Files
mercury/library/graph.m
Fergus Henderson 6a6e5495ed Ralph Becket <rwab1@cam.sri.com>'s changes to add functions for
Estimated hours taken: 6

library/pqueue.m:
library/assoc_list.m:
library/getopt.m:
library/bag.m:
library/bimap.m:
library/bintree.m:
library/bintree_set.m:
library/bt_array.m:
library/eqvclass.m:
library/graph.m:
library/group.m:
library/queue.m:
library/rbtree.m:
library/stack.m:
library/term.m:
library/varset.m:
library/tree234.m:
library/relation.m:
library/set.m:
library/set_bbbtree.m:
library/set_ordlist.m:
library/set_unordlist.m:
	Ralph Becket <rwab1@cam.sri.com>'s changes to add functions for
	the remaining output det predicates in a number of modules in the
	standard library.  Basically, for each

		:- pred f(in, ..., in, out) is det.

	he has added the declaration

		:- func f(in, ..., in) = out.

	and definition

		f(X1, ..., Xn) = Y :-
			f(X1, ..., Xn, Y).

	The changes were made using a mostly automatic process.
1999-10-30 04:16:13 +00:00

456 lines
14 KiB
Mathematica

%---------------------------------------------------------------------------%
% Copyright (C) 1994-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%------------------------------------------------------------------------------%
%
% File: graph.m.
% Main author: conway.
% Stability: low.
%
% This module defines a directed graph data type. The type graph(N, A)
% stores information of type N in the nodes, and information of type A
% in the arcs.
%
%------------------------------------------------------------------------------%
%------------------------------------------------------------------------------%
:- module graph.
:- interface.
:- import_module list, set, std_util.
% graph(Node, Arc) represents a directed graph with information of
% type Node associated with each node, and information of type Arc
% associated with each arc.
:- type graph(N, A).
:- type node(N).
:- type arc(A).
% Lots of graphs don't need to store anything in the arcs so here's
% a type equivalence that only has `real' information in the nodes.
:- type graph(N) == graph(N, unit).
:- type arc == arc(unit).
% graph__init(Graph) binds Graph to an empty graph
% containing no nodes and no arcs. (The graph contains
% a counter of the number of nodes allocated in it, so
% it is possible for a graph to contain no nodes or arcs
% and still fail to unify with the binding of Graph from
% graph__init.)
:- pred graph__init(graph(N, A)).
:- mode graph__init(out) is det.
% graph__set_node(OldGraph, NodeInfo, Node, NewGraph) takes
% OldGraph and NodeInfo which is the information to be stored
% in a new node, and returns a key "Node" which refers to that
% node, and the new graph NewGraph containing all of the nodes
% and arcs in OldGraph as well as the new node.
% It is possible to have two nodes in the graph with the
% same information stored in them.
%
% This operation is O(lgN) for a graph containing N nodes.
:- pred graph__set_node(graph(N, A), N, node(N), graph(N, A)).
:- mode graph__set_node(in, in, out, out) is det.
% graph__insert_node/4 is the same as graph__set_node/4 except
% that if the information to be stored in the node is stored
% in another node, then the graph__insert_node/4 fails.
%
% This operation is O(N) for a graph containing N nodes since
% this predicate has to check that the node data isn't in an
% existing node.
:- pred graph__insert_node(graph(N, A), N, node(N), graph(N, A)).
:- mode graph__insert_node(in, in, out, out) is semidet.
% graph__det_insert_node/4 is like graph__insert_node, except
% that if the insertion would fail, it calls error/1.
:- pred graph__det_insert_node(graph(N, A), N, node(N), graph(N, A)).
:- mode graph__det_insert_node(in, in, out, out) is det.
% graph__search_node(Graph, NodeInfo, Node) nondeterministically
% produces bindings of Node such that Node is a node in Graph
% that has the information NodeInfo attatched to it.
%
% This operation is O(lgN) for the first solution for a graph
% containing N nodes.
:- pred graph__search_node(graph(N, A), N, node(N)).
:- mode graph__search_node(in, in, out) is nondet.
% graph__find_matching_nodes(Graph, NodeInfo, Nodes) takes a graph
% Graph and the information NodeInfo and returns the set of nodes
% Nodes which have the information NodeInfo stored in them. (The set
% Nodes will of course be empty if there are no matching nodes.)
%
% This operation is O(NlgN) for a graph containing N nodes.
:- pred graph__find_matching_nodes(graph(N, A), N, set(node(N))).
:- mode graph__find_matching_nodes(in, in, out) is det.
% graph__node_contents(Graph, Node, NodeInfo) takes Graph and
% Node and returns the information NodeInfo stored in Node.
%
% This operation is O(lgN) for a graph containing N nodes.
:- pred graph__node_contents(graph(N, A), node(N), N).
:- mode graph__node_contents(in, in, out) is det.
% graph__successors(Graph, Node, Nodes) takes a graph Graph and
% a node Node and returns the set of nodes Nodes that are reachable
% (directly - not transitively) from Node.
%
% This operation is O(NlgN) for a graph containing N nodes.
:- pred graph__successors(graph(N, A), node(N), set(node(N))).
:- mode graph__successors(in, in, out) is det.
% graph__nodes(Graph, Nodes) binds Nodes to the set of nodes in Graph.
:- pred graph__nodes(graph(N, A), set(node(N))).
:- mode graph__nodes(in, out) is det.
% graph__set_edge(OldGraph, Start, End, ArcInfo, Arc, NewGraph)
% takes a graph OldGraph and adds an arc from Start to End with
% the information ArcInfo stored in it, and returns a key for
% that arc Arc, and the new graph NewGraph.
% If an identical arc already exists then this operation has
% no effect.
%
% This operation is O(lgN+lgM) for a graph with N nodes and M arcs.
:- pred graph__set_edge(graph(N, A), node(N), node(N), A,
arc(A), graph(N, A)).
:- mode graph__set_edge(in, in, in, in, out, out) is det.
% graph__insert_edge/6 is the same as graph__set_edge/6 except that
% if an identical arc already exists in the graph the operation fails.
% This is O(N) for a graph with N edges between the two nodes.
:- pred graph__insert_edge(graph(N, A), node(N), node(N), A,
arc(A), graph(N, A)).
:- mode graph__insert_edge(in, in, in, in, out, out) is semidet.
% graph__det_insert_edge/6 is like graph__insert_edge except
% than instead of failing, it calls error/1.
:- pred graph__det_insert_edge(graph(N, A), node(N), node(N), A,
arc(A), graph(N, A)).
:- mode graph__det_insert_edge(in, in, in, in, out, out) is det.
% graph__arc_contents(Graph, Arc, Start, End, ArcInfo) takes a
% graph Graph and an arc Arc and returns the start and end nodes
% and the information stored in that arc.
:- pred graph__arc_contents(graph(N, A), arc(A), node(N), node(N), A).
:- mode graph__arc_contents(in, in, out, out, out) is det.
% graph__path(Graph, Start, End, Path) is true iff there is a path
% from the node Start to the node End in Graph that goes through
% the sequence of arcs Arcs.
% The algorithm will return paths containing at most one cycle.
:- pred graph__path(graph(N, A), node(N), node(N), list(arc(A))).
:- mode graph__path(in, in, in, out) is nondet.
:- mode graph__path(in, in, out, out) is nondet.
%------------------------------------------------------------------------------%
:- implementation.
:- import_module map, int, std_util, list.
:- import_module require.
:- type graph(N, A) --->
graph(
graph__node_supply,
graph__arc_supply,
map(node(N), N),
map(arc(A), arc_info(N, A)),
map(node(N), map(arc(A), node(N)))
).
:- type graph__node_supply == int.
:- type graph__arc_supply == int.
:- type node(N) ---> node(int).
:- type arc(A) ---> arc(int).
:- type arc_info(N, A) ---> arc_info(node(N), node(N), A).
%------------------------------------------------------------------------------%
graph__init(Graph) :-
Graph = graph(0, 0, Nodes, Arcs, Edges),
map__init(Nodes),
map__init(Arcs),
map__init(Edges).
%------------------------------------------------------------------------------%
graph__set_node(G0, NInfo, node(N), G) :-
graph__get_node_supply(G0, NS0),
NS is NS0 + 1,
N = NS,
graph__set_node_supply(G0, NS, G1),
graph__get_nodes(G1, Nodes0),
map__set(Nodes0, node(N), NInfo, Nodes),
graph__set_nodes(G1, Nodes, G2),
graph__get_edges(G2, Edges0),
map__init(EdgeMap),
map__set(Edges0, node(N), EdgeMap, Edges),
graph__set_edges(G2, Edges, G).
graph__det_insert_node(G0, NInfo, N, G) :-
(
graph__insert_node(G0, NInfo, N1, G1)
->
N = N1,
G = G1
;
error("graph__det_insert_node: node already exists.")
).
graph__insert_node(G0, NInfo, node(N), G) :-
% Make sure that the graph doesn't contain
% NInfo already.
graph__get_nodes(G0, Nodes0),
\+ map__member(Nodes0, _, NInfo),
graph__get_node_supply(G0, NS0),
NS is NS0 + 1,
N = NS,
graph__set_node_supply(G0, NS, G1),
graph__get_nodes(G1, Nodes1),
map__set(Nodes1, node(N), NInfo, Nodes),
graph__set_nodes(G1, Nodes, G2),
graph__get_edges(G2, Edges0),
map__init(EdgeSet),
map__set(Edges0, node(N), EdgeSet, Edges),
graph__set_edges(G2, Edges, G).
%------------------------------------------------------------------------------%
graph__search_node(Graph, NodeInfo, Node) :-
graph__get_nodes(Graph, NodeTable),
map__member(NodeTable, Node, NodeInfo).
%------------------------------------------------------------------------------%
graph__find_matching_nodes(Graph, NodeInfo, NodeSet) :-
graph__get_nodes(Graph, NodeTable),
% SolnGoal = lambda([Node::out] is nondet,
% map__member(NodeTable, Node, NodeInfo)),
% solutions(SolnGoal, NodeList),
solutions(graph__select_node(NodeTable, NodeInfo), NodeList),
set__sorted_list_to_set(NodeList, NodeSet).
:- pred graph__select_node(map(node(N), N), N, node(N)).
:- mode graph__select_node(in, in, out) is nondet.
graph__select_node(NodeTable, NodeInfo, Node) :-
map__member(NodeTable, Node, NodeInfo).
%------------------------------------------------------------------------------%
graph__node_contents(G, N, I) :-
graph__get_nodes(G, Ns),
map__lookup(Ns, N, I).
%------------------------------------------------------------------------------%
graph__successors(G, N, Ss) :-
graph__get_edges(G, Es),
map__lookup(Es, N, E),
map__values(E, SsList),
set__list_to_set(SsList, Ss).
%------------------------------------------------------------------------------%
graph__nodes(G, Ns) :-
graph__get_nodes(G, Ns0),
map__keys(Ns0, Ns1),
set__list_to_set(Ns1, Ns).
%------------------------------------------------------------------------------%
graph__set_edge(G0, Start, End, Info, Arc, G) :-
graph__get_arc_supply(G0, AS0),
AS is AS0 + 1,
Arc = arc(AS),
graph__set_arc_supply(G0, AS, G1),
graph__get_arcs(G1, Arcs0),
map__set(Arcs0, Arc, arc_info(Start, End, Info), Arcs),
graph__set_arcs(G1, Arcs, G2),
graph__get_edges(G2, Es0),
map__lookup(Es0, Start, EdgeMap0),
map__set(EdgeMap0, Arc, End, EdgeMap),
map__set(Es0, Start, EdgeMap, Es),
graph__set_edges(G2, Es, G).
%------------------------------------------------------------------------------%
graph__det_insert_edge(G0, Start, End, Info, Arc, G) :-
(
graph__insert_edge(G0, Start, End, Info, Arc1, G1)
->
Arc = Arc1,
G = G1
;
error("graph__det_insert_edge: this edge is already in the graph.")
).
graph__insert_edge(G0, Start, End, Info, Arc, G) :-
graph__get_arc_supply(G0, AS0),
AS is AS0 + 1,
Arc = arc(AS),
graph__set_arc_supply(G0, AS, G1),
graph__get_arcs(G1, Arcs0),
map__insert(Arcs0, Arc, arc_info(Start, End, Info), Arcs),
graph__set_arcs(G1, Arcs, G2),
graph__get_edges(G2, Es0),
map__lookup(Es0, Start, EdgeMap0),
map__set(EdgeMap0, Arc, End, EdgeMap),
map__set(Es0, Start, EdgeMap, Es),
graph__set_edges(G2, Es, G).
%------------------------------------------------------------------------------%
graph__arc_contents(G, N, S, E, A) :-
graph__get_arcs(G, Ns),
map__lookup(Ns, N, I),
I = arc_info(S, E, A).
%------------------------------------------------------------------------------%
graph__path(G, S, E, Path) :-
graph__path_2(G, S, E, [], Path).
:- pred graph__path_2(graph(N, A), node(N), node(N),
list(node(N)), list(arc(A))).
:- mode graph__path_2(in, in, in, in, out) is nondet.
:- mode graph__path_2(in, in, out, in, out) is nondet.
graph__path_2(G, S, E, Nodes0, Path) :-
graph__get_edges(G, Es),
map__lookup(Es, S, Arcs),
(
map__member(Arcs, A, E),
\+ list__member(E, Nodes0),
Path = [A]
;
map__member(Arcs, A, N),
\+ list__member(N, Nodes0),
graph__path_2(G, N, E, [N|Nodes0], Path0),
Path = [A|Path0]
).
%------------------------------------------------------------------------------%
%------------------------------------------------------------------------------%
:- pred graph__get_node_supply(graph(N, A), graph__node_supply).
:- mode graph__get_node_supply(in, out) is det.
graph__get_node_supply(G, NS) :-
G = graph(NS, _AS, _N, _A, _E).
:- pred graph__get_arc_supply(graph(N, A), graph__arc_supply).
:- mode graph__get_arc_supply(in, out) is det.
graph__get_arc_supply(G, AS) :-
G = graph(_NS, AS, _N, _A, _E).
:- pred graph__get_nodes(graph(N, A), map(node(N), N)).
:- mode graph__get_nodes(in, out) is det.
graph__get_nodes(G, N) :-
G = graph(_NS, _AS, N, _A, _E).
:- pred graph__get_arcs(graph(N, A), map(arc(A), arc_info(N, A))).
:- mode graph__get_arcs(in, out) is det.
graph__get_arcs(G, A) :-
G = graph(_NS, _AS, _N, A, _E).
:- pred graph__get_edges(graph(N, A), map(node(N), map(arc(A), node(N)))).
:- mode graph__get_edges(in, out) is det.
graph__get_edges(G, E) :-
G = graph(_NS, _AS, _N, _A, E).
:- pred graph__set_node_supply(graph(N, A), graph__node_supply, graph(N, A)).
:- mode graph__set_node_supply(in, in, out) is det.
graph__set_node_supply(G0, NS, G) :-
G0 = graph(_, AS, N, A, E),
G = graph(NS, AS, N, A, E).
:- pred graph__set_arc_supply(graph(N, A), graph__arc_supply, graph(N, A)).
:- mode graph__set_arc_supply(in, in, out) is det.
graph__set_arc_supply(G0, AS, G) :-
G0 = graph(NS, _, N, A, E),
G = graph(NS, AS, N, A, E).
:- pred graph__set_nodes(graph(N, A), map(node(N), N), graph(N, A)).
:- mode graph__set_nodes(in, in, out) is det.
graph__set_nodes(G0, N, G) :-
G0 = graph(NS, AS, _, A, E),
G = graph(NS, AS, N, A, E).
:- pred graph__set_arcs(graph(N, A), map(arc(A), arc_info(N, A)), graph(N, A)).
:- mode graph__set_arcs(in, in, out) is det.
graph__set_arcs(G0, A, G) :-
G0 = graph(NS, AS, N, _, E),
G = graph(NS, AS, N, A, E).
:- pred graph__set_edges(graph(N, A), map(node(N), map(arc(A), node(N))), graph(N, A)).
:- mode graph__set_edges(in, in, out) is det.
graph__set_edges(G0, E, G) :-
G0 = graph(NS, AS, N, A, _),
G = graph(NS, AS, N, A, E).
%------------------------------------------------------------------------------%
%------------------------------------------------------------------------------%
% Ralph Becket <rwab1@cl.cam.ac.uk> 29/04/99
% Function forms added.
:- interface.
:- func graph__init = graph(N, A).
:- func graph__find_matching_nodes(graph(N, A), N) = set(node(N)).
:- func graph__node_contents(graph(N, A), node(N)) = N.
:- func graph__successors(graph(N, A), node(N)) = set(node(N)).
:- func graph__nodes(graph(N, A)) = set(node(N)).
% ---------------------------------------------------------------------------- %
% ---------------------------------------------------------------------------- %
:- implementation.
graph__init = G :-
graph__init(G).
graph__find_matching_nodes(G, N) = S :-
graph__find_matching_nodes(G, N, S).
graph__node_contents(G, N) = NI :-
graph__node_contents(G, N, NI).
graph__successors(G, N) = S :-
graph__successors(G, N, S).
graph__nodes(G) = S :-
graph__nodes(G,S).