Files
mercury/compiler/ml_optimize.m
Julien Fischer 00d8243570 General improvements and bug fixes to the MLDS backend, most
Estimated hours taken: 20

General improvements and bug fixes to the MLDS backend, most
of which were prompted by working on the Java backend.

The definition of mlds__lval now includes type information for
variables.  This is necessary because if enumerations are treated
as objects (as in the Java backend) rather than integers we need to know
when to create new objects.  At the level this occurs there was
previously no way to distinguish between an integer that is an integer,
and one that represents an enumeration.

Added the access specifier `local' to the declaration flags.  This fixes
a bug in which the local variables of a function were being declared
`private'.

Redefined ctor_name so that they are fully qualified.  This was necessary
because the Java backend represents discriminated unions as nested
classes and we need to be able to determine the fully qualified name of
the constructor in order to call it, do casts, etc.

Added `mlds__unknown_type' to `mlds__type'.  This is due to the change
in the definition of mlds_lval above.  In ml_code_util.m, env_ptr's are
created as dangling references.  The new definition of mlds__lval expects
there to be a type as well, but at this point it hasn't been
generated (and won't be until the ml_elim_nested pass).  Rather than just
guess the type we should declare the type to be unknown and print out an
error message if an unknown type makes it through to one of the backends.

Fixed a bug in the `--det-copy-out' option.

Shifted code for detecting entry point to main/2 from mercury_compile.m
to ml_util.m

compiler/mercury_compile.m:
compiler/ml_util.m:
	Shifted code for detecting entry point to main/2 from mercury_compile.m
	to ml_util.m
compiler/mlds.m:
	Added `local' as an access specifier.
	Extended definition of mlds__lval to include type information
	for variables.
	Added `mlds__unknown_type' to the mlds types so that when
	the compiler generates variables without yet knowing their
	type we can mark them as this, rather than hoping that the
	correct types eventually get added.
	Redefined ctor_name so that it is fully qualified.
	Made changes to comments to reflect above changes.

compiler/ml_code_gen.m:
	Mark the generated functions as `one_copy' rather than `per_instance',
	so that they get generated as static methods for the Java back-end.
	Fixed a bug with the --det-copy-out option.

compiler/ml_code_util.m:
	Fixed a bug that was causing the wrong declaration flags to be
	set for fields in du constructors.
	Changed the name of the predicate `ml_qualify_var' to
	`ml_gen_var_lval'.

compiler/ml_type_gen.m:
	Mark the generated types as `one_copy' rather than `per_instance',
	so that they get generated as static nested classes for the Java
	back-end.
	Changed comments to reflect that classes and enumeration constants
	should be static.
	Export functions that generate declaration flags because they
	are used in other modules as well.
	Added a new predicate `ml_gen_mlds_field_decl' that correctly
	generates fields of classes in discriminated unions.

compiler/ml_unify_gen.m:
	Changed the code that generates ctor_id's so that it generates
	the new sort.

compiler/ml_call_gen.m:
compiler/ml_elim_nested.m:
compiler/ml_optimize.m:
compiler/ml_string_switch.m:
compiler/ml_tailcall.m:
compiler/mlds_to_il.m:
compiler/mlds_to_c.m:
compiler/mlds_to_gcc.m:
compiler/mlds_to_ilasm.m:
compiler/rtti_to_mlds.m:
	Fixed things so that they conform to the changes above.
2001-02-20 07:52:19 +00:00

502 lines
15 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 2000-2001 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: ml_optimize.m
% Main author: trd, fjh
% This module runs various optimizations on the MLDS.
%
% Currently the optimizations we do here are
% - turning tailcalls into loops;
% - converting assignments to local variables into variable initializers.
%
% Note that tailcall detection is done in ml_tailcall.m.
% It might be nice to move the detection here, and do both the
% loop transformation (in the case of self-tailcalls) and marking
% tailcalls at the same time.
%
% Ultimately this module should just consist of a skeleton to traverse
% the MLDS, and should call various optimization modules along the way.
%
% It would probably be a good idea to make each transformation optional.
% Previously the tailcall transformation depended on emit_c_loops, but
% this is a bit misleading given the documentation of emit_c_loops.
%-----------------------------------------------------------------------------%
:- module ml_optimize.
:- interface.
:- import_module mlds, io.
:- pred optimize(mlds, mlds, io__state, io__state).
:- mode optimize(in, out, di, uo) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module ml_util, ml_code_util.
:- import_module builtin_ops, globals, options, error_util.
:- import_module bool, list, require, std_util, string.
:- type opt_info --->
opt_info(
globals :: globals,
module_name :: mlds_module_name,
entity_name :: mlds__entity_name,
func_params :: mlds__func_params,
context :: mlds__context
).
% The label name we use for the top of the loop introduced by
% tailcall optimization.
:- func tailcall_loop_label_name = string.
tailcall_loop_label_name = "loop_top".
optimize(MLDS0, MLDS) -->
globals__io_get_globals(Globals),
{ MLDS0 = mlds(ModuleName, ForeignCode, Imports, Defns0) },
{ Defns = optimize_in_defns(Defns0, Globals,
mercury_module_name_to_mlds(ModuleName)) },
{ MLDS = mlds(ModuleName, ForeignCode, Imports, Defns) }.
:- func optimize_in_defns(mlds__defns, globals, mlds_module_name)
= mlds__defns.
optimize_in_defns(Defns, Globals, ModuleName) =
list__map(optimize_in_defn(ModuleName, Globals), Defns).
:- func optimize_in_defn(mlds_module_name, globals, mlds__defn) = mlds__defn.
optimize_in_defn(ModuleName, Globals, Defn0) = Defn :-
Defn0 = mlds__defn(Name, Context, Flags, DefnBody0),
(
DefnBody0 = mlds__function(PredProcId, Params, FuncBody0),
OptInfo = opt_info(Globals, ModuleName, Name, Params, Context),
FuncBody1 = optimize_func(OptInfo, FuncBody0),
FuncBody = optimize_in_maybe_statement(OptInfo, FuncBody1),
DefnBody = mlds__function(PredProcId, Params, FuncBody),
Defn = mlds__defn(Name, Context, Flags, DefnBody)
;
DefnBody0 = mlds__data(_, _),
Defn = Defn0
;
DefnBody0 = mlds__class(ClassDefn0),
ClassDefn0 = class_defn(Kind, Imports, BaseClasses, Implements,
MemberDefns0),
MemberDefns = optimize_in_defns(MemberDefns0, Globals,
ModuleName),
ClassDefn = class_defn(Kind, Imports, BaseClasses, Implements,
MemberDefns),
DefnBody = mlds__class(ClassDefn),
Defn = mlds__defn(Name, Context, Flags, DefnBody)
).
:- func optimize_in_maybe_statement(opt_info,
maybe(mlds__statement)) = maybe(mlds__statement).
optimize_in_maybe_statement(_, no) = no.
optimize_in_maybe_statement(OptInfo, yes(Statement0)) = yes(Statement) :-
Statement = optimize_in_statement(OptInfo, Statement0).
:- func optimize_in_statements(opt_info, list(mlds__statement)) =
list(mlds__statement).
optimize_in_statements(OptInfo, Statements) =
list__map(optimize_in_statement(OptInfo), Statements).
:- func optimize_in_statement(opt_info, mlds__statement) =
mlds__statement.
optimize_in_statement(OptInfo, statement(Stmt, Context)) =
statement(optimize_in_stmt(OptInfo ^ context := Context, Stmt),
Context).
:- func optimize_in_stmt(opt_info, mlds__stmt) = mlds__stmt.
optimize_in_stmt(OptInfo, Stmt0) = Stmt :-
(
Stmt0 = call(_, _, _, _, _, _),
Stmt = optimize_in_call_stmt(OptInfo, Stmt0)
;
Stmt0 = block(Defns0, Statements0),
convert_assignments_into_initializers(Defns0, Statements0,
OptInfo, Defns, Statements1),
Statements = optimize_in_statements(OptInfo, Statements1),
Stmt = block(Defns, Statements)
;
Stmt0 = while(Rval, Statement0, Once),
Stmt = while(Rval, optimize_in_statement(OptInfo,
Statement0), Once)
;
Stmt0 = if_then_else(Rval, Then, MaybeElse),
Stmt = if_then_else(Rval,
optimize_in_statement(OptInfo, Then),
maybe_apply(optimize_in_statement(OptInfo), MaybeElse))
;
Stmt0 = switch(Type, Rval, Range, Cases0, Default0),
Stmt = switch(Type, Rval, Range,
list__map(optimize_in_case(OptInfo), Cases0),
optimize_in_default(OptInfo, Default0))
;
Stmt0 = do_commit(_),
Stmt = Stmt0
;
Stmt0 = return(_),
Stmt = Stmt0
;
Stmt0 = try_commit(Ref, TryGoal, HandlerGoal),
Stmt = try_commit(Ref,
optimize_in_statement(OptInfo, TryGoal),
optimize_in_statement(OptInfo, HandlerGoal))
;
Stmt0 = label(_Label),
Stmt = Stmt0
;
Stmt0 = goto(_Label),
Stmt = Stmt0
;
Stmt0 = computed_goto(_Rval, _Label),
Stmt = Stmt0
;
Stmt0 = atomic(_Atomic),
Stmt = Stmt0
).
:- func optimize_in_case(opt_info, mlds__switch_case) = mlds__switch_case.
optimize_in_case(OptInfo, Conds - Statement0) = Conds - Statement :-
Statement = optimize_in_statement(OptInfo, Statement0).
:- func optimize_in_default(opt_info, mlds__switch_default) =
mlds__switch_default.
optimize_in_default(_OptInfo, default_is_unreachable) = default_is_unreachable.
optimize_in_default(_OptInfo, default_do_nothing) = default_do_nothing.
optimize_in_default(OptInfo, default_case(Statement0)) =
default_case(Statement) :-
Statement = optimize_in_statement(OptInfo, Statement0).
%-----------------------------------------------------------------------------%
:- func optimize_in_call_stmt(opt_info, mlds__stmt) = mlds__stmt.
optimize_in_call_stmt(OptInfo, Stmt0) = Stmt :-
% If we have a self-tailcall, assign to the arguments and
% then goto the top of the tailcall loop.
(
Stmt0 = call(_Signature, _FuncRval, _MaybeObject, CallArgs,
_Results, _IsTailCall),
can_optimize_tailcall(qual(OptInfo ^ module_name,
OptInfo ^ entity_name), Stmt0)
->
CommentStatement = statement(
atomic(comment("direct tailcall eliminated")),
OptInfo ^ context),
GotoStatement = statement(goto(tailcall_loop_label_name),
OptInfo ^ context),
OptInfo ^ func_params = mlds__func_params(FuncArgs, _RetTypes),
generate_assign_args(OptInfo, FuncArgs, CallArgs,
AssignStatements, AssignDefns),
AssignVarsStatement = statement(block(AssignDefns,
AssignStatements), OptInfo ^ context),
CallReplaceStatements = [
CommentStatement,
AssignVarsStatement,
GotoStatement
],
Stmt = block([], CallReplaceStatements)
;
Stmt = Stmt0
).
%----------------------------------------------------------------------------
% Assign the specified list of rvals to the arguments.
% This is used as part of tail recursion optimization (see above).
:- pred generate_assign_args(opt_info, mlds__arguments, list(mlds__rval),
list(mlds__statement), list(mlds__defn)).
:- mode generate_assign_args(in, in, in, out, out) is det.
generate_assign_args(_, [_|_], [], [], []) :-
error("generate_assign_args: length mismatch").
generate_assign_args(_, [], [_|_], [], []) :-
error("generate_assign_args: length mismatch").
generate_assign_args(_, [], [], [], []).
generate_assign_args(OptInfo,
[Name - Type | Rest], [Arg | Args], Statements, TempDefns) :-
(
%
% extract the variable name
%
Name = data(var(VarName))
->
QualVarName = qual(OptInfo ^ module_name, VarName),
(
%
% don't bother assigning a variable to itself
%
Arg = lval(var(QualVarName, _VarType))
->
generate_assign_args(OptInfo, Rest, Args,
Statements, TempDefns)
;
% Declare a temporary variable, initialized it
% to the arg, recursively process the remaining
% args, and then assign the temporary to the
% parameter:
%
% SomeType argN__tmp_copy = new_argN_value;
% ...
% new_argN_value = argN_tmp_copy;
%
% The temporaries are needed for the case where
% we are e.g. assigning v1, v2 to v2, v1;
% they ensure that we don't try to reference the old
% value of a parameter after it has already been
% clobbered by the new value.
string__append(VarName, "__tmp_copy", TempName),
QualTempName = qual(OptInfo ^ module_name,
TempName),
Initializer = init_obj(Arg),
TempDefn = ml_gen_mlds_var_decl(var(TempName),
Type, Initializer, OptInfo ^ context),
Statement = statement(
atomic(assign(
var(QualVarName, Type),
lval(var(QualTempName, Type)))),
OptInfo ^ context),
generate_assign_args(OptInfo, Rest, Args, Statements0,
TempDefns0),
Statements = [Statement | Statements0],
TempDefns = [TempDefn | TempDefns0]
)
;
error("generate_assign_args: function param is not a var")
).
%----------------------------------------------------------------------------
:- func optimize_func(opt_info, maybe(mlds__statement))
= maybe(mlds__statement).
optimize_func(OptInfo, MaybeStatement) =
maybe_apply(optimize_func_stmt(OptInfo), MaybeStatement).
:- func optimize_func_stmt(opt_info,
mlds__statement) = (mlds__statement).
optimize_func_stmt(OptInfo, mlds__statement(Stmt0, Context)) =
mlds__statement(Stmt, Context) :-
% Tailcall optimization -- if we do a self tailcall, we
% can turn it into a loop.
(
stmt_contains_statement(Stmt0, Call),
Call = mlds__statement(CallStmt, _),
can_optimize_tailcall(
qual(OptInfo ^ module_name, OptInfo ^ entity_name),
CallStmt)
->
Comment = atomic(comment("tailcall optimized into a loop")),
Label = label(tailcall_loop_label_name),
Stmt = block([], [statement(Comment, Context),
statement(Label, Context),
statement(Stmt0, Context)])
;
Stmt = Stmt0
).
%-----------------------------------------------------------------------------%
%
% This code implements the --optimize-initializations option.
% It converts MLDS code using assignments, e.g.
%
% {
% int v1; // or any other type -- it doesn't have to be int
% int v2;
% int v3;
% int v4;
% int v5;
%
% v1 = 1;
% v2 = 2;
% v3 = 3;
% foo();
% v4 = 4;
% ...
% }
%
% into code that instead uses initializers, e.g.
%
% {
% int v1 = 1;
% int v2 = 2;
% int v3 = 3;
% int v4;
%
% foo();
% v4 = 4;
% ...
% }
%
% Note that if there are multiple initializations of the same
% variable, then we'll apply the optimization successively,
% replacing the existing initializers as we go, and keeping
% only the last, e.g.
%
% int v = 1;
% v = 2;
% v = 3;
% ...
%
% will get replaced with
%
% int v = 3;
% ...
%
% We need to watch out for some tricky cases that can't be safely optimized.
% If the RHS of the assignment refers to a variable which was declared after
% the variable whose initialization we're optimizing, e.g.
%
% int v1 = 1;
% int v2 = 0;
% v1 = v2 + 1; // RHS refers to variable declared after v1
%
% then we can't do the optimization because it would cause a forward reference
%
% int v1 = v2 + 1; // error -- v2 not declared yet!
% int v2 = 0;
%
% Likewise if the RHS refers to the variable itself
%
% int v1 = 1;
% v1 = v1 + 1;
%
% then we can't optimize it, because that would be bogus:
%
% int v1 = v1 + 1; // error -- v1 not initialized yet!
%
% Similarly, if the initializers of the variables that follow
% the one we're trying to optimize refer to it, e.g.
%
% int v1 = 1;
% int v2 = v1 + 1; // here v2 == 2
% v1 = 0;
% ...
%
% then we can't eliminate the assignment, because that would produce
% different results:
%
% int v1 = 0;
% int v2 = v1 + 1; // wrong -- v2 == 1
% ...
:- pred convert_assignments_into_initializers(mlds__defns, mlds__statements,
opt_info, mlds__defns, mlds__statements).
:- mode convert_assignments_into_initializers(in, in, in, out, out) is det.
convert_assignments_into_initializers(Defns0, Statements0, OptInfo,
Defns, Statements) :-
(
% Check if --optimize-initializations is enabled
globals__lookup_bool_option(OptInfo ^ globals,
optimize_initializations, yes),
% Check if the first statement in the block is
% an assignment to one of the variables declared in
% the block.
Statements0 = [AssignStatement | Statements1],
AssignStatement = statement(atomic(assign(LHS, RHS)), _),
LHS = var(ThisVar, _ThisType),
ThisVar = qual(Qualifier, VarName),
Qualifier = OptInfo ^ module_name,
list__takewhile(isnt(var_defn(VarName)), Defns0,
_PrecedingDefns, [_VarDefn | FollowingDefns]),
% We must check that the value being assigned
% doesn't refer to the variable itself, or to any
% of the variables which are declared after this one.
% We must also check that the initializers (if any)
% of the variables that follow this one don't
% refer to this variable.
\+ rval_contains_var(RHS, ThisVar),
\+ (
list__member(OtherDefn, FollowingDefns),
OtherDefn = mlds__defn(data(var(OtherVarName)),
_, _, data(_Type, OtherInitializer)),
( rval_contains_var(RHS, qual(Qualifier, OtherVarName))
; initializer_contains_var(OtherInitializer, ThisVar)
)
)
->
% Replace the assignment statement with an initializer
% on the variable declaration.
set_initializer(Defns0, VarName, RHS, Defns1),
% Now try to apply the same optimization again
convert_assignments_into_initializers(Defns1, Statements1,
OptInfo, Defns, Statements)
;
% No optimization possible -- leave the block unchanged.
Defns = Defns0,
Statements = Statements0
).
:- pred var_defn(var_name::in, mlds__defn::in) is semidet.
var_defn(VarName, Defn) :-
Defn = mlds__defn(data(var(VarName)), _, _, _).
% set_initializer(Defns0, VarName, Rval, Defns):
% Finds the first definition of the specified variable
% in Defns0, and replaces the initializer of that
% definition with init_obj(Rval).
%
:- pred set_initializer(mlds__defns, mlds__var_name, mlds__rval, mlds__defns).
:- mode set_initializer(in, in, in, out) is det.
set_initializer([], _, _, _) :-
unexpected(this_file, "set_initializer: var not found!").
set_initializer([Defn0 | Defns0], VarName, Rval, [Defn | Defns]) :-
Defn0 = mlds__defn(Name, Context, Flags, DefnBody0),
(
Name = data(var(VarName)),
DefnBody0 = mlds__data(Type, _OldInitializer)
->
DefnBody = mlds__data(Type, init_obj(Rval)),
Defn = mlds__defn(Name, Context, Flags, DefnBody),
Defns = Defns0
;
Defn = Defn0,
set_initializer(Defns0, VarName, Rval, Defns)
).
%-----------------------------------------------------------------------------%
% Maps T into V, inside a maybe .
:- func maybe_apply(func(T) = V, maybe(T)) = maybe(V).
maybe_apply(_, no) = no.
maybe_apply(F, yes(T)) = yes(F(T)).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "ml_optimize.m".
:- end_module ml_optimize.
%-----------------------------------------------------------------------------%