo = table_io_decl_info(_),
MaybeTableName = yes(table_io_decl(RttiProcLabel))
;
TableInfo = table_gen_info(_, _, _, _),
MaybeTableName = yes(table_gen_info(RttiProcLabel))
)
),
encode_exec_trace_flags(ModuleInfo, HeadVars, ArgModes, VarTypes,
0, Flags),
ExecTrace = proc_layout_exec_trace(CallLabelLayout, ProcBytes,
MaybeTableName, HeadVarNumVector, VarNameVector,
MaxVarNum, MaxTraceReg, MaybeFromFullSlot, MaybeIoSeqSlot,
MaybeTrailSlots, MaybeMaxfrSlot, EvalMethod,
MaybeCallTableSlot, EffTraceLevel, Flags).
:- pred encode_exec_trace_flags(module_info::in, list(prog_var)::in,
list(mer_mode)::in, vartypes::in, int::in, int::out) is det.
encode_exec_trace_flags(ModuleInfo, HeadVars, ArgModes, VarTypes, !Flags) :-
(
proc_info_has_io_state_pair_from_details(ModuleInfo, HeadVars,
ArgModes, VarTypes, _, _)
->
!:Flags = !.Flags + 1
;
true
).
:- pred construct_var_name_vector(var_num_map::in,
bool::in, int::out, list(int)::out,
stack_layout_info::in, stack_layout_info::out) is det.
construct_var_name_vector(VarNumMap, NeedsAllNames, MaxVarNum, Offsets,
!Info) :-
map.values(VarNumMap, VarNames0),
(
NeedsAllNames = yes,
VarNames = VarNames0
;
NeedsAllNames = no,
list.filter(var_has_name, VarNames0, VarNames)
),
list.sort(VarNames, SortedVarNames),
( SortedVarNames = [FirstVarNum - _ | _] ->
MaxVarNum0 = FirstVarNum,
construct_var_name_rvals(SortedVarNames, 1, MaxVarNum0, MaxVarNum,
Offsets, !Info)
;
% Since variable numbers start at 1, MaxVarNum = 0 implies
% an empty array.
MaxVarNum = 0,
Offsets = []
).
:- pred var_has_name(pair(int, string)::in) is semidet.
var_has_name(_VarNum - VarName) :-
VarName \= "".
:- pred construct_var_name_rvals(assoc_list(int, string)::in,
int::in, int::in, int::out, list(int)::out,
stack_layout_info::in, stack_layout_info::out) is det.
construct_var_name_rvals([], _CurNum, MaxNum, MaxNum, [], !Info).
construct_var_name_rvals([Var - Name | VarNamesTail], CurNum,
!MaxNum, [Offset | OffsetsTail], !Info) :-
( Var = CurNum ->
lookup_string_in_table(Name, Offset, !Info),
!:MaxNum = Var,
VarNames = VarNamesTail
;
Offset = 0,
VarNames = [Var - Name | VarNamesTail]
),
construct_var_name_rvals(VarNames, CurNum + 1,
!MaxNum, OffsetsTail, !Info).
%---------------------------------------------------------------------------%
:- pred compute_var_number_map(list(prog_var)::in, prog_varset::in,
assoc_list(int, internal_layout_info)::in, hlds_goal::in,
var_num_map::out) is det.
compute_var_number_map(HeadVars, VarSet, Internals, Goal, VarNumMap) :-
some [!VarNumMap, !Counter] (
!:VarNumMap = map.init,
!:Counter = counter.init(1), % to match term.var_supply_init
goal_util.goal_vars(Goal, GoalVarSet),
set.to_sorted_list(GoalVarSet, GoalVars),
list.foldl2(add_var_to_var_number_map(VarSet), GoalVars,
!VarNumMap, !Counter),
list.foldl2(add_var_to_var_number_map(VarSet), HeadVars,
!VarNumMap, !Counter),
list.foldl2(internal_var_number_map, Internals, !VarNumMap,
!.Counter, _),
VarNumMap = !.VarNumMap
).
:- pred internal_var_number_map(pair(int, internal_layout_info)::in,
var_num_map::in, var_num_map::out, counter::in, counter::out) is det.
internal_var_number_map(_Label - Internal, !VarNumMap, !Counter) :-
Internal = internal_layout_info(MaybeTrace, MaybeResume, MaybeReturn),
(
MaybeTrace = yes(Trace),
Trace = trace_port_layout_info(_, _, _, _, TraceLayout),
label_layout_var_number_map(TraceLayout, !VarNumMap, !Counter)
;
MaybeTrace = no
),
(
MaybeResume = yes(ResumeLayout),
label_layout_var_number_map(ResumeLayout, !VarNumMap, !Counter)
;
MaybeResume = no
),
(
MaybeReturn = yes(Return),
Return = return_layout_info(_, ReturnLayout),
label_layout_var_number_map(ReturnLayout, !VarNumMap, !Counter)
;
MaybeReturn = no
).
:- pred label_layout_var_number_map(layout_label_info::in,
var_num_map::in, var_num_map::out, counter::in, counter::out) is det.
label_layout_var_number_map(LabelLayout, !VarNumMap, !Counter) :-
LabelLayout = layout_label_info(VarInfoSet, _),
VarInfos = set.to_sorted_list(VarInfoSet),
FindVar = (pred(VarInfo::in, Var - Name::out) is semidet :-
VarInfo = layout_var_info(_, LiveValueType, _),
LiveValueType = var(Var, Name, _, _)
),
list.filter_map(FindVar, VarInfos, VarsNames),
list.foldl2(add_named_var_to_var_number_map, VarsNames,
!VarNumMap, !Counter).
:- pred add_var_to_var_number_map(prog_varset::in, prog_var::in,
var_num_map::in, var_num_map::out, counter::in, counter::out) is det.
add_var_to_var_number_map(VarSet, Var, !VarNumMap, !Counter) :-
( varset.search_name(VarSet, Var, VarName) ->
Name = VarName
;
Name = ""
),
add_named_var_to_var_number_map(Var - Name, !VarNumMap, !Counter).
:- pred add_named_var_to_var_number_map(pair(prog_var, string)::in,
var_num_map::in, var_num_map::out, counter::in, counter::out) is det.
add_named_var_to_var_number_map(Var - Name, !VarNumMap, !Counter) :-
( map.search(!.VarNumMap, Var, _) ->
% Name shouldn't differ from the name recorded in !.VarNumMap.
true
;
counter.allocate(VarNum, !Counter),
map.det_insert(!.VarNumMap, Var, VarNum - Name, !:VarNumMap)
).
%---------------------------------------------------------------------------%
% Construct the layout describing a single internal label
% for accurate GC and/or execution tracing.
%
:- pred construct_internal_layout(proc_label::in,
layout_name::in, var_num_map::in, pair(int, internal_layout_info)::in,
{proc_label, int, label_vars, internal_layout_info}::out,
stack_layout_info::in, stack_layout_info::out) is det.
construct_internal_layout(ProcLabel, ProcLayoutName, VarNumMap,
LabelNum - Internal, LabelLayout, !Info) :-
Internal = internal_layout_info(Trace, Resume, Return),
(
Trace = no,
set.init(TraceLiveVarSet),
map.init(TraceTypeVarMap)
;
Trace = yes(trace_port_layout_info(_,_,_,_, TraceLayout)),
TraceLayout = layout_label_info(TraceLiveVarSet, TraceTypeVarMap)
),
(
Resume = no,
set.init(ResumeLiveVarSet),
map.init(ResumeTypeVarMap)
;
Resume = yes(ResumeLayout),
ResumeLayout = layout_label_info(ResumeLiveVarSet, ResumeTypeVarMap)
),
(
Trace = yes(trace_port_layout_info(_, Port, IsHidden, GoalPath, _)),
Return = no,
MaybePort = yes(Port),
MaybeIsHidden = yes(IsHidden),
goal_path_to_string(GoalPath, GoalPathStr),
lookup_string_in_table(GoalPathStr, GoalPathNum, !Info),
MaybeGoalPath = yes(GoalPathNum)
;
Trace = no,
Return = yes(ReturnInfo),
% We only ever use the port fields of these layout structures
% when we process exception events. (Since exception events are
% interface events, the goal path field is not meaningful then.)
MaybePort = yes(exception),
MaybeIsHidden = yes(no),
% We only ever use the goal path fields of these layout structures
% when we process "fail" commands in the debugger.
ReturnInfo = return_layout_info(TargetsContexts, _),
(
find_valid_return_context(TargetsContexts, _, _, GoalPath)
->
goal_path_to_string(GoalPath, GoalPathStr),
lookup_string_in_table(GoalPathStr, GoalPathNum, !Info),
MaybeGoalPath = yes(GoalPathNum)
;
% If tracing is enabled, then exactly one of the calls for which
% this label is a return site would have had a valid context.
% If none do, then tracing is not enabled, and therefore the goal
% path of this label will not be accessed.
MaybeGoalPath = no
)
;
Trace = no,
Return = no,
MaybePort = no,
MaybeIsHidden = no,
MaybeGoalPath = no
;
Trace = yes(_),
Return = yes(_),
unexpected(this_file,
"label has both trace and return layout info")
),
get_agc_stack_layout(!.Info, AgcStackLayout),
(
Return = no,
set.init(ReturnLiveVarSet),
map.init(ReturnTypeVarMap)
;
Return = yes(return_layout_info(_, ReturnLayout)),
ReturnLayout = layout_label_info(ReturnLiveVarSet0, ReturnTypeVarMap0),
(
AgcStackLayout = yes,
ReturnLiveVarSet = ReturnLiveVarSet0,
ReturnTypeVarMap = ReturnTypeVarMap0
;
AgcStackLayout = no,
% This set of variables must be for uplevel printing in execution
% tracing, so we are interested only in (a) variables, not
% temporaries, (b) only named variables, and (c) only those
% on the stack, not the return values.
set.to_sorted_list(ReturnLiveVarSet0, ReturnLiveVarList0),
select_trace_return(
ReturnLiveVarList0, ReturnTypeVarMap0,
ReturnLiveVarList, ReturnTypeVarMap),
set.list_to_set(ReturnLiveVarList, ReturnLiveVarSet)
)
),
(
Trace = no,
Resume = no,
Return = no
->
MaybeVarInfo = no,
LabelVars = label_has_no_var_info
;
% XXX Ignore differences in insts inside layout_var_infos.
set.union(TraceLiveVarSet, ResumeLiveVarSet, LiveVarSet0),
set.union(LiveVarSet0, ReturnLiveVarSet, LiveVarSet),
map.union(set.intersect, TraceTypeVarMap, ResumeTypeVarMap,
TypeVarMap0),
map.union(set.intersect, TypeVarMap0, ReturnTypeVarMap, TypeVarMap),
construct_livelval_rvals(LiveVarSet, VarNumMap, TypeVarMap,
EncodedLength, LiveValRval, NamesRval, TypeParamRval, !Info),
VarInfo = label_var_info(EncodedLength, LiveValRval, NamesRval,
TypeParamRval),
MaybeVarInfo = yes(VarInfo),
LabelVars = label_has_var_info
),
(
Trace = yes(_),
allocate_label_number(LabelNumber0, !Info),
% MR_ml_label_exec_count[0] is never written out;
% it is reserved for cases like this, for labels without
% events, and for handwritten labels.
( LabelNumber0 < (1 << 16) ->
LabelNumber = LabelNumber0
;
LabelNumber = 0
)
;
Trace = no,
LabelNumber = 0
),
LayoutData = label_layout_data(ProcLabel, LabelNum, ProcLayoutName,
MaybePort, MaybeIsHidden, LabelNumber, MaybeGoalPath, MaybeVarInfo),
CData = layout_data(LayoutData),
LayoutName = label_layout(ProcLabel, LabelNum, LabelVars),
Label = internal(LabelNum, ProcLabel),
add_internal_layout_data(CData, Label, LayoutName, !Info),
LabelLayout = {ProcLabel, LabelNum, LabelVars, Internal}.
%---------------------------------------------------------------------------%
:- pred construct_livelval_rvals(set(layout_var_info)::in,
var_num_map::in, map(tvar, set(layout_locn))::in, int::out,
rval::out, rval::out, rval::out,
stack_layout_info::in, stack_layout_info::out) is det.
construct_livelval_rvals(LiveLvalSet, VarNumMap, TVarLocnMap,
EncodedLength, LiveValRval, NamesRval, TypeParamRval, !Info) :-
set.to_sorted_list(LiveLvalSet, LiveLvals),
sort_livevals(LiveLvals, SortedLiveLvals),
construct_liveval_arrays(SortedLiveLvals, VarNumMap,
EncodedLength, LiveValRval, NamesRval, !Info),
StaticCellInfo0 = !.Info ^ static_cell_info,
construct_tvar_vector(TVarLocnMap, TypeParamRval,
StaticCellInfo0, StaticCellInfo),
!:Info = !.Info ^ static_cell_info := StaticCellInfo.
:- pred construct_tvar_vector(map(tvar, set(layout_locn))::in,
rval::out, static_cell_info::in, static_cell_info::out) is det.
construct_tvar_vector(TVarLocnMap, TypeParamRval, !StaticCellInfo) :-
( map.is_empty(TVarLocnMap) ->
TypeParamRval = const(int_const(0))
;
construct_tvar_rvals(TVarLocnMap, Vector),
add_static_cell(Vector, DataAddr, !StaticCellInfo),
TypeParamRval = const(data_addr_const(DataAddr, no))
).
:- pred construct_tvar_rvals(map(tvar, set(layout_locn))::in,
assoc_list(rval, llds_type)::out) is det.
construct_tvar_rvals(TVarLocnMap, Vector) :-
map.to_assoc_list(TVarLocnMap, TVarLocns),
construct_type_param_locn_vector(TVarLocns, 1, TypeParamLocs),
list.length(TypeParamLocs, TypeParamsLength),
LengthRval = const(int_const(TypeParamsLength)),
Vector = [LengthRval - uint_least32 | TypeParamLocs].
%---------------------------------------------------------------------------%
% Given a list of layout_var_infos and the type variables that occur
% in them, select only the layout_var_infos that may be required
% by up-level printing in the trace-based debugger. At the moment
% the typeinfo list we return may be bigger than necessary, but this
% does not compromise correctness; we do this to avoid having to
% scan the types of all the selected layout_var_infos.
%
:- pred select_trace_return(
list(layout_var_info)::in, map(tvar, set(layout_locn))::in,
list(layout_var_info)::out, map(tvar, set(layout_locn))::out) is det.
select_trace_return(Infos, TVars, TraceReturnInfos, TVars) :-
IsNamedReturnVar = (pred(LocnInfo::in) is semidet :-
LocnInfo = layout_var_info(Locn, LvalType, _),
LvalType = var(_, Name, _, _),
Name \= "",
( Locn = direct(Lval) ; Locn = indirect(Lval, _)),
( Lval = stackvar(_) ; Lval = framevar(_) )
),
list.filter(IsNamedReturnVar, Infos, TraceReturnInfos).
% Given a list of layout_var_infos, put the ones that tracing can be
% interested in (whether at an internal port or for uplevel printing)
% in a block at the start, and both this block and the remaining
% block. The division into two blocks can make the job of the
% debugger somewhat easier, the sorting of the named var block makes
% the output of the debugger look nicer, and the sorting of the both
% blocks makes it more likely that different labels' layout structures
% will have common parts (e.g. name vectors).
%
:- pred sort_livevals(list(layout_var_info)::in, list(layout_var_info)::out)
is det.
sort_livevals(OrigInfos, FinalInfos) :-
IsNamedVar = (pred(LvalInfo::in) is semidet :-
LvalInfo = layout_var_info(_Lval, LvalType, _),
LvalType = var(_, Name, _, _),
Name \= ""
),
list.filter(IsNamedVar, OrigInfos, NamedVarInfos0, OtherInfos0),
CompareVarInfos = (pred(Var1::in, Var2::in, Result::out) is det :-
Var1 = layout_var_info(Lval1, LiveType1, _),
Var2 = layout_var_info(Lval2, LiveType2, _),
get_name_from_live_value_type(LiveType1, Name1),
get_name_from_live_value_type(LiveType2, Name2),
compare(NameResult, Name1, Name2),
( NameResult = (=) ->
compare(Result, Lval1, Lval2)
;
Result = NameResult
)
),
list.sort(CompareVarInfos, NamedVarInfos0, NamedVarInfos),
list.sort(CompareVarInfos, OtherInfos0, OtherInfos),
list.append(NamedVarInfos, OtherInfos, FinalInfos).
:- pred get_name_from_live_value_type(live_value_type::in,
string::out) is det.
get_name_from_live_value_type(LiveType, Name) :-
( LiveType = var(_, NamePrime, _, _) ->
Name = NamePrime
;
Name = ""
).
%---------------------------------------------------------------------------%
% Given a association list of type variables and their locations
% sorted on the type variables, represent them in an array of
% location descriptions indexed by the type variable. The next
% slot to fill is given by the second argument.
%
:- pred construct_type_param_locn_vector(
assoc_list(tvar, set(layout_locn))::in,
int::in, assoc_list(rval, llds_type)::out) is det.
construct_type_param_locn_vector([], _, []).
construct_type_param_locn_vector([TVar - Locns | TVarLocns], CurSlot,
Vector) :-
term.var_to_int(TVar, TVarNum),
NextSlot = CurSlot + 1,
( TVarNum = CurSlot ->
( set.remove_least(Locns, LeastLocn, _) ->
Locn = LeastLocn
;
unexpected(this_file, "tvar has empty set of locations")
),
represent_locn_as_int_rval(Locn, Rval),
construct_type_param_locn_vector(TVarLocns, NextSlot, VectorTail),
Vector = [Rval - uint_least32 | VectorTail]
; TVarNum > CurSlot ->
construct_type_param_locn_vector([TVar - Locns | TVarLocns], NextSlot,
VectorTail),
% This slot will never be referred to.
Vector = [const(int_const(0)) - uint_least32 | VectorTail]
;
unexpected(this_file,
"unsorted tvars in construct_type_param_locn_vector")
).
%---------------------------------------------------------------------------%
:- type liveval_array_info
---> live_array_info(
rval, % Rval describing the location of a live value.
% Always of llds type uint_least8 if the cell
% is in the byte array, and uint_least32 if it
% is in the int array.
rval, % Rval describing the type of a live value.
llds_type, % The llds type of the rval describing the type.
rval % Rval describing the variable number of a
% live value. Always of llds type uint_least16.
% Contains zero if the live value is not
% a variable. Contains the hightest possible
% uint_least16 value if the variable number
% does not fit in 16 bits.
).
% Construct a vector of (locn, live_value_type) pairs,
% and a corresponding vector of variable names.
%
:- pred construct_liveval_arrays(list(layout_var_info)::in,
var_num_map::in, int::out, rval::out, rval::out,
stack_layout_info::in, stack_layout_info::out) is det.
construct_liveval_arrays(VarInfos, VarNumMap, EncodedLength,
TypeLocnVector, NumVector, !Info) :-
int.pow(2, short_count_bits, BytesLimit),
construct_liveval_array_infos(VarInfos, VarNumMap,
0, BytesLimit, IntArrayInfo, ByteArrayInfo, !Info),
list.length(IntArrayInfo, IntArrayLength),
list.length(ByteArrayInfo, ByteArrayLength),
list.append(IntArrayInfo, ByteArrayInfo, AllArrayInfo),
EncodedLength = IntArrayLength << short_count_bits + ByteArrayLength,
SelectLocns = (pred(ArrayInfo::in, LocnRval::out) is det :-
ArrayInfo = live_array_info(LocnRval, _, _, _)
),
SelectTypes = (pred(ArrayInfo::in, TypeRval - TypeType::out) is det :-
ArrayInfo = live_array_info(_, TypeRval, TypeType, _)
),
AddRevNums = (pred(ArrayInfo::in, NumRvals0::in, NumRvals::out) is det :-
ArrayInfo = live_array_info(_, _, _, NumRval),
NumRvals = [NumRval | NumRvals0]
),
list.map(SelectTypes, AllArrayInfo, AllTypeRvalsTypes),
list.map(SelectLocns, IntArrayInfo, IntLocns),
list.map(associate_type(uint_least32), IntLocns, IntLocnsTypes),
list.map(SelectLocns, ByteArrayInfo, ByteLocns),
list.map(associate_type(uint_least8), ByteLocns, ByteLocnsTypes),
list.append(IntLocnsTypes, ByteLocnsTypes, AllLocnsTypes),
list.append(AllTypeRvalsTypes, AllLocnsTypes, TypeLocnVectorRvalsTypes),
get_static_cell_info(!.Info, StaticCellInfo0),
add_static_cell(TypeLocnVectorRvalsTypes, TypeLocnVectorAddr,
StaticCellInfo0, StaticCellInfo1),
TypeLocnVector = const(data_addr_const(TypeLocnVectorAddr, no)),
set_static_cell_info(StaticCellInfo1, !Info),
get_trace_stack_layout(!.Info, TraceStackLayout),
(
TraceStackLayout = yes,
list.foldl(AddRevNums, AllArrayInfo, [], RevVarNumRvals),
list.reverse(RevVarNumRvals, VarNumRvals),
list.map(associate_type(uint_least16), VarNumRvals, VarNumRvalsTypes),
get_static_cell_info(!.Info, StaticCellInfo2),
add_static_cell(VarNumRvalsTypes, NumVectorAddr,
StaticCellInfo2, StaticCellInfo),
set_static_cell_info(StaticCellInfo, !Info),
NumVector = const(data_addr_const(NumVectorAddr, no))
;
TraceStackLayout = no,
NumVector = const(int_const(0))
).
:- pred associate_type(llds_type::in, rval::in, pair(rval, llds_type)::out)
is det.
associate_type(LldsType, Rval, Rval - LldsType).
:- pred construct_liveval_array_infos(list(layout_var_info)::in,
var_num_map::in, int::in, int::in,
list(liveval_array_info)::out, list(liveval_array_info)::out,
stack_layout_info::in, stack_layout_info::out) is det.
construct_liveval_array_infos([], _, _, _, [], [], !Info).
construct_liveval_array_infos([VarInfo | VarInfos], VarNumMap,
BytesSoFar, BytesLimit, IntVars, ByteVars, !Info) :-
VarInfo = layout_var_info(Locn, LiveValueType, _),
represent_live_value_type(LiveValueType, TypeRval, TypeRvalType, !Info),
construct_liveval_num_rval(VarNumMap, VarInfo, VarNumRval, !Info),
(
LiveValueType = var(_, _, Type, _),
get_module_info(!.Info, ModuleInfo),
is_dummy_argument_type(ModuleInfo, Type),
% We want to preserve I/O states in registers
\+ (
Locn = direct(reg(_, _))
)
->
unexpected(this_file, "construct_liveval_array_infos: " ++
"unexpected reference to dummy value")
;
BytesSoFar < BytesLimit,
represent_locn_as_byte(Locn, LocnByteRval)
->
Var = live_array_info(LocnByteRval, TypeRval, TypeRvalType,
VarNumRval),
construct_liveval_array_infos(VarInfos, VarNumMap,
BytesSoFar + 1, BytesLimit, IntVars, ByteVars0, !Info),
ByteVars = [Var | ByteVars0]
;
represent_locn_as_int_rval(Locn, LocnRval),
Var = live_array_info(LocnRval, TypeRval, TypeRvalType, VarNumRval),
construct_liveval_array_infos(VarInfos, VarNumMap,
BytesSoFar, BytesLimit, IntVars0, ByteVars, !Info),
IntVars = [Var | IntVars0]
).
:- pred construct_liveval_num_rval(var_num_map::in,
layout_var_info::in, rval::out,
stack_layout_info::in, stack_layout_info::out) is det.
construct_liveval_num_rval(VarNumMap,
layout_var_info(_, LiveValueType, _), VarNumRval, !Info) :-
( LiveValueType = var(Var, _, _, _) ->
convert_var_to_int(VarNumMap, Var, VarNum),
VarNumRval = const(int_const(VarNum))
;
VarNumRval = const(int_const(0))
).
:- pred convert_var_to_int(var_num_map::in, prog_var::in,
int::out) is det.
convert_var_to_int(VarNumMap, Var, VarNum) :-
map.lookup(VarNumMap, Var, VarNum0 - _),
% The variable number has to fit into two bytes. We reserve the largest
% such number (Limit) to mean that the variable number is too large
% to be represented. This ought not to happen, since compilation
% would be glacial at best for procedures with that many variables.
Limit = (1 << (2 * byte_bits)) - 1,
int.min(VarNum0, Limit, VarNum).
%---------------------------------------------------------------------------%
% The representation we build here should be kept in sync
% with runtime/mercury_ho_call.h, which contains macros to access
% the data structures we build here.
%
construct_closure_layout(CallerProcLabel, SeqNo,
ClosureLayoutInfo, ClosureProcLabel, ModuleName,
FileName, LineNumber, Origin, GoalPath, !StaticCellInfo,
RvalsTypes, Data) :-
DataAddr = layout_addr(
closure_proc_id(CallerProcLabel, SeqNo, ClosureProcLabel)),
Data = layout_data(closure_proc_id_data(CallerProcLabel, SeqNo,
ClosureProcLabel, ModuleName, FileName, LineNumber, Origin,
GoalPath)),
ProcIdRvalType = const(data_addr_const(DataAddr, no)) - data_ptr,
ClosureLayoutInfo = closure_layout_info(ClosureArgs, TVarLocnMap),
construct_closure_arg_rvals(ClosureArgs,
ClosureArgRvalsTypes, !StaticCellInfo),
construct_tvar_vector(TVarLocnMap, TVarVectorRval, !StaticCellInfo),
RvalsTypes = [ProcIdRvalType, TVarVectorRval - data_ptr |
ClosureArgRvalsTypes].
:- pred construct_closure_arg_rvals(list(closure_arg_info)::in,
assoc_list(rval, llds_type)::out,
static_cell_info::in, static_cell_info::out) is det.
construct_closure_arg_rvals(ClosureArgs, ClosureArgRvalsTypes,
!StaticCellInfo) :-
list.map_foldl(construct_closure_arg_rval, ClosureArgs, ArgRvalsTypes,
!StaticCellInfo),
list.length(ArgRvalsTypes, Length),
ClosureArgRvalsTypes =
[const(int_const(Length)) - integer | ArgRvalsTypes].
:- pred construct_closure_arg_rval(closure_arg_info::in,
pair(rval, llds_type)::out,
static_cell_info::in, static_cell_info::out) is det.
construct_closure_arg_rval(ClosureArg, ArgRval - ArgRvalType,
!StaticCellInfo) :-
ClosureArg = closure_arg_info(Type, _Inst),
% For a stack layout, we can treat all type variables as universally
% quantified. This is not the argument of a constructor, so we do not need
% to distinguish between type variables that are and aren't in scope;
% we can take the variable number directly from the procedure's tvar set.
ExistQTvars = [],
NumUnivQTvars = -1,
ll_pseudo_type_info.construct_typed_llds_pseudo_type_info(Type,
NumUnivQTvars, ExistQTvars, !StaticCellInfo, ArgRval, ArgRvalType).
%---------------------------------------------------------------------------%
:- pred make_table_data(rtti_proc_label::in,
proc_layout_kind::in, proc_table_info::in, layout_data::out,
static_cell_info::in, static_cell_info::out) is det.
make_table_data(RttiProcLabel, Kind, TableInfo, TableData,
!StaticCellInfo) :-
(
TableInfo = table_io_decl_info(TableArgInfo),
convert_table_arg_info(TableArgInfo, NumPTIs, PTIVectorRval,
TVarVectorRval, !StaticCellInfo),
TableData = table_io_decl_data(RttiProcLabel, Kind,
NumPTIs, PTIVectorRval, TVarVectorRval)
;
TableInfo = table_gen_info(NumInputs, NumOutputs, Steps,
TableArgInfo),
convert_table_arg_info(TableArgInfo, NumPTIs, PTIVectorRval,
TVarVectorRval, !StaticCellInfo),
NumArgs = NumInputs + NumOutputs,
expect(unify(NumArgs, NumPTIs), this_file,
"make_table_data: args mismatch"),
TableData = table_gen_data(RttiProcLabel, NumInputs, NumOutputs, Steps,
PTIVectorRval, TVarVectorRval)
).
:- pred convert_table_arg_info(table_arg_infos::in,
int::out, rval::out, rval::out,
static_cell_info::in, static_cell_info::out) is det.
convert_table_arg_info(TableArgInfos, NumPTIs,
PTIVectorRval, TVarVectorRval, !StaticCellInfo) :-
TableArgInfos = table_arg_infos(Args, TVarSlotMap),
list.length(Args, NumPTIs),
list.map_foldl(construct_table_arg_pti_rval, Args, PTIRvalsTypes,
!StaticCellInfo),
add_static_cell(PTIRvalsTypes, PTIVectorAddr, !StaticCellInfo),
PTIVectorRval = const(data_addr_const(PTIVectorAddr, no)),
map.map_values(convert_slot_to_locn_map, TVarSlotMap, TVarLocnMap),
construct_tvar_vector(TVarLocnMap, TVarVectorRval, !StaticCellInfo).
:- pred convert_slot_to_locn_map(tvar::in, table_locn::in,
set(layout_locn)::out) is det.
convert_slot_to_locn_map(_TVar, SlotLocn, LvalLocns) :-
(
SlotLocn = direct(SlotNum),
LvalLocn = direct(reg(r, SlotNum))
;
SlotLocn = indirect(SlotNum, Offset),
LvalLocn = indirect(reg(r, SlotNum), Offset)
),
LvalLocns = set.make_singleton_set(LvalLocn).
:- pred construct_table_arg_pti_rval(
table_arg_info::in, pair(rval, llds_type)::out,
static_cell_info::in, static_cell_info::out) is det.
construct_table_arg_pti_rval(ClosureArg, ArgRval - ArgRvalType,
!StaticCellInfo) :-
ClosureArg = table_arg_info(_, _, Type),
ExistQTvars = [],
NumUnivQTvars = -1,
ll_pseudo_type_info.construct_typed_llds_pseudo_type_info(Type,
NumUnivQTvars, ExistQTvars, !StaticCellInfo, ArgRval, ArgRvalType).
%---------------------------------------------------------------------------%
% Construct a representation of the type of a value.
%
% For values representing variables, this will be a pseudo_type_info
% describing the type of the variable.
%
% For the kinds of values used internally by the compiler,
% this will be a pointer to a specific type_ctor_info (acting as a
% type_info) defined by hand in builtin.m to stand for values of
% each such kind; one for succips, one for hps, etc.
%
:- pred represent_live_value_type(live_value_type::in, rval::out,
llds_type::out, stack_layout_info::in, stack_layout_info::out) is det.
represent_live_value_type(succip, Rval, data_ptr, !Info) :-
represent_special_live_value_type("succip", Rval).
represent_live_value_type(hp, Rval, data_ptr, !Info) :-
represent_special_live_value_type("hp", Rval).
represent_live_value_type(curfr, Rval, data_ptr, !Info) :-
represent_special_live_value_type("curfr", Rval).
represent_live_value_type(maxfr, Rval, data_ptr, !Info) :-
represent_special_live_value_type("maxfr", Rval).
represent_live_value_type(redofr, Rval, data_ptr, !Info) :-
represent_special_live_value_type("redofr", Rval).
represent_live_value_type(redoip, Rval, data_ptr, !Info) :-
represent_special_live_value_type("redoip", Rval).
represent_live_value_type(trail_ptr, Rval, data_ptr, !Info) :-
represent_special_live_value_type("trail_ptr", Rval).
represent_live_value_type(ticket, Rval, data_ptr, !Info) :-
represent_special_live_value_type("ticket", Rval).
represent_live_value_type(unwanted, Rval, data_ptr, !Info) :-
represent_special_live_value_type("unwanted", Rval).
represent_live_value_type(var(_, _, Type, _), Rval, LldsType, !Info) :-
% For a stack layout, we can treat all type variables as universally
% quantified. This is not the argument of a constructor, so we do not
% need to distinguish between type variables that are and aren't in scope;
% we can take the variable number directly from the procedure's tvar set.
ExistQTvars = [],
NumUnivQTvars = -1,
get_static_cell_info(!.Info, StaticCellInfo0),
ll_pseudo_type_info.construct_typed_llds_pseudo_type_info(Type,
NumUnivQTvars, ExistQTvars, StaticCellInfo0, StaticCellInfo,
Rval, LldsType),
set_static_cell_info(StaticCellInfo, !Info).
:- pred represent_special_live_value_type(string::in, rval::out)
is det.
represent_special_live_value_type(SpecialTypeName, Rval) :-
RttiTypeCtor = rtti_type_ctor(unqualified(""), SpecialTypeName, 0),
DataAddr = rtti_addr(ctor_rtti_id(RttiTypeCtor, type_ctor_info)),
Rval = const(data_addr_const(DataAddr, no)).
%---------------------------------------------------------------------------%
% Construct a representation of a variable location as a 32-bit
% integer.
%
% Most of the time, a layout specifies a location as an lval.
% However, a type_info variable may be hidden inside a typeclass_info,
% In this case, accessing the type_info requires indirection.
% The address of the typeclass_info is given as an lval, and
% the location of the typeinfo within the typeclass_info as an index;
% private_builtin.type_info_from_typeclass_info interprets the index.
%
% This one level of indirection is sufficient, since type_infos
% cannot be nested inside typeclass_infos any deeper than this.
% A more general representation that would allow more indirection
% would be much harder to fit into one machine word.
%
:- pred represent_locn_as_int_rval(layout_locn::in, rval::out) is det.
represent_locn_as_int_rval(Locn, Rval) :-
represent_locn_as_int(Locn, Word),
Rval = const(int_const(Word)).
represent_locn_as_int(direct(Lval), Word) :-
represent_lval(Lval, Word).
represent_locn_as_int(indirect(Lval, Offset), Word) :-
represent_lval(Lval, BaseWord),
expect((1 << long_lval_offset_bits) > Offset, this_file,
"represent_locn: offset too large to be represented"),
BaseAndOffset = (BaseWord << long_lval_offset_bits) + Offset,
make_tagged_word(lval_indirect, BaseAndOffset, Word).
% Construct a four byte representation of an lval.
%
:- pred represent_lval(lval::in, int::out) is det.
represent_lval(reg(r, Num), Word) :-
make_tagged_word(lval_r_reg, Num, Word).
represent_lval(reg(f, Num), Word) :-
make_tagged_word(lval_f_reg, Num, Word).
represent_lval(stackvar(Num), Word) :-
expect(Num > 0, this_file, "represent_lval: bad stackvar"),
make_tagged_word(lval_stackvar, Num, Word).
represent_lval(framevar(Num), Word) :-
expect(Num > 0, this_file, "represent_lval: bad framevar"),
make_tagged_word(lval_framevar, Num, Word).
represent_lval(succip, Word) :-
make_tagged_word(lval_succip, 0, Word).
represent_lval(maxfr, Word) :-
make_tagged_word(lval_maxfr, 0, Word).
represent_lval(curfr, Word) :-
make_tagged_word(lval_curfr, 0, Word).
represent_lval(hp, Word) :-
make_tagged_word(lval_hp, 0, Word).
represent_lval(sp, Word) :-
make_tagged_word(lval_sp, 0, Word).
represent_lval(temp(_, _), _) :-
unexpected(this_file, "continuation live value stored in temp register").
represent_lval(succip(_), _) :-
unexpected(this_file, "continuation live value stored in fixed slot").
represent_lval(redoip(_), _) :-
unexpected(this_file, "continuation live value stored in fixed slot").
represent_lval(redofr(_), _) :-
unexpected(this_file, "continuation live value stored in fixed slot").
represent_lval(succfr(_), _) :-
unexpected(this_file, "continuation live value stored in fixed slot").
represent_lval(prevfr(_), _) :-
unexpected(this_file, "continuation live value stored in fixed slot").
represent_lval(field(_, _, _), _) :-
unexpected(this_file, "continuation live value stored in field").
represent_lval(mem_ref(_), _) :-
unexpected(this_file, "continuation live value stored in mem_ref").
represent_lval(lvar(_), _) :-
unexpected(this_file, "continuation live value stored in lvar").
% Some things in this module are encoded using a low tag. This is not
% done using the normal compiler mkword, but by doing the bit shifting
% here.
%
% This allows us to use more than the usual 2 or 3 bits, but we have to
% use low tags and cannot tag pointers this way.
%
:- pred make_tagged_word(locn_type::in, int::in, int::out) is det.
make_tagged_word(Locn, Value, TaggedValue) :-
locn_type_code(Locn, Tag),
TaggedValue = (Value << long_lval_tag_bits) + Tag.
:- type locn_type
---> lval_r_reg
; lval_f_reg
; lval_stackvar
; lval_framevar
; lval_succip
; lval_maxfr
; lval_curfr
; lval_hp
; lval_sp
; lval_indirect.
:- pred locn_type_code(locn_type::in, int::out) is det.
locn_type_code(lval_r_reg, 0).
locn_type_code(lval_f_reg, 1).
locn_type_code(lval_stackvar, 2).
locn_type_code(lval_framevar, 3).
locn_type_code(lval_succip, 4).
locn_type_code(lval_maxfr, 5).
locn_type_code(lval_curfr, 6).
locn_type_code(lval_hp, 7).
locn_type_code(lval_sp, 8).
locn_type_code(lval_indirect, 9).
% This number of tag bits must be able to encode all values of
% locn_type_code.
:- func long_lval_tag_bits = int.
long_lval_tag_bits = 4.
% This number of tag bits must be able to encode the largest offset
% of a type_info within a typeclass_info.
:- func long_lval_offset_bits = int.
long_lval_offset_bits = 6.
%---------------------------------------------------------------------------%
% Construct a representation of a variable location as a byte,
% if this is possible.
%
:- pred represent_locn_as_byte(layout_locn::in, rval::out) is semidet.
represent_locn_as_byte(LayoutLocn, Rval) :-
LayoutLocn = direct(Lval),
represent_lval_as_byte(Lval, Byte),
0 =< Byte,
Byte < 256,
Rval = const(int_const(Byte)).
% Construct a representation of an lval in a byte, if possible.
%
:- pred represent_lval_as_byte(lval::in, int::out) is semidet.
represent_lval_as_byte(reg(r, Num), Byte) :-
expect(Num > 0, this_file, "represent_lval_as_byte: bad reg"),
make_tagged_byte(0, Num, Byte).
represent_lval_as_byte(stackvar(Num), Byte) :-
expect(Num > 0, this_file, "represent_lval_as_byte: bad stackvar"),
make_tagged_byte(1, Num, Byte).
represent_lval_as_byte(framevar(Num), Byte) :-
expect(Num > 0, this_file, "represent_lval_as_byte: bad framevar"),
make_tagged_byte(2, Num, Byte).
represent_lval_as_byte(succip, Byte) :-
locn_type_code(lval_succip, Val),
make_tagged_byte(3, Val, Byte).
represent_lval_as_byte(maxfr, Byte) :-
locn_type_code(lval_maxfr, Val),
make_tagged_byte(3, Val, Byte).
represent_lval_as_byte(curfr, Byte) :-
locn_type_code(lval_curfr, Val),
make_tagged_byte(3, Val, Byte).
represent_lval_as_byte(hp, Byte) :-
locn_type_code(lval_hp, Val),
make_tagged_byte(3, Val, Byte).
represent_lval_as_byte(sp, Byte) :-
locn_type_code(lval_sp, Val),
make_tagged_byte(3, Val, Byte).
:- pred make_tagged_byte(int::in, int::in, int::out) is det.
make_tagged_byte(Tag, Value, TaggedValue) :-
TaggedValue is unchecked_left_shift(Value, short_lval_tag_bits) + Tag.
:- func short_lval_tag_bits = int.
short_lval_tag_bits = 2.
:- func short_count_bits = int.
short_count_bits = 10.
:- func byte_bits = int.
byte_bits = 8.
%---------------------------------------------------------------------------%
represent_determinism_rval(Detism,
const(int_const(code_model.represent_determinism(Detism)))).
%---------------------------------------------------------------------------%
% Access to the stack_layout data structure.
% The per-sourcefile label table maps line numbers to the list of
% labels that correspond to that line. Each label is accompanied
% by a flag that says whether the label is the return site of a call
% or not, and if it is, whether the called procedure is known.
:- type is_label_return
---> known_callee(label)
; unknown_callee
; not_a_return.
:- type line_no_info == pair(layout_name, is_label_return).
:- type label_table == map(int, list(line_no_info)).
:- type stack_layout_info
---> stack_layout_info(
module_info :: module_info,
agc_stack_layout :: bool, % generate agc info?
trace_stack_layout :: bool, % generate tracing info?
procid_stack_layout :: bool, % generate proc id info?
static_code_addresses :: bool, % have static code addresses?
label_counter :: counter,
table_infos :: list(comp_gen_c_data),
proc_layouts :: list(comp_gen_c_data),
internal_layouts :: list(comp_gen_c_data),
label_set :: map(label, data_addr),
% The set of labels (both entry
% and internal) with layouts.
proc_layout_name_list :: list(layout_name),
% The list of proc_layouts in
% the module.
string_table :: string_table,
label_tables :: map(string, label_table),
% Maps each filename that
% contributes labels to this module
% to a table describing those
% labels.
static_cell_info :: static_cell_info
).
:- pred get_module_info(stack_layout_info::in,
module_info::out) is det.
:- pred get_agc_stack_layout(stack_layout_info::in,
bool::out) is det.
:- pred get_trace_stack_layout(stack_layout_info::in,
bool::out) is det.
:- pred get_procid_stack_layout(stack_layout_info::in,
bool::out) is det.
:- pred get_static_code_addresses(stack_layout_info::in,
bool::out) is det.
:- pred get_table_infos(stack_layout_info::in,
list(comp_gen_c_data)::out) is det.
:- pred get_proc_layout_data(stack_layout_info::in,
list(comp_gen_c_data)::out) is det.
:- pred get_internal_layout_data(stack_layout_info::in,
list(comp_gen_c_data)::out) is det.
:- pred get_label_set(stack_layout_info::in,
map(label, data_addr)::out) is det.
:- pred get_string_table(stack_layout_info::in,
string_table::out) is det.
:- pred get_label_tables(stack_layout_info::in,
map(string, label_table)::out) is det.
:- pred get_static_cell_info(stack_layout_info::in,
static_cell_info::out) is det.
get_module_info(LI, LI ^ module_info).
get_agc_stack_layout(LI, LI ^ agc_stack_layout).
get_trace_stack_layout(LI, LI ^ trace_stack_layout).
get_procid_stack_layout(LI, LI ^ procid_stack_layout).
get_static_code_addresses(LI, LI ^ static_code_addresses).
get_table_infos(LI, LI ^ table_infos).
get_proc_layout_data(LI, LI ^ proc_layouts).
get_internal_layout_data(LI, LI ^ internal_layouts).
get_label_set(LI, LI ^ label_set).
get_string_table(LI, LI ^ string_table).
get_label_tables(LI, LI ^ label_tables).
get_static_cell_info(LI, LI ^ static_cell_info).
:- pred allocate_label_number(int::out,
stack_layout_info::in, stack_layout_info::out) is det.
allocate_label_number(LabelNum, !LI) :-
Counter0 = !.LI ^ label_counter,
counter.allocate(LabelNum, Counter0, Counter),
!:LI = !.LI ^ label_counter := Counter.
:- pred add_table_data(layout_data::in,
stack_layout_info::in, stack_layout_info::out) is det.
add_table_data(TableIoDeclData, !LI) :-
TableIoDecls0 = !.LI ^ table_infos,
TableIoDecls = [layout_data(TableIoDeclData) | TableIoDecls0],
!:LI = !.LI ^ table_infos := TableIoDecls.
:- pred add_proc_layout_data(comp_gen_c_data::in,
layout_name::in, label::in,
stack_layout_info::in, stack_layout_info::out) is det.
add_proc_layout_data(ProcLayout, ProcLayoutName, Label, !LI) :-
ProcLayouts0 = !.LI ^ proc_layouts,
ProcLayouts = [ProcLayout | ProcLayouts0],
LabelSet0 = !.LI ^ label_set,
map.det_insert(LabelSet0, Label, layout_addr(ProcLayoutName), LabelSet),
ProcLayoutNames0 = !.LI ^ proc_layout_name_list,
ProcLayoutNames = [ProcLayoutName | ProcLayoutNames0],
!:LI = !.LI ^ proc_layouts := ProcLayouts,
!:LI = !.LI ^ label_set := LabelSet,
!:LI = !.LI ^ proc_layout_name_list := ProcLayoutNames.
:- pred add_internal_layout_data(comp_gen_c_data::in,
label::in, layout_name::in, stack_layout_info::in,
stack_layout_info::out) is det.
add_internal_layout_data(InternalLayout, Label, LayoutName,
!LI) :-
InternalLayouts0 = !.LI ^ internal_layouts,
InternalLayouts = [InternalLayout | InternalLayouts0],
LabelSet0 = !.LI ^ label_set,
map.det_insert(LabelSet0, Label, layout_addr(LayoutName), LabelSet),
!:LI = !.LI ^ internal_layouts := InternalLayouts,
!:LI = !.LI ^ label_set := LabelSet.
:- pred set_string_table(string_table::in,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred set_label_tables(map(string, label_table)::in,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred set_static_cell_info(static_cell_info::in,
stack_layout_info::in, stack_layout_info::out) is det.
set_string_table(ST, LI, LI ^ string_table := ST).
set_label_tables(LT, LI, LI ^ label_tables := LT).
set_static_cell_info(SCI, LI, LI ^ static_cell_info := SCI).
%---------------------------------------------------------------------------%
%
% Access to the string_table data structure
%
:- type string_table
---> string_table(
map(string, int), % Maps strings to their offsets.
list(string), % List of strings so far,
% in reverse order.
int % Next available offset
).
lookup_string_in_table(String, Offset, !Info) :-
StringTable0 = !.Info ^ string_table,
StringTable0 = string_table(TableMap0, TableList0, TableOffset0),
( map.search(TableMap0, String, OldOffset) ->
Offset = OldOffset
;
string.length(String, Length),
TableOffset = TableOffset0 + Length + 1,
% We use a 32 bit unsigned integer to represent the offset.
% Computing that limit exactly without getting an overflow
% or using unportable code isn't trivial. The code below
% is overly conservative, requiring the offset to be
% representable in only 30 bits. The over-conservatism
% should not be an issue; the machine will run out of
% virtual memory before the test below fails, for the
% next several years anyway. (Compiling a module that has
% a 1 Gb string table will require several tens of Gb
% of other compiler structures.)
TableOffset < (1 << ((4 * byte_bits) - 2))
->
Offset = TableOffset0,
map.det_insert(TableMap0, String, TableOffset0, TableMap),
TableList = [String | TableList0],
StringTable = string_table(TableMap, TableList, TableOffset),
set_string_table(StringTable, !Info)
;
% Says that the name of the variable is "TOO_MANY_VARIABLES".
Offset = 1
).
%---------------------------------------------------------------------------%
:- func this_file = string.
this_file = "stack_layout.m".
%---------------------------------------------------------------------------%