Files
mercury/compiler/tree.m
Peter Ross 30592a9374 Wrap an exception handler around main. This avoids those annoying
Estimated hours taken: 2
Branches: main

mlds_to_il.m:
    Wrap an exception handler around main.  This avoids those annoying
    pop up windows, and hence allows people to use windows machines via
    ssh.

tree.m:
    Add the higher order function map.
2001-07-13 14:21:22 +00:00

87 lines
2.7 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1993-2001 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Main authors: conway, fjh.
%
% This file provides a 'tree' data type.
% The code generater uses this to build a tree of instructions and
% then flatten them into a list.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module tree.
%-----------------------------------------------------------------------------%
:- interface.
:- import_module list.
:- type tree(T) ---> empty
; node(T)
; tree(tree(T), tree(T)).
:- func tree__flatten(tree(T)) = list(T).
% Make a tree from a list of trees.
:- func tree__list(list(tree(T))) = tree(T).
:- pred tree__flatten(tree(T), list(T)).
:- mode tree__flatten(in, out) is det.
:- pred tree__is_empty(tree(T)).
:- mode tree__is_empty(in) is semidet.
:- pred tree__tree_of_lists_is_empty(tree(list(T))).
:- mode tree__tree_of_lists_is_empty(in) is semidet.
:- func tree__map(func(T) = U, tree(T)) = tree(U).
%-----------------------------------------------------------------------------%
:- implementation.
tree__flatten(T) = L :- tree__flatten(T, L).
tree__list([]) = empty.
tree__list([X | Xs]) = tree(X, tree__list(Xs)).
tree__flatten(T, L) :-
tree__flatten_2(T, [], L).
:- pred tree__flatten_2(tree(T), list(T), list(T)).
:- mode tree__flatten_2(in, in, out) is det.
% flatten_2(T, L0, L) is true iff L is the list that results from
% traversing T left-to-right depth-first, and then appending L0.
tree__flatten_2(empty, L, L).
tree__flatten_2(node(T), L, [T|L]).
tree__flatten_2(tree(T1,T2), L0, L) :-
tree__flatten_2(T2, L0, L1),
tree__flatten_2(T1, L1, L).
%-----------------------------------------------------------------------------%
tree__is_empty(empty).
tree__is_empty(tree(L, R)) :-
tree__is_empty(L),
tree__is_empty(R).
%-----------------------------------------------------------------------------%
tree__tree_of_lists_is_empty(empty).
tree__tree_of_lists_is_empty(node([])).
tree__tree_of_lists_is_empty(tree(L, R)) :-
tree__tree_of_lists_is_empty(L),
tree__tree_of_lists_is_empty(R).
%-----------------------------------------------------------------------------%
tree__map(_F, empty) = empty.
tree__map(F, node(T)) = node(F(T)).
tree__map(F, tree(L, R)) = tree(tree__map(F, L), tree__map(F, R)).
%-----------------------------------------------------------------------------%