mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-20 16:31:04 +00:00
Estimated hours taken: 51 Make closures always include layout information, not just in grades in which typeinfo liveness is turned on. This requires separating two notions, which were previously combined: - Body typeinfo liveness means that when a variable X is live, any typeinfo variables describing type variables that occur in the type of X must also be live. - Interface typeinfo liveness means that when the input arguments of a procedure include a polymorphically typed variable (e.g. X), typeinfo variables describing type variables that occur in the type of X must also be among the arguments. This change turns on interface typeinfo liveness for procedures that either have their address taken in the current module, or are exported and thus may have their address taken in some other module. compiler/hlds_pred.m: Centralize decisions wrt whether procedure interfaces and bodies use typeinfo liveness here. compiler/options.m: Rename the typeinfo_liveness option as body_typeinfo_liveness, since this reflects its new function. compiler/call_gen.m: compiler/higher_order.m: compiler/live_vars.m: compiler/liveness.m: compiler/unused_args.m: Use hlds_pred.m to make decisions about liveness. compiler/lambda.m: Always include the relevant typeinfos in the interfaces of procedures created for lambdas. compiler/continuation_info.m: compiler/stack_layout.m: compiler/unify_gen.m: Modify the predicates that record and use layout information about closures to always do so, since the necessary information is now always available about the interfaces of procedures which can be put into closures. Previously, they only did so if typeinfo_liveness was set. Also, generate information about the types of the variables in a closure from the pred_info's arg types field, not from the proc_info's var types field, because unlike the latter, it is valid even for imported predicates. compiler/hlds_out.m: Print the non-clause-related information in the clauses_info part of a pred_info (e.g. the type parameters) even if the predicate has no actual clauses. Simplify the code a bit by getting rid of a duplicate test. compiler/middle_rec.m: Require that the code generated for the base case not refer to any stack slots if this way of generating code is to be used. This is necessary because the base case is executed when the current procedure has no stack frame, and thus any references to stack slots would refer to and possibly overwrite the data in another procedure's frame. In the absence of requiring body typeinfo liveness for exported procedures, such references were not generated; in its presence, they were. However, we now require only interface liveness for exported procedures, so we can still use middle recursion for them. compiler/handle_options.m: Do not turn off middle_rec if (body) typeinfo liveness is turned on, now that the bug has been fixed. For polymorphic predicates, the base case will still contain references to stack slots, and thus the middle-rec optimization will not applied for them, but the optimization may apply to monomorphic predicates. compiler/passes_aux.m: Add the ability to call compiler passes with the procedure id as well as the predicate id of the procedure they are passed. tests/hard_coded/typeclasses/Mmakefile: Refer to --body-typeinfo-liveness instead of --typeinfo-liveness.
907 lines
32 KiB
Mathematica
907 lines
32 KiB
Mathematica
%---------------------------------------------------------------------------%
|
|
% Copyright (C) 1994-1999 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%---------------------------------------------------------------------------%
|
|
%
|
|
% This module handles code generation for "simple" unifications,
|
|
% i.e. those unifications which are simple enough for us to generate
|
|
% inline code.
|
|
%
|
|
% For "complicated" unifications, we generate a call to an out-of-line
|
|
% unification predicate (the call is handled in call_gen.m) - and then
|
|
% eventually generate the out-of-line code (unify_proc.m).
|
|
%
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- module unify_gen.
|
|
|
|
:- interface.
|
|
|
|
:- import_module hlds_goal, hlds_data, llds, code_info.
|
|
:- import_module prog_data.
|
|
|
|
:- type test_sense
|
|
---> branch_on_success
|
|
; branch_on_failure.
|
|
|
|
:- pred unify_gen__generate_unification(code_model, unification, code_tree,
|
|
code_info, code_info).
|
|
:- mode unify_gen__generate_unification(in, in, out, in, out) is det.
|
|
|
|
:- pred unify_gen__generate_tag_test(prog_var, cons_id, test_sense, label,
|
|
code_tree, code_info, code_info).
|
|
:- mode unify_gen__generate_tag_test(in, in, in, out, out, in, out) is det.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module builtin_ops.
|
|
:- import_module hlds_module, hlds_pred, prog_data, prog_out, code_util.
|
|
:- import_module mode_util, type_util, code_aux, hlds_out, tree, arg_info.
|
|
:- import_module globals, options, continuation_info, stack_layout.
|
|
|
|
:- import_module term, bool, string, int, list, map, require, std_util.
|
|
|
|
:- type uni_val ---> ref(prog_var)
|
|
; lval(lval).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
unify_gen__generate_unification(CodeModel, Uni, Code) -->
|
|
{ CodeModel = model_non ->
|
|
error("nondet unification in unify_gen__generate_unification")
|
|
;
|
|
true
|
|
},
|
|
(
|
|
{ Uni = assign(Left, Right) },
|
|
unify_gen__generate_assignment(Left, Right, Code)
|
|
;
|
|
{ Uni = construct(Var, ConsId, Args, Modes, _, _, AditiInfo) },
|
|
unify_gen__generate_construction(Var, ConsId,
|
|
Args, Modes, AditiInfo, Code)
|
|
;
|
|
{ Uni = deconstruct(Var, ConsId, Args, Modes, _Det) },
|
|
( { CodeModel = model_det } ->
|
|
unify_gen__generate_det_deconstruction(Var, ConsId,
|
|
Args, Modes, Code)
|
|
;
|
|
unify_gen__generate_semi_deconstruction(Var, ConsId,
|
|
Args, Modes, Code)
|
|
)
|
|
;
|
|
{ Uni = simple_test(Var1, Var2) },
|
|
( { CodeModel = model_det } ->
|
|
{ error("det simple_test during code generation") }
|
|
;
|
|
unify_gen__generate_test(Var1, Var2, Code)
|
|
)
|
|
;
|
|
% These should have been transformed into calls
|
|
% to unification procedures by polymorphism.m.
|
|
{ Uni = complicated_unify(_UniMode, _CanFail, _TypeInfoVars) },
|
|
{ error("complicated unify during code generation") }
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% assignment unifications are generated by simply caching the
|
|
% bound variable as the expression that generates the free
|
|
% variable. No immediate code is generated.
|
|
|
|
:- pred unify_gen__generate_assignment(prog_var, prog_var, code_tree,
|
|
code_info, code_info).
|
|
:- mode unify_gen__generate_assignment(in, in, out, in, out) is det.
|
|
|
|
unify_gen__generate_assignment(VarA, VarB, empty) -->
|
|
(
|
|
code_info__variable_is_forward_live(VarA)
|
|
->
|
|
code_info__cache_expression(VarA, var(VarB))
|
|
;
|
|
% For free-free unifications, the mode analysis reports
|
|
% them as assignment to the dead variable. For such
|
|
% unifications we of course don't generate any code
|
|
{ true }
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% A [simple] test unification is generated by flushing both
|
|
% variables from the cache, and producing code that branches
|
|
% to the fall-through point if the two values are not the same.
|
|
% Simple tests are in-in unifications on enumerations, integers,
|
|
% strings and floats.
|
|
|
|
:- pred unify_gen__generate_test(prog_var, prog_var, code_tree,
|
|
code_info, code_info).
|
|
:- mode unify_gen__generate_test(in, in, out, in, out) is det.
|
|
|
|
unify_gen__generate_test(VarA, VarB, Code) -->
|
|
code_info__produce_variable(VarA, Code0, ValA),
|
|
code_info__produce_variable(VarB, Code1, ValB),
|
|
{ CodeA = tree(Code0, Code1) },
|
|
code_info__variable_type(VarA, Type),
|
|
{ Type = term__functor(term__atom("string"), [], _) ->
|
|
Op = str_eq
|
|
; Type = term__functor(term__atom("float"), [], _) ->
|
|
Op = float_eq
|
|
;
|
|
Op = eq
|
|
},
|
|
code_info__fail_if_rval_is_false(binop(Op, ValA, ValB), FailCode),
|
|
{ Code = tree(CodeA, FailCode) }.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
unify_gen__generate_tag_test(Var, ConsId, Sense, ElseLab, Code) -->
|
|
code_info__produce_variable(Var, VarCode, Rval),
|
|
(
|
|
{ ConsId = cons(_, Arity) },
|
|
{ Arity > 0 }
|
|
->
|
|
code_info__variable_type(Var, Type),
|
|
code_info__lookup_type_defn(Type, TypeDefn),
|
|
{ hlds_data__get_type_defn_body(TypeDefn, TypeBody) },
|
|
{
|
|
TypeBody = du_type(_, ConsTable, _, _)
|
|
->
|
|
map__to_assoc_list(ConsTable, ConsList),
|
|
(
|
|
ConsList = [ConsId - _, OtherConsId - _],
|
|
OtherConsId = cons(_, 0)
|
|
->
|
|
Reverse = yes(OtherConsId)
|
|
;
|
|
ConsList = [OtherConsId - _, ConsId - _],
|
|
OtherConsId = cons(_, 0)
|
|
->
|
|
Reverse = yes(OtherConsId)
|
|
;
|
|
Reverse = no
|
|
)
|
|
;
|
|
Reverse = no
|
|
}
|
|
;
|
|
{ Reverse = no }
|
|
),
|
|
code_info__variable_to_string(Var, VarName),
|
|
{ hlds_out__cons_id_to_string(ConsId, ConsIdName) },
|
|
(
|
|
{ Reverse = no },
|
|
{ string__append_list(["checking that ", VarName,
|
|
" has functor ", ConsIdName], Comment) },
|
|
{ CommentCode = node([comment(Comment) - ""]) },
|
|
code_info__cons_id_to_tag(Var, ConsId, Tag),
|
|
{ unify_gen__generate_tag_rval_2(Tag, Rval, TestRval) }
|
|
;
|
|
{ Reverse = yes(TestConsId) },
|
|
{ string__append_list(["checking that ", VarName,
|
|
" has functor ", ConsIdName, " (inverted test)"],
|
|
Comment) },
|
|
{ CommentCode = node([comment(Comment) - ""]) },
|
|
code_info__cons_id_to_tag(Var, TestConsId, Tag),
|
|
{ unify_gen__generate_tag_rval_2(Tag, Rval, NegTestRval) },
|
|
{ code_util__neg_rval(NegTestRval, TestRval) }
|
|
),
|
|
code_info__get_next_label(ElseLab),
|
|
(
|
|
{ Sense = branch_on_success },
|
|
{ TheRval = TestRval }
|
|
;
|
|
{ Sense = branch_on_failure },
|
|
{ code_util__neg_rval(TestRval, TheRval) }
|
|
),
|
|
{ TestCode = node([
|
|
if_val(TheRval, label(ElseLab)) - "tag test"
|
|
]) },
|
|
{ Code = tree(VarCode, tree(CommentCode, TestCode)) }.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- pred unify_gen__generate_tag_rval(prog_var, cons_id, rval, code_tree,
|
|
code_info, code_info).
|
|
:- mode unify_gen__generate_tag_rval(in, in, out, out, in, out) is det.
|
|
|
|
unify_gen__generate_tag_rval(Var, ConsId, TestRval, Code) -->
|
|
code_info__produce_variable(Var, Code, Rval),
|
|
code_info__cons_id_to_tag(Var, ConsId, Tag),
|
|
{ unify_gen__generate_tag_rval_2(Tag, Rval, TestRval) }.
|
|
|
|
:- pred unify_gen__generate_tag_rval_2(cons_tag, rval, rval).
|
|
:- mode unify_gen__generate_tag_rval_2(in, in, out) is det.
|
|
|
|
unify_gen__generate_tag_rval_2(string_constant(String), Rval, TestRval) :-
|
|
TestRval = binop(str_eq, Rval, const(string_const(String))).
|
|
unify_gen__generate_tag_rval_2(float_constant(Float), Rval, TestRval) :-
|
|
TestRval = binop(float_eq, Rval, const(float_const(Float))).
|
|
unify_gen__generate_tag_rval_2(int_constant(Int), Rval, TestRval) :-
|
|
TestRval = binop(eq, Rval, const(int_const(Int))).
|
|
unify_gen__generate_tag_rval_2(pred_closure_tag(_, _, _), _Rval, _TestRval) :-
|
|
% This should never happen, since the error will be detected
|
|
% during mode checking.
|
|
error("Attempted higher-order unification").
|
|
unify_gen__generate_tag_rval_2(code_addr_constant(_, _), _Rval, _TestRval) :-
|
|
% This should never happen
|
|
error("Attempted code_addr unification").
|
|
unify_gen__generate_tag_rval_2(type_ctor_info_constant(_, _, _), _, _) :-
|
|
% This should never happen
|
|
error("Attempted type_ctor_info unification").
|
|
unify_gen__generate_tag_rval_2(base_typeclass_info_constant(_, _, _), _, _) :-
|
|
% This should never happen
|
|
error("Attempted base_typeclass_info unification").
|
|
unify_gen__generate_tag_rval_2(tabling_pointer_constant(_, _), _, _) :-
|
|
% This should never happen
|
|
error("Attempted tabling_pointer unification").
|
|
unify_gen__generate_tag_rval_2(no_tag, _Rval, TestRval) :-
|
|
TestRval = const(true).
|
|
unify_gen__generate_tag_rval_2(unshared_tag(UnsharedTag), Rval, TestRval) :-
|
|
TestRval = binop(eq, unop(tag, Rval),
|
|
unop(mktag, const(int_const(UnsharedTag)))).
|
|
unify_gen__generate_tag_rval_2(shared_remote_tag(Bits, Num), Rval, TestRval) :-
|
|
TestRval = binop(and,
|
|
binop(eq, unop(tag, Rval),
|
|
unop(mktag, const(int_const(Bits)))),
|
|
binop(eq, lval(field(yes(Bits), Rval,
|
|
const(int_const(0)))),
|
|
const(int_const(Num)))).
|
|
unify_gen__generate_tag_rval_2(shared_local_tag(Bits, Num), Rval,
|
|
TestRval) :-
|
|
TestRval = binop(eq, Rval,
|
|
mkword(Bits, unop(mkbody, const(int_const(Num))))).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% A construction unification consists of a heap-increment to
|
|
% create a term, and a series of [optional] assignments to
|
|
% instantiate the arguments of that term.
|
|
|
|
:- pred unify_gen__generate_construction(prog_var, cons_id,
|
|
list(prog_var), list(uni_mode), maybe(rl_exprn_id),
|
|
code_tree, code_info, code_info).
|
|
:- mode unify_gen__generate_construction(in, in, in, in,
|
|
in, out, in, out) is det.
|
|
|
|
unify_gen__generate_construction(Var, Cons, Args, Modes, AditiInfo, Code) -->
|
|
code_info__cons_id_to_tag(Var, Cons, Tag),
|
|
unify_gen__generate_construction_2(Tag, Var, Args,
|
|
Modes, AditiInfo, Code).
|
|
|
|
:- pred unify_gen__generate_construction_2(cons_tag, prog_var,
|
|
list(prog_var), list(uni_mode), maybe(rl_exprn_id),
|
|
code_tree, code_info, code_info).
|
|
:- mode unify_gen__generate_construction_2(in, in, in, in, in, out,
|
|
in, out) is det.
|
|
|
|
unify_gen__generate_construction_2(string_constant(String),
|
|
Var, _Args, _Modes, _, Code) -->
|
|
{ Code = empty },
|
|
code_info__cache_expression(Var, const(string_const(String))).
|
|
unify_gen__generate_construction_2(int_constant(Int),
|
|
Var, _Args, _Modes, _, Code) -->
|
|
{ Code = empty },
|
|
code_info__cache_expression(Var, const(int_const(Int))).
|
|
unify_gen__generate_construction_2(float_constant(Float),
|
|
Var, _Args, _Modes, _, Code) -->
|
|
{ Code = empty },
|
|
code_info__cache_expression(Var, const(float_const(Float))).
|
|
unify_gen__generate_construction_2(no_tag, Var, Args, Modes, _, Code) -->
|
|
( { Args = [Arg], Modes = [Mode] } ->
|
|
code_info__variable_type(Arg, Type),
|
|
unify_gen__generate_sub_unify(ref(Var), ref(Arg),
|
|
Mode, Type, Code)
|
|
;
|
|
{ error(
|
|
"unify_gen__generate_construction_2: no_tag: arity != 1") }
|
|
).
|
|
unify_gen__generate_construction_2(unshared_tag(UnsharedTag),
|
|
Var, Args, Modes, _, Code) -->
|
|
code_info__get_module_info(ModuleInfo),
|
|
code_info__get_next_cell_number(CellNo),
|
|
unify_gen__var_types(Args, ArgTypes),
|
|
{ unify_gen__generate_cons_args(Args, ArgTypes, Modes, ModuleInfo,
|
|
RVals) },
|
|
{ Code = empty },
|
|
code_info__variable_type(Var, VarType),
|
|
{ unify_gen__var_type_msg(VarType, VarTypeMsg) },
|
|
% XXX Later we will need to worry about
|
|
% whether the cell must be unique or not.
|
|
{ Expr = create(UnsharedTag, RVals, uniform(no), can_be_either,
|
|
CellNo, VarTypeMsg) },
|
|
code_info__cache_expression(Var, Expr).
|
|
unify_gen__generate_construction_2(shared_remote_tag(Bits0, Num0),
|
|
Var, Args, Modes, _, Code) -->
|
|
code_info__get_module_info(ModuleInfo),
|
|
code_info__get_next_cell_number(CellNo),
|
|
unify_gen__var_types(Args, ArgTypes),
|
|
{ unify_gen__generate_cons_args(Args, ArgTypes, Modes, ModuleInfo,
|
|
RVals0) },
|
|
% the first field holds the secondary tag
|
|
{ RVals = [yes(const(int_const(Num0))) | RVals0] },
|
|
{ Code = empty },
|
|
code_info__variable_type(Var, VarType),
|
|
{ unify_gen__var_type_msg(VarType, VarTypeMsg) },
|
|
% XXX Later we will need to worry about
|
|
% whether the cell must be unique or not.
|
|
{ Expr = create(Bits0, RVals, uniform(no), can_be_either,
|
|
CellNo, VarTypeMsg) },
|
|
code_info__cache_expression(Var, Expr).
|
|
unify_gen__generate_construction_2(shared_local_tag(Bits1, Num1),
|
|
Var, _Args, _Modes, _, Code) -->
|
|
{ Code = empty },
|
|
code_info__cache_expression(Var,
|
|
mkword(Bits1, unop(mkbody, const(int_const(Num1))))).
|
|
unify_gen__generate_construction_2(type_ctor_info_constant(ModuleName,
|
|
TypeName, TypeArity), Var, Args, _Modes, _, Code) -->
|
|
( { Args = [] } ->
|
|
[]
|
|
;
|
|
{ error("unify_gen: type-info constant has args") }
|
|
),
|
|
{ Code = empty },
|
|
code_info__cache_expression(Var, const(data_addr_const(data_addr(
|
|
ModuleName, type_ctor(info, TypeName, TypeArity))))).
|
|
unify_gen__generate_construction_2(base_typeclass_info_constant(ModuleName,
|
|
ClassId, Instance), Var, Args, _Modes, _, Code) -->
|
|
( { Args = [] } ->
|
|
[]
|
|
;
|
|
{ error("unify_gen: typeclass-info constant has args") }
|
|
),
|
|
{ Code = empty },
|
|
code_info__cache_expression(Var, const(data_addr_const(data_addr(
|
|
ModuleName, base_typeclass_info(ClassId, Instance))))).
|
|
unify_gen__generate_construction_2(tabling_pointer_constant(PredId, ProcId),
|
|
Var, Args, _Modes, _, Code) -->
|
|
( { Args = [] } ->
|
|
[]
|
|
;
|
|
{ error("unify_gen: tabling pointer constant has args") }
|
|
),
|
|
{ Code = empty },
|
|
code_info__get_module_info(ModuleInfo),
|
|
{ code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel) },
|
|
{ module_info_name(ModuleInfo, ModuleName) },
|
|
{ DataAddr = data_addr(ModuleName, tabling_pointer(ProcLabel)) },
|
|
code_info__cache_expression(Var, const(data_addr_const(DataAddr))).
|
|
unify_gen__generate_construction_2(code_addr_constant(PredId, ProcId),
|
|
Var, Args, _Modes, _, Code) -->
|
|
( { Args = [] } ->
|
|
[]
|
|
;
|
|
{ error("unify_gen: address constant has args") }
|
|
),
|
|
{ Code = empty },
|
|
code_info__get_module_info(ModuleInfo),
|
|
code_info__make_entry_label(ModuleInfo, PredId, ProcId, no, CodeAddr),
|
|
code_info__cache_expression(Var, const(code_addr_const(CodeAddr))).
|
|
unify_gen__generate_construction_2(
|
|
pred_closure_tag(PredId, ProcId, EvalMethod),
|
|
Var, Args, _Modes, _AditiInfo, Code) -->
|
|
% This code constructs or extends a closure.
|
|
% The structure of closures is defined in runtime/mercury_ho_call.h.
|
|
|
|
code_info__get_module_info(ModuleInfo),
|
|
{ module_info_preds(ModuleInfo, Preds) },
|
|
{ map__lookup(Preds, PredId, PredInfo) },
|
|
{ pred_info_procedures(PredInfo, Procs) },
|
|
{ map__lookup(Procs, ProcId, ProcInfo) },
|
|
%
|
|
% We handle currying of a higher-order pred variable as a special case.
|
|
% We recognize
|
|
%
|
|
% P = l(P0, X, Y, Z)
|
|
%
|
|
% where
|
|
%
|
|
% l(P0, A, B, C, ...) :- P0(A, B, C, ...). % higher-order call
|
|
%
|
|
% as a special case, and generate special code to construct the
|
|
% new closure P from the old closure P0 by appending the args X, Y, Z.
|
|
% The advantage of this optimization is that when P is called, we
|
|
% will only need to do one indirect call rather than two.
|
|
% Its disadvantage is that the cost of creating the closure P is greater.
|
|
% Whether this is a net win depend on the number of times P is called.
|
|
%
|
|
% The pattern that this optimization looks for happens rarely at the moment.
|
|
% The reason is that although we allow the creation of closures with a simple
|
|
% syntax (e.g. P0 = append4([1])), we don't allow their extension with a
|
|
% similarly simple syntax (e.g. P = call(P0, [2])). In fact, typecheck.m
|
|
% contains code to detect such constructs, because it does not have code
|
|
% to typecheck them (you get a message about call/2 should be used as a goal,
|
|
% not an expression).
|
|
%
|
|
{ proc_info_goal(ProcInfo, ProcInfoGoal) },
|
|
{ proc_info_interface_code_model(ProcInfo, CodeModel) },
|
|
{ proc_info_headvars(ProcInfo, ProcHeadVars) },
|
|
(
|
|
{ EvalMethod = normal },
|
|
{ Args = [CallPred | CallArgs] },
|
|
{ ProcHeadVars = [ProcPred | ProcArgs] },
|
|
{ ProcInfoGoal = generic_call(higher_order(ProcPred, _, _),
|
|
ProcArgs, _, CallDeterminism) - _GoalInfo },
|
|
{ determinism_to_code_model(CallDeterminism, CallCodeModel) },
|
|
% Check that the code models are compatible.
|
|
% Note that det is not compatible with semidet,
|
|
% and semidet is not compatible with nondet,
|
|
% since the arguments go in different registers.
|
|
% But det is compatible with nondet.
|
|
{ CodeModel = CallCodeModel
|
|
; CodeModel = model_non, CallCodeModel = model_det
|
|
}
|
|
->
|
|
( { CallArgs = [] } ->
|
|
% if there are no new arguments, we can just use the old
|
|
% closure
|
|
code_info__produce_variable(CallPred, Code, Value)
|
|
;
|
|
code_info__get_next_label(LoopStart),
|
|
code_info__get_next_label(LoopTest),
|
|
code_info__acquire_reg(r, LoopCounter),
|
|
code_info__acquire_reg(r, NumOldArgs),
|
|
code_info__acquire_reg(r, NewClosure),
|
|
{ Zero = const(int_const(0)) },
|
|
{ One = const(int_const(1)) },
|
|
{ Two = const(int_const(2)) },
|
|
{ Three = const(int_const(3)) },
|
|
{ list__length(CallArgs, NumNewArgs) },
|
|
{ NumNewArgs_Rval = const(int_const(NumNewArgs)) },
|
|
{ NumNewArgsPlusThree is NumNewArgs + 3 },
|
|
{ NumNewArgsPlusThree_Rval =
|
|
const(int_const(NumNewArgsPlusThree)) },
|
|
code_info__produce_variable(CallPred, Code1, OldClosure),
|
|
{ Code2 = node([
|
|
comment("build new closure from old closure") - "",
|
|
assign(NumOldArgs,
|
|
lval(field(yes(0), OldClosure, Two)))
|
|
- "get number of arguments",
|
|
incr_hp(NewClosure, no,
|
|
binop(+, lval(NumOldArgs),
|
|
NumNewArgsPlusThree_Rval), "closure")
|
|
- "allocate new closure",
|
|
assign(field(yes(0), lval(NewClosure), Zero),
|
|
lval(field(yes(0), OldClosure, Zero)))
|
|
- "set closure layout structure",
|
|
assign(field(yes(0), lval(NewClosure), One),
|
|
lval(field(yes(0), OldClosure, One)))
|
|
- "set closure code pointer",
|
|
assign(field(yes(0), lval(NewClosure), Two),
|
|
binop(+, lval(NumOldArgs), NumNewArgs_Rval))
|
|
- "set new number of arguments",
|
|
assign(NumOldArgs, binop(+, lval(NumOldArgs), Three))
|
|
- "set up loop limit",
|
|
assign(LoopCounter, Three)
|
|
- "initialize loop counter",
|
|
% It is possible for the number of hidden arguments
|
|
% to be zero, in which case the body of this loop
|
|
% should not be executed at all. This is why we
|
|
% jump to the loop condition test.
|
|
goto(label(LoopTest))
|
|
- "enter the copy loop at the conceptual top",
|
|
label(LoopStart) - "start of loop",
|
|
assign(field(yes(0), lval(NewClosure),
|
|
lval(LoopCounter)),
|
|
lval(field(yes(0), OldClosure,
|
|
lval(LoopCounter))))
|
|
- "copy old hidden argument",
|
|
assign(LoopCounter,
|
|
binop(+, lval(LoopCounter), One))
|
|
- "increment loop counter",
|
|
label(LoopTest)
|
|
- "do we have more old arguments to copy?",
|
|
if_val(binop(<, lval(LoopCounter), lval(NumOldArgs)),
|
|
label(LoopStart))
|
|
- "repeat the loop?"
|
|
]) },
|
|
unify_gen__generate_extra_closure_args(CallArgs,
|
|
LoopCounter, NewClosure, Code3),
|
|
code_info__release_reg(LoopCounter),
|
|
code_info__release_reg(NumOldArgs),
|
|
code_info__release_reg(NewClosure),
|
|
{ Code = tree(Code1, tree(Code2, Code3)) },
|
|
{ Value = lval(NewClosure) }
|
|
)
|
|
;
|
|
{ Code = empty },
|
|
(
|
|
{ EvalMethod = normal }
|
|
;
|
|
{ EvalMethod = (aditi_bottom_up) },
|
|
% XXX The closure_layout code needs to be changed
|
|
% to handle these.
|
|
{ error(
|
|
"Sorry, not implemented: `aditi_bottom_up' closures") }
|
|
;
|
|
{ EvalMethod = (aditi_top_down) },
|
|
% XXX The closure_layout code needs to be changed
|
|
% to handle these.
|
|
{ error(
|
|
"Sorry, not implemented: `aditi_top_down' closures") }
|
|
),
|
|
{ continuation_info__generate_closure_layout(
|
|
ModuleInfo, PredId, ProcId, ClosureInfo) },
|
|
code_info__make_entry_label(ModuleInfo, PredId, ProcId, no,
|
|
CodeAddr),
|
|
{ code_util__extract_proc_label_from_code_addr(CodeAddr,
|
|
ProcLabel) },
|
|
code_info__get_cell_count(CNum0),
|
|
{ stack_layout__construct_closure_layout(ProcLabel,
|
|
ClosureInfo, ClosureLayoutMaybeRvals,
|
|
ClosureLayoutArgTypes, CNum0, CNum) },
|
|
code_info__set_cell_count(CNum),
|
|
code_info__get_next_cell_number(ClosureLayoutCellNo),
|
|
{ ClosureLayout = create(0, ClosureLayoutMaybeRvals,
|
|
ClosureLayoutArgTypes, must_be_static,
|
|
ClosureLayoutCellNo, "closure_layout") },
|
|
{ list__length(Args, NumArgs) },
|
|
{ proc_info_arg_info(ProcInfo, ArgInfo) },
|
|
{ unify_gen__generate_pred_args(Args, ArgInfo, PredArgs) },
|
|
{ Vector = [
|
|
yes(ClosureLayout),
|
|
yes(const(code_addr_const(CodeAddr))),
|
|
yes(const(int_const(NumArgs)))
|
|
| PredArgs
|
|
] },
|
|
code_info__get_next_cell_number(ClosureCellNo),
|
|
{ Value = create(0, Vector, uniform(no), can_be_either,
|
|
ClosureCellNo, "closure") }
|
|
),
|
|
code_info__cache_expression(Var, Value).
|
|
|
|
:- pred unify_gen__generate_extra_closure_args(list(prog_var), lval, lval,
|
|
code_tree, code_info, code_info).
|
|
:- mode unify_gen__generate_extra_closure_args(in, in, in, out, in, out) is det.
|
|
|
|
unify_gen__generate_extra_closure_args([], _, _, empty) --> [].
|
|
unify_gen__generate_extra_closure_args([Var | Vars], LoopCounter,
|
|
NewClosure, Code) -->
|
|
code_info__produce_variable(Var, Code0, Value),
|
|
{ One = const(int_const(1)) },
|
|
{ Code1 = node([
|
|
assign(field(yes(0), lval(NewClosure), lval(LoopCounter)),
|
|
Value)
|
|
- "set new argument field",
|
|
assign(LoopCounter,
|
|
binop(+, lval(LoopCounter), One))
|
|
- "increment argument counter"
|
|
]) },
|
|
{ Code = tree(tree(Code0, Code1), Code2) },
|
|
unify_gen__generate_extra_closure_args(Vars, LoopCounter,
|
|
NewClosure, Code2).
|
|
|
|
:- pred unify_gen__generate_pred_args(list(prog_var), list(arg_info),
|
|
list(maybe(rval))).
|
|
:- mode unify_gen__generate_pred_args(in, in, out) is det.
|
|
|
|
unify_gen__generate_pred_args([], _, []).
|
|
unify_gen__generate_pred_args([_|_], [], _) :-
|
|
error("unify_gen__generate_pred_args: insufficient args").
|
|
unify_gen__generate_pred_args([Var | Vars], [ArgInfo | ArgInfos],
|
|
[Rval | Rvals]) :-
|
|
ArgInfo = arg_info(_, ArgMode),
|
|
( ArgMode = top_in ->
|
|
Rval = yes(var(Var))
|
|
;
|
|
Rval = no
|
|
),
|
|
unify_gen__generate_pred_args(Vars, ArgInfos, Rvals).
|
|
|
|
:- pred unify_gen__generate_cons_args(list(prog_var), list(type),
|
|
list(uni_mode), module_info, list(maybe(rval))).
|
|
:- mode unify_gen__generate_cons_args(in, in, in, in, out) is det.
|
|
|
|
unify_gen__generate_cons_args(Vars, Types, Modes, ModuleInfo, Args) :-
|
|
( unify_gen__generate_cons_args_2(Vars, Types, Modes, ModuleInfo,
|
|
Args0) ->
|
|
Args = Args0
|
|
;
|
|
error("unify_gen__generate_cons_args: length mismatch")
|
|
).
|
|
|
|
% Create a list of maybe(rval) for the arguments
|
|
% for a construction unification. For each argument which
|
|
% is input to the construction unification, we produce `yes(var(Var))',
|
|
% but if the argument is free, we just produce `no', meaning don't
|
|
% generate an assignment to that field.
|
|
|
|
:- pred unify_gen__generate_cons_args_2(list(prog_var), list(type),
|
|
list(uni_mode), module_info, list(maybe(rval))).
|
|
:- mode unify_gen__generate_cons_args_2(in, in, in, in, out) is semidet.
|
|
|
|
unify_gen__generate_cons_args_2([], [], [], _, []).
|
|
unify_gen__generate_cons_args_2([Var|Vars], [Type|Types], [UniMode|UniModes],
|
|
ModuleInfo, [Arg|RVals]) :-
|
|
UniMode = ((_LI - RI) -> (_LF - RF)),
|
|
( mode_to_arg_mode(ModuleInfo, (RI -> RF), Type, top_in) ->
|
|
Arg = yes(var(Var))
|
|
;
|
|
Arg = no
|
|
),
|
|
unify_gen__generate_cons_args_2(Vars, Types, UniModes, ModuleInfo,
|
|
RVals).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- pred unify_gen__var_types(list(prog_var), list(type), code_info, code_info).
|
|
:- mode unify_gen__var_types(in, out, in, out) is det.
|
|
|
|
unify_gen__var_types(Vars, Types) -->
|
|
code_info__get_proc_info(ProcInfo),
|
|
{ proc_info_vartypes(ProcInfo, VarTypes) },
|
|
{ map__apply_to_list(Vars, VarTypes, Types) }.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- pred unify_gen__make_fields_and_argvars(list(prog_var), rval, int, int,
|
|
list(uni_val), list(uni_val)).
|
|
:- mode unify_gen__make_fields_and_argvars(in, in, in, in, out, out) is det.
|
|
|
|
% Construct a pair of lists that associates the fields of
|
|
% a term with variables.
|
|
|
|
unify_gen__make_fields_and_argvars([], _, _, _, [], []).
|
|
unify_gen__make_fields_and_argvars([Var | Vars], Rval, Field0, TagNum,
|
|
[F | Fs], [A | As]) :-
|
|
F = lval(field(yes(TagNum), Rval, const(int_const(Field0)))),
|
|
A = ref(Var),
|
|
Field1 is Field0 + 1,
|
|
unify_gen__make_fields_and_argvars(Vars, Rval, Field1, TagNum, Fs, As).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Generate a deterministic deconstruction. In a deterministic
|
|
% deconstruction, we know the value of the tag, so we don't
|
|
% need to generate a test.
|
|
|
|
% Deconstructions are generated semi-eagerly. Any test sub-
|
|
% unifications are generated eagerly (they _must_ be), but
|
|
% assignment unifications are cached.
|
|
|
|
:- pred unify_gen__generate_det_deconstruction(prog_var, cons_id,
|
|
list(prog_var), list(uni_mode), code_tree,
|
|
code_info, code_info).
|
|
:- mode unify_gen__generate_det_deconstruction(in, in, in, in, out,
|
|
in, out) is det.
|
|
|
|
unify_gen__generate_det_deconstruction(Var, Cons, Args, Modes, Code) -->
|
|
code_info__cons_id_to_tag(Var, Cons, Tag),
|
|
% For constants, if the deconstruction is det, then we already know
|
|
% the value of the constant, so Code = empty.
|
|
(
|
|
{ Tag = string_constant(_String) },
|
|
{ Code = empty }
|
|
;
|
|
{ Tag = int_constant(_Int) },
|
|
{ Code = empty }
|
|
;
|
|
{ Tag = float_constant(_Float) },
|
|
{ Code = empty }
|
|
;
|
|
{ Tag = pred_closure_tag(_, _, _) },
|
|
{ Code = empty }
|
|
;
|
|
{ Tag = code_addr_constant(_, _) },
|
|
{ Code = empty }
|
|
;
|
|
{ Tag = type_ctor_info_constant(_, _, _) },
|
|
{ Code = empty }
|
|
;
|
|
{ Tag = base_typeclass_info_constant(_, _, _) },
|
|
{ Code = empty }
|
|
;
|
|
{ Tag = tabling_pointer_constant(_, _) },
|
|
{ Code = empty }
|
|
;
|
|
{ Tag = no_tag },
|
|
( { Args = [Arg], Modes = [Mode] } ->
|
|
code_info__variable_type(Arg, Type),
|
|
unify_gen__generate_sub_unify(ref(Var), ref(Arg),
|
|
Mode, Type, Code)
|
|
;
|
|
{ error("unify_gen__generate_det_deconstruction: no_tag: arity != 1") }
|
|
)
|
|
;
|
|
{ Tag = unshared_tag(UnsharedTag) },
|
|
{ Rval = var(Var) },
|
|
{ unify_gen__make_fields_and_argvars(Args, Rval, 0,
|
|
UnsharedTag, Fields, ArgVars) },
|
|
unify_gen__var_types(Args, ArgTypes),
|
|
unify_gen__generate_unify_args(Fields, ArgVars,
|
|
Modes, ArgTypes, Code)
|
|
;
|
|
{ Tag = shared_remote_tag(Bits0, _Num0) },
|
|
{ Rval = var(Var) },
|
|
{ unify_gen__make_fields_and_argvars(Args, Rval, 1,
|
|
Bits0, Fields, ArgVars) },
|
|
unify_gen__var_types(Args, ArgTypes),
|
|
unify_gen__generate_unify_args(Fields, ArgVars,
|
|
Modes, ArgTypes, Code)
|
|
;
|
|
{ Tag = shared_local_tag(_Bits1, _Num1) },
|
|
{ Code = empty } % if this is det, then nothing happens
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Generate a semideterministic deconstruction.
|
|
% A semideterministic deconstruction unification is tag-test
|
|
% followed by a deterministic deconstruction.
|
|
|
|
:- pred unify_gen__generate_semi_deconstruction(prog_var, cons_id,
|
|
list(prog_var), list(uni_mode), code_tree,
|
|
code_info, code_info).
|
|
:- mode unify_gen__generate_semi_deconstruction(in, in, in, in, out, in, out)
|
|
is det.
|
|
|
|
unify_gen__generate_semi_deconstruction(Var, Tag, Args, Modes, Code) -->
|
|
unify_gen__generate_tag_test(Var, Tag, branch_on_success,
|
|
SuccLab, TagTestCode),
|
|
code_info__remember_position(AfterUnify),
|
|
code_info__generate_failure(FailCode),
|
|
code_info__reset_to_position(AfterUnify),
|
|
unify_gen__generate_det_deconstruction(Var, Tag, Args, Modes,
|
|
DeconsCode),
|
|
{ SuccessLabelCode = node([
|
|
label(SuccLab) - ""
|
|
]) },
|
|
{ Code =
|
|
tree(TagTestCode,
|
|
tree(FailCode,
|
|
tree(SuccessLabelCode,
|
|
DeconsCode)))
|
|
}.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Generate code to perform a list of deterministic subunifications
|
|
% for the arguments of a construction.
|
|
|
|
:- pred unify_gen__generate_unify_args(list(uni_val), list(uni_val),
|
|
list(uni_mode), list(type), code_tree,
|
|
code_info, code_info).
|
|
:- mode unify_gen__generate_unify_args(in, in, in, in, out, in, out) is det.
|
|
|
|
unify_gen__generate_unify_args(Ls, Rs, Ms, Ts, Code) -->
|
|
( unify_gen__generate_unify_args_2(Ls, Rs, Ms, Ts, Code0) ->
|
|
{ Code = Code0 }
|
|
;
|
|
{ error("unify_gen__generate_unify_args: length mismatch") }
|
|
).
|
|
|
|
:- pred unify_gen__generate_unify_args_2(list(uni_val), list(uni_val),
|
|
list(uni_mode), list(type), code_tree,
|
|
code_info, code_info).
|
|
:- mode unify_gen__generate_unify_args_2(in, in, in, in, out, in, out)
|
|
is semidet.
|
|
|
|
unify_gen__generate_unify_args_2([], [], [], [], empty) --> [].
|
|
unify_gen__generate_unify_args_2([L|Ls], [R|Rs], [M|Ms], [T|Ts], Code) -->
|
|
unify_gen__generate_sub_unify(L, R, M, T, CodeA),
|
|
unify_gen__generate_unify_args_2(Ls, Rs, Ms, Ts, CodeB),
|
|
{ Code = tree(CodeA, CodeB) }.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Generate a subunification between two [field|variable].
|
|
|
|
:- pred unify_gen__generate_sub_unify(uni_val, uni_val, uni_mode, type,
|
|
code_tree, code_info, code_info).
|
|
:- mode unify_gen__generate_sub_unify(in, in, in, in, out, in, out) is det.
|
|
|
|
unify_gen__generate_sub_unify(L, R, Mode, Type, Code) -->
|
|
{ Mode = ((LI - RI) -> (LF - RF)) },
|
|
code_info__get_module_info(ModuleInfo),
|
|
{ mode_to_arg_mode(ModuleInfo, (LI -> LF), Type, LeftMode) },
|
|
{ mode_to_arg_mode(ModuleInfo, (RI -> RF), Type, RightMode) },
|
|
(
|
|
% Input - input == test unification
|
|
{ LeftMode = top_in },
|
|
{ RightMode = top_in }
|
|
->
|
|
% This shouldn't happen, since mode analysis should
|
|
% avoid creating any tests in the arguments
|
|
% of a construction or deconstruction unification.
|
|
{ error("test in arg of [de]construction") }
|
|
;
|
|
% Input - Output== assignment ->
|
|
{ LeftMode = top_in },
|
|
{ RightMode = top_out }
|
|
->
|
|
unify_gen__generate_sub_assign(R, L, Code)
|
|
;
|
|
% Input - Output== assignment <-
|
|
{ LeftMode = top_out },
|
|
{ RightMode = top_in }
|
|
->
|
|
unify_gen__generate_sub_assign(L, R, Code)
|
|
;
|
|
{ LeftMode = top_unused },
|
|
{ RightMode = top_unused }
|
|
->
|
|
{ Code = empty } % free-free - ignore
|
|
% XXX I think this will have to change
|
|
% if we start to support aliasing
|
|
;
|
|
{ error("unify_gen__generate_sub_unify: some strange unify") }
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- pred unify_gen__generate_sub_assign(uni_val, uni_val, code_tree,
|
|
code_info, code_info).
|
|
:- mode unify_gen__generate_sub_assign(in, in, out, in, out) is det.
|
|
|
|
% Assignment between two lvalues - cannot cache [yet]
|
|
% so generate immediate code
|
|
% If the destination of the assignment contains any vars,
|
|
% we need to materialize those before we can do the assignment.
|
|
unify_gen__generate_sub_assign(lval(Lval0), lval(Rval), Code) -->
|
|
code_info__materialize_vars_in_rval(lval(Lval0), NewLval,
|
|
MaterializeCode),
|
|
(
|
|
{ NewLval = lval(Lval) }
|
|
->
|
|
{ Code = tree(MaterializeCode, node([
|
|
assign(Lval, lval(Rval)) - "Copy field"
|
|
])) }
|
|
;
|
|
{ error("unify_gen__generate_sub_assign: lval vanished with lval") }
|
|
).
|
|
% assignment from a variable to an lvalue - cannot cache
|
|
% so generate immediately
|
|
unify_gen__generate_sub_assign(lval(Lval0), ref(Var), Code) -->
|
|
code_info__produce_variable(Var, SourceCode, Source),
|
|
code_info__materialize_vars_in_rval(lval(Lval0), NewLval,
|
|
MaterializeCode),
|
|
(
|
|
{ NewLval = lval(Lval) }
|
|
->
|
|
{ Code = tree(
|
|
tree(SourceCode, MaterializeCode),
|
|
node([
|
|
assign(Lval, Source) - "Copy value"
|
|
])
|
|
) }
|
|
;
|
|
{ error("unify_gen__generate_sub_assign: lval vanished with ref") }
|
|
).
|
|
% assignment to a variable, so cache it.
|
|
unify_gen__generate_sub_assign(ref(Var), lval(Rval), empty) -->
|
|
(
|
|
code_info__variable_is_forward_live(Var)
|
|
->
|
|
code_info__cache_expression(Var, lval(Rval))
|
|
;
|
|
{ true }
|
|
).
|
|
% assignment to a variable, so cache it.
|
|
unify_gen__generate_sub_assign(ref(Lvar), ref(Rvar), empty) -->
|
|
(
|
|
code_info__variable_is_forward_live(Lvar)
|
|
->
|
|
code_info__cache_expression(Lvar, var(Rvar))
|
|
;
|
|
{ true }
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- pred unify_gen__var_type_msg(type, string).
|
|
:- mode unify_gen__var_type_msg(in, out) is det.
|
|
|
|
unify_gen__var_type_msg(Type, Msg) :-
|
|
( type_to_type_id(Type, TypeId, _) ->
|
|
TypeId = TypeSym - TypeArity,
|
|
prog_out__sym_name_to_string(TypeSym, TypeSymStr),
|
|
string__int_to_string(TypeArity, TypeArityStr),
|
|
string__append_list([TypeSymStr, "/", TypeArityStr], Msg)
|
|
;
|
|
error("type is still a type variable in var_type_msg")
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
%---------------------------------------------------------------------------%
|