Files
mercury/compiler/modecheck_unify.m
Zoltan Somogyi 6d1bc24d0b Make vartypes an abstract data type, in preparation for exploring
Estimated hours taken: 4
Branches: main

compiler/prog_data.m:
	Make vartypes an abstract data type, in preparation for exploring
	better representations for it.

compiler/mode_util.m:
	Provide two different versions of a predicate. The generic version
	continues to use map lookups. The other version knows it works on
	prog_vars, so it can use the abstract operations on them provided
	by prog_data.m.

compiler/accumulator.m:
compiler/add_class.m:
compiler/add_heap_ops.m:
compiler/add_pragma.m:
compiler/add_pred.m:
compiler/add_trail_ops.m:
compiler/arg_info.m:
compiler/builtin_lib_types.m:
compiler/bytecode_gen.m:
compiler/call_gen.m:
compiler/clause_to_proc.m:
compiler/closure_analysis.m:
compiler/code_info.m:
compiler/common.m:
compiler/complexity.m:
compiler/const_prop.m:
compiler/constraint.m:
compiler/continuation_info.m:
compiler/cse_detection.m:
compiler/ctgc.datastruct.m:
compiler/ctgc.util.m:
compiler/deep_profiling.m:
compiler/deforest.m:
compiler/dep_par_conj.m:
compiler/det_analysis.m:
compiler/det_report.m:
compiler/det_util.m:
compiler/disj_gen.m:
compiler/equiv_type_hlds.m:
compiler/erl_call_gen.m:
compiler/erl_code_gen.m:
compiler/erl_code_util.m:
compiler/exception_analysis.m:
compiler/float_regs.m:
compiler/follow_vars.m:
compiler/format_call.m:
compiler/goal_path.m:
compiler/goal_util.m:
compiler/hhf.m:
compiler/higher_order.m:
compiler/hlds_clauses.m:
compiler/hlds_goal.m:
compiler/hlds_out_goal.m:
compiler/hlds_out_pred.m:
compiler/hlds_pred.m:
compiler/hlds_rtti.m:
compiler/inlining.m:
compiler/instmap.m:
compiler/intermod.m:
compiler/interval.m:
compiler/lambda.m:
compiler/lco.m:
compiler/live_vars.m:
compiler/liveness.m:
compiler/lookup_switch.m:
compiler/mercury_to_mercury.m:
compiler/ml_accurate_gc.m:
compiler/ml_closure_gen.m:
compiler/ml_code_gen.m:
compiler/ml_code_util.m:
compiler/ml_disj_gen.m:
compiler/ml_lookup_switch.m:
compiler/ml_proc_gen.m:
compiler/ml_unify_gen.m:
compiler/mode_info.m:
compiler/modecheck_call.m:
compiler/modecheck_conj.m:
compiler/modecheck_goal.m:
compiler/modecheck_unify.m:
compiler/modecheck_util.m:
compiler/modes.m:
compiler/par_loop_control.m:
compiler/pd_info.m:
compiler/pd_util.m:
compiler/polymorphism.m:
compiler/post_typecheck.m:
compiler/prog_type_subst.m:
compiler/prop_mode_constraints.m:
compiler/purity.m:
compiler/qual_info.m:
compiler/rbmm.points_to_info.m:
compiler/rbmm.region_liveness_info.m:
compiler/rbmm.region_transformation.m:
compiler/saved_vars.m:
compiler/simplify.m:
compiler/size_prof.m:
compiler/ssdebug.m:
compiler/stack_alloc.m:
compiler/stack_opt.m:
compiler/store_alloc.m:
compiler/structure_reuse.analysis.m:
compiler/structure_reuse.direct.choose_reuse.m:
compiler/structure_reuse.direct.detect_garbage.m:
compiler/structure_reuse.indirect.m:
compiler/structure_sharing.analysis.m:
compiler/structure_sharing.domain.m:
compiler/switch_detection.m:
compiler/table_gen.m:
compiler/term_constr_build.m:
compiler/term_constr_util.m:
compiler/term_traversal.m:
compiler/term_util.m:
compiler/trace_gen.m:
compiler/trailing_analysis.m:
compiler/try_expand.m:
compiler/tupling.m:
compiler/type_constraints.m:
compiler/type_util.m:
compiler/typecheck.m:
compiler/typecheck_errors.m:
compiler/typecheck_info.m:
compiler/unify_gen.m:
compiler/unify_proc.m:
compiler/unique_modes.m:
compiler/untupling.m:
compiler/unused_args.m:
compiler/var_locn.m:
	Conform to the above.

compiler/prog_type.m:
compiler/rbmm.points_to_graph.m:
	Conform to the above.

	Move some comments where they belong.

compiler/stm_expand.m:
	Conform to the above.

	Do not export a predicate that is not used outside this module.

	Disable some debugging output unless it is asked for.

	Remove unnecessary prefixes on variable names.

library/version_array.m:
	Instead writing code for field access lookalike functions and defining
	lookup, set etc in terms of them, write code for lookup, set etc,
	and define the field access lookalike functions in terms of them.

	Change argument orders of some internal predicates to be
	more state variable friendly.

	Fix typos in comments.

tests/hard_coded/version_array_test.exp:
	Conform to the change to version_array.m.
2012-07-02 01:16:39 +00:00

1767 lines
74 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2012 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: modecheck_unify.m.
% Main author: fjh.
%
% This module contains the code to modecheck a unification.
%
% Check that the unification doesn't attempt to unify two free variables
% (or in general two free sub-terms) unless one of them is dead. (Also we
% ought to split unifications up if necessary to avoid complicated
% sub-unifications.)
%
%-----------------------------------------------------------------------------%
:- module check_hlds.modecheck_unify.
:- interface.
:- import_module check_hlds.mode_info.
:- import_module hlds.
:- import_module hlds.hlds_goal.
:- import_module parse_tree.prog_data.
% Modecheck a unification.
%
:- pred modecheck_unification(prog_var::in, unify_rhs::in, unification::in,
unify_context::in, hlds_goal_info::in, hlds_goal_expr::out,
mode_info::in, mode_info::out) is det.
% Create a unification between the two given variables.
% The goal's mode and determinism information are not filled in.
%
:- pred create_var_var_unification(prog_var::in, prog_var::in,
mer_type::in, mode_info::in, hlds_goal::out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds.inst_match.
:- import_module check_hlds.inst_util.
:- import_module check_hlds.mode_debug.
:- import_module check_hlds.mode_errors.
:- import_module check_hlds.mode_info.
:- import_module check_hlds.mode_util.
:- import_module check_hlds.modecheck_goal.
:- import_module check_hlds.modecheck_util.
:- import_module check_hlds.modes.
:- import_module check_hlds.polymorphism.
:- import_module check_hlds.type_util.
:- import_module check_hlds.unify_proc.
:- import_module check_hlds.unique_modes.
:- import_module hlds.const_struct.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module hlds.instmap.
:- import_module libs.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module mdbcomp.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.
:- import_module parse_tree.builtin_lib_types.
:- import_module parse_tree.prog_mode.
:- import_module parse_tree.prog_type.
:- import_module parse_tree.set_of_var.
:- import_module assoc_list.
:- import_module bool.
:- import_module list.
:- import_module map.
:- import_module maybe.
:- import_module pair.
:- import_module require.
:- import_module set.
:- import_module string.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
% If a unification occurs in a negated context with an inst "any" argument
% then it has an explicit `impure' annotation.
%
% With lambdas, the lambda itself has a higher-order any inst if it
% includes any inst "any" nonlocals. The value of the lambda expression
% does not become fixed until all of the nonlocals become fixed.
% Executing such a lambda may constrain nonlocal solver variables,
% which in turn constrains the higher-order value itself. Effectively,
% call/N constrains the predicate value to be "some predicate that is
% true for the given arguments", and apply/N constrains the function
% value to be "some function that returns the given value for the given
% arguments".
%
% But we also allow a ground higher-order inst to be used with non-ground
% locals, provided the type of the higher-order value is impure.
%
modecheck_unification(LHSVar, RHS, Unification0, UnifyContext, UnifyGoalInfo0,
Goal, !ModeInfo) :-
(
RHS = rhs_var(RHSVar),
modecheck_unification_var(LHSVar, RHSVar,
Unification0, UnifyContext, UnifyGoalInfo0, Goal, !ModeInfo)
;
RHS = rhs_functor(ConsId, IsExistConstr, RHSVars),
modecheck_unification_functor(LHSVar, ConsId, IsExistConstr, RHSVars,
Unification0, UnifyContext, UnifyGoalInfo0, Goal, !ModeInfo)
;
RHS = rhs_lambda_goal(Purity, HOGroundness, _PredOrFunc,
_LambdaEvalMethod, LambdaNonLocals, _LambdaQuantVars, _ArgModes,
_Detism, _LambdaGoal),
(
Purity \= purity_impure,
HOGroundness = ho_ground,
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
mode_info_get_instmap(!.ModeInfo, InstMap),
AnyVars = list.filter(var_inst_contains_any(ModuleInfo, InstMap),
LambdaNonLocals),
AnyVars = [_ | _]
->
set_of_var.init(WaitingVars),
mode_info_error(WaitingVars,
purity_error_lambda_should_be_any(AnyVars), !ModeInfo),
Goal = conj(plain_conj, [])
;
(
goal_info_has_feature(UnifyGoalInfo0,
feature_lambda_undetermined_mode)
->
modecheck_unification_rhs_undetermined_mode_lambda(LHSVar,
RHS, Unification0, UnifyContext, UnifyGoalInfo0, Goal,
!ModeInfo)
;
modecheck_unification_rhs_lambda(LHSVar,
RHS, Unification0, UnifyContext, UnifyGoalInfo0, Goal,
!ModeInfo)
)
)
).
%-----------------------------------------------------------------------------%
:- pred modecheck_unification_var(prog_var::in, prog_var::in, unification::in,
unify_context::in, hlds_goal_info::in, hlds_goal_expr::out,
mode_info::in, mode_info::out) is det.
modecheck_unification_var(X, Y, Unification0, UnifyContext,
UnifyGoalInfo0, UnifyGoalExpr, !ModeInfo) :-
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
mode_info_get_var_types(!.ModeInfo, VarTypes),
mode_info_get_instmap(!.ModeInfo, InstMap0),
instmap_lookup_var(InstMap0, X, InstOfX0),
instmap_lookup_var(InstMap0, Y, InstOfY0),
% If X and Y are free and have a solver type and we are allowed to
% insert initialisation calls at this point, then do so to allow
% scheduling of the unification.
(
mode_info_solver_init_is_supported(!.ModeInfo),
mode_info_may_init_solver_vars(!.ModeInfo),
InstOfX0 = free,
InstOfY0 = free,
search_var_type(VarTypes, X, VarType),
type_is_solver_type_with_auto_init(ModuleInfo0, VarType)
->
construct_initialisation_call(X, VarType, any_inst,
context_init, no, InitXGoal, !ModeInfo),
MaybeInitX = yes(InitXGoal),
instmap_set_var(X, any_inst, InstMap0, InstMap),
InstOfX = any_inst,
InstOfY = InstOfY0
;
MaybeInitX = no,
InstMap = InstMap0,
InstOfX = InstOfX0,
InstOfY = InstOfY0
),
mode_info_var_is_live(!.ModeInfo, X, LiveX),
mode_info_var_is_live(!.ModeInfo, Y, LiveY),
(
( LiveX = is_live, LiveY = is_live ->
BothLive = is_live
;
BothLive = is_dead
),
abstractly_unify_inst(BothLive, InstOfX, InstOfY, real_unify,
UnifyInst, Det1, ModuleInfo0, ModuleInfo1),
% Don't allow free-free unifications if both variables are locked.
% (Normally the checks for binding locked variables are done in
% modecheck_set_var_inst, which is called below, but that won't catch
% this case, because the inst of the variable will remain `free'.
% XXX are there other cases like this one?)
\+ (
UnifyInst = free,
mode_info_var_is_locked(!.ModeInfo, X, _XLockedReason),
mode_info_var_is_locked(!.ModeInfo, Y, _YLockedReason),
% a unification of the form `X = X' doesn't bind X,
% and thus should be allowed even if X is locked
X \= Y
)
->
Inst = UnifyInst,
Det = Det1,
mode_info_set_module_info(ModuleInfo1, !ModeInfo),
modecheck_set_var_inst(X, Inst, yes(InstOfY), !ModeInfo),
modecheck_set_var_inst(Y, Inst, yes(InstOfX), !ModeInfo),
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
categorize_unify_var_var(ModeOfX, ModeOfY, LiveX, LiveY, X, Y,
Det, UnifyContext, UnifyGoalInfo0, VarTypes, Unification0,
UnifyGoalExpr0, !ModeInfo),
(
MaybeInitX = no,
UnifyGoalExpr = UnifyGoalExpr0
;
MaybeInitX = yes(InitGoal),
compute_goal_instmap_delta(InstMap, UnifyGoalExpr0,
UnifyGoalInfo0, UnifyGoalInfo, !ModeInfo),
UnifySubGoal = hlds_goal(UnifyGoalExpr0, UnifyGoalInfo),
UnifyGoalExpr = conj(plain_conj, [InitGoal, UnifySubGoal])
)
;
set_of_var.list_to_set([X, Y], WaitingVars),
ModeError = mode_error_unify_var_var(X, Y, InstOfX, InstOfY),
mode_info_error(WaitingVars, ModeError, !ModeInfo),
% If we get an error, set the inst to not_reached to suppress
% follow-on errors. But don't call categorize_unification, because
% that could cause an invalid call to `unify_proc.request_unify'
Inst = not_reached,
modecheck_set_var_inst(X, Inst, no, !ModeInfo),
modecheck_set_var_inst(Y, Inst, no, !ModeInfo),
% Return any old garbage.
Unification = assign(X, Y),
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Modes = ModeOfX - ModeOfY,
UnifyGoalExpr = unify(X, rhs_var(Y), Modes, Unification, UnifyContext)
).
%-----------------------------------------------------------------------------%
:- pred modecheck_unification_functor(prog_var::in, cons_id::in,
is_existential_construction::in, list(prog_var)::in, unification::in,
unify_context::in, hlds_goal_info::in, hlds_goal_expr::out,
mode_info::in, mode_info::out) is det.
modecheck_unification_functor(X, ConsId, IsExistConstruction, ArgVars0,
Unification0, UnifyContext, GoalInfo0, GoalExpr, !ModeInfo) :-
mode_info_get_var_types(!.ModeInfo, VarTypes0),
lookup_var_type(VarTypes0, X, TypeOfX),
(
% We replace any unifications with higher-order pred constants
% by lambda expressions. For example, we replace
%
% X = list.append(Y) % Y::in, X::out
%
% with
%
% X = lambda [A1::in, A2::out] (list.append(Y, A1, A2))
%
% Normally this is done by polymorphism.process_unify_functor,
% but if we are re-modechecking goals after lambda.m has been run
% (e.g. for deforestation), then we may need to do it again here.
% Note that any changes to this code here will probably need to be
% duplicated there too.
type_is_higher_order_details(TypeOfX, Purity, _, EvalMethod,
PredArgTypes),
ConsId = closure_cons(ShroudedPredProcId, _)
->
% Convert the pred term to a lambda expression.
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
mode_info_get_varset(!.ModeInfo, VarSet0),
mode_info_get_context(!.ModeInfo, Context),
proc(PredId, ProcId) = unshroud_pred_proc_id(ShroudedPredProcId),
convert_pred_to_lambda_goal(Purity, EvalMethod, X, PredId, ProcId,
ArgVars0, PredArgTypes, UnifyContext, GoalInfo0, Context,
ModuleInfo0, Functor0, VarSet0, VarSet, VarTypes0, VarTypes),
mode_info_set_varset(VarSet, !ModeInfo),
mode_info_set_var_types(VarTypes, !ModeInfo),
% Modecheck this unification in its new form.
modecheck_unification(X, Functor0, Unification0, UnifyContext,
GoalInfo0, GoalExpr, !ModeInfo)
;
% Right hand sides that represent constant structures need to be
% handled specially, because the term is inherently shared.
cons_id_is_const_struct(ConsId, ConstNum)
->
expect(unify(IsExistConstruction, no), $module, $pred,
"const struct construction is existential"),
expect(unify(ArgVars0, []), $module, $pred,
"const struct construction has args"),
modecheck_unify_const_struct(X, ConsId, ConstNum, UnifyContext,
GoalExpr, !ModeInfo)
;
% It is not a higher-order pred unification or a unification with a
% constant structure, so just call modecheck_unify_functor to do
% the ordinary thing.
modecheck_unify_functor(X, TypeOfX, ConsId, IsExistConstruction,
ArgVars0, Unification0, UnifyContext, GoalInfo0, GoalExpr,
!ModeInfo)
).
:- pred modecheck_unification_rhs_lambda(prog_var::in,
unify_rhs::in(rhs_lambda_goal), unification::in, unify_context::in,
hlds_goal_info::in, hlds_goal_expr::out, mode_info::in, mode_info::out)
is det.
modecheck_unification_rhs_lambda(X, LambdaGoal, Unification0, UnifyContext, _,
unify(X, RHS, Mode, Unification, UnifyContext), !ModeInfo) :-
LambdaGoal = rhs_lambda_goal(Purity, Groundness, PredOrFunc, EvalMethod,
ArgVars, Vars, Modes0, Det, Goal0),
% First modecheck the lambda goal itself:
%
% initialize the initial insts of the lambda variables;
% check that the non-local vars are ground or any;
% mark the non-local vars as shared;
% if the higher-order inst is ground lock the non-local vars,
% otherwise if it is `any' lock the non-local vars that themselves
% do not match_initial any;
% mark the non-clobbered lambda variables as live;
% modecheck the goal;
% check that the final insts are correct;
% unmark the live vars;
% unlock the locked vars;
% restore the original instmap.
%
% XXX or should we merge the original and the final instmaps???
%
% The reason that we need to merge the original and final instmaps is
% as follows. The lambda goal will not have bound any variables (since
% they were locked), but it may have added some information or lost some
% uniqueness. We cannot use the final instmap, because that may have
% too much information. If we use the initial instmap, variables will be
% considered as unique even if they become shared or clobbered in the
% lambda goal!
%
% However even this may not be enough. If a unique non-local variable
% is used in its unique inst (e.g. it's used in a ui mode) and then shared
% within the lambda body, this is unsound. This variable should be marked
% as shared at the _top_ of the lambda goal. As for implementing this,
% it probably means that the lambda goal should be re-modechecked,
% or even modechecked to a fixpoint.
%
% For the moment, since doing all that properly seems too hard, we just
% share all non-local variables at the top of the lambda goal. This is
% safe, but perhaps too conservative.
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
mode_info_get_how_to_check(!.ModeInfo, HowToCheckGoal),
(
HowToCheckGoal = check_modes,
% This only needs to be done once.
mode_info_get_types_of_vars(!.ModeInfo, Vars, VarTypes),
propagate_types_into_mode_list(ModuleInfo0, VarTypes, Modes0, Modes)
;
HowToCheckGoal = check_unique_modes,
Modes = Modes0
),
% Initialize the initial insts of the lambda variables.
mode_list_get_initial_insts(ModuleInfo0, Modes, VarInitialInsts),
assoc_list.from_corresponding_lists(Vars, VarInitialInsts, VarInstAL),
VarInstMapDelta = instmap_delta_from_assoc_list(VarInstAL),
mode_info_get_instmap(!.ModeInfo, InstMap0),
instmap.apply_instmap_delta(InstMap0, VarInstMapDelta, InstMap1),
mode_info_set_instmap(InstMap1, !ModeInfo),
% Mark the non-clobbered lambda variables as live.
get_arg_lives(ModuleInfo0, Modes, ArgLives),
get_live_vars(Vars, ArgLives, LiveVarsList),
set_of_var.list_to_set(LiveVarsList, LiveVars),
mode_info_add_live_vars(LiveVars, !ModeInfo),
% Lock the non-locals. A ground lambda goal is not allowed to bind any
% of the non-local variables, since it could get called more than once,
% or from inside a negation. So in this case we lock all non-locals
% (not counting the lambda quantified vars).
%
% If the lambda goal is inst `any', we don't lock the non-locals which
% match_initial any, since it is safe to bind these any time that it
% is safe to bind the lambda goal itself.
Goal0 = hlds_goal(_, GoalInfo0),
NonLocals0 = goal_info_get_nonlocals(GoalInfo0),
set_of_var.delete_list(Vars, NonLocals0, NonLocals1),
(
Groundness = ho_ground,
NonLocals = NonLocals1
;
Groundness = ho_any,
mode_info_get_var_types(!.ModeInfo, NonLocalTypes),
NonLocals = set_of_var.filter((pred(NonLocal::in) is semidet :-
lookup_var_type(NonLocalTypes, NonLocal, NonLocalType),
instmap_lookup_var(InstMap1, NonLocal, NonLocalInst),
\+ inst_matches_initial(NonLocalInst, any(shared, none),
NonLocalType, ModuleInfo0)
), NonLocals1)
),
set_of_var.to_sorted_list(NonLocals, NonLocalsList),
instmap_lookup_vars(InstMap1, NonLocalsList, NonLocalInsts),
mode_info_get_module_info(!.ModeInfo, ModuleInfo2),
(
% XXX This test is too conservative.
%
% We should allow non-local variables to be non-ground sometimes,
% possibly dependent on whether or not they are dead after this
% unification. In addition, we should not "share" a unique non-local
% variable if these two conditions hold:
%
% - It is dead after this unification.
% - It is not shared within the lambda body.
%
% Unfortunately, we can't test the latter condition until after
% we've mode-checked the lambda body. (See the above comment on
% merging the initial and final instmaps.)
(
Groundness = ho_ground,
Purity \= purity_impure
->
inst_list_is_ground(NonLocalInsts, ModuleInfo2)
;
inst_list_is_ground_or_any(NonLocalInsts, ModuleInfo2)
)
->
make_shared_inst_list(NonLocalInsts, SharedNonLocalInsts,
ModuleInfo2, ModuleInfo3),
instmap_set_vars_corresponding(NonLocalsList, SharedNonLocalInsts,
InstMap1, InstMap2),
mode_info_set_module_info(ModuleInfo3, !ModeInfo),
mode_info_set_instmap(InstMap2, !ModeInfo),
mode_info_lock_vars(var_lock_lambda(PredOrFunc), NonLocals, !ModeInfo),
mode_checkpoint(enter, "lambda goal", !ModeInfo),
% If we're being called from unique_modes.m, then we need to
% call unique_modes_check_goal rather than modecheck_goal.
(
HowToCheckGoal = check_unique_modes,
unique_modes_check_goal(Goal0, Goal1, !ModeInfo)
;
HowToCheckGoal = check_modes,
modecheck_goal(Goal0, Goal1, !ModeInfo)
),
mode_list_get_final_insts(ModuleInfo0, Modes, FinalInsts),
modecheck_lambda_final_insts(Vars, FinalInsts, Goal1, Goal, !ModeInfo),
mode_checkpoint(exit, "lambda goal", !ModeInfo),
mode_info_remove_live_vars(LiveVars, !ModeInfo),
mode_info_unlock_vars(var_lock_lambda(PredOrFunc), NonLocals,
!ModeInfo),
% Ensure that the non-local vars are shared OUTSIDE the
% lambda unification as well as inside.
instmap_set_vars_corresponding(NonLocalsList, SharedNonLocalInsts,
InstMap0, InstMap11),
mode_info_set_instmap(InstMap11, !ModeInfo),
% Now modecheck the unification of X with the lambda-expression.
RHS0 = rhs_lambda_goal(Purity, Groundness, PredOrFunc, EvalMethod,
ArgVars, Vars, Modes, Det, Goal),
modecheck_unify_lambda(X, PredOrFunc, ArgVars, Modes, Det,
RHS0, RHS, Unification0, Unification, Mode, !ModeInfo)
;
list.filter(
(pred(Var :: in) is semidet :-
instmap_lookup_var(InstMap1, Var, Inst),
\+ inst_is_ground(ModuleInfo2, Inst)
), NonLocalsList, NonGroundNonLocals),
(
NonGroundNonLocals = [BadVar | _],
instmap_lookup_var(InstMap1, BadVar, BadInst),
WaitingVars = set_of_var.make_singleton(BadVar),
ModeError = mode_error_non_local_lambda_var(BadVar, BadInst),
mode_info_error(WaitingVars, ModeError, !ModeInfo)
;
NonGroundNonLocals = [],
unexpected($module, $pred, "very strange var")
),
% Return any old garbage.
RHS = rhs_lambda_goal(Purity, Groundness, PredOrFunc, EvalMethod,
ArgVars, Vars, Modes0, Det, Goal0),
Mode = (free -> free) - (free -> free),
Unification = Unification0
).
:- pred modecheck_unify_lambda(prog_var::in, pred_or_func::in,
list(prog_var)::in, list(mer_mode)::in, determinism::in,
unify_rhs::in, unify_rhs::out, unification::in, unification::out,
pair(mer_mode)::out, mode_info::in, mode_info::out) is det.
modecheck_unify_lambda(X, PredOrFunc, ArgVars, LambdaModes, LambdaDet,
RHS0, RHS, Unification0, Unification, Mode, !ModeInfo) :-
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
mode_info_get_instmap(!.ModeInfo, InstMap0),
instmap_lookup_var(InstMap0, X, InstOfX),
InstOfY = ground(unique, higher_order(LambdaPredInfo)),
LambdaPredInfo = pred_inst_info(PredOrFunc, LambdaModes,
arg_reg_types_unset, LambdaDet),
(
abstractly_unify_inst(is_dead, InstOfX, InstOfY, real_unify,
UnifyInst, _Det, ModuleInfo0, ModuleInfo1)
->
Inst = UnifyInst,
mode_info_set_module_info(ModuleInfo1, !ModeInfo),
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Mode = ModeOfX - ModeOfY,
% the lambda expression just maps its argument variables
% from their current insts to the same inst
instmap_lookup_vars(InstMap0, ArgVars, ArgInsts),
inst_lists_to_mode_list(ArgInsts, ArgInsts, ArgModes),
categorize_unify_var_lambda(ModeOfX, ArgModes, X, ArgVars, PredOrFunc,
RHS0, RHS, Unification0, Unification, !ModeInfo),
modecheck_set_var_inst(X, Inst, no, !ModeInfo)
;
set_of_var.list_to_set([X], WaitingVars),
ModeError = mode_error_unify_var_lambda(X, InstOfX, InstOfY),
mode_info_error(WaitingVars, ModeError, !ModeInfo),
% If we get an error, set the inst to not_reached to avoid cascading
% errors. But don't call categorize_unification, because that could
% cause an invalid call to `unify_proc.request_unify'
Inst = not_reached,
modecheck_set_var_inst(X, Inst, no, !ModeInfo),
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Mode = ModeOfX - ModeOfY,
% Return any old garbage.
Unification = Unification0,
RHS = RHS0
).
:- pred modecheck_unification_rhs_undetermined_mode_lambda(prog_var::in,
unify_rhs::in(rhs_lambda_goal), unification::in, unify_context::in,
hlds_goal_info::in, hlds_goal_expr::out, mode_info::in, mode_info::out)
is det.
modecheck_unification_rhs_undetermined_mode_lambda(X, RHS0, Unification,
UnifyContext, GoalInfo0, Goal, !ModeInfo) :-
RHS0 = rhs_lambda_goal(_, _, _, _, _, _, _, _, Goal0),
% Find out the predicate called in the lambda goal.
( predids_with_args_from_goal(Goal0, [{PredId, ArgVars}]) ->
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
mode_info_get_instmap(!.ModeInfo, InstMap),
mode_info_get_var_types(!.ModeInfo, VarTypes),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
match_modes_by_higher_order_insts(ModuleInfo, InstMap, VarTypes,
ArgVars, PredInfo, MatchResult),
(
( MatchResult = possible_modes([])
; MatchResult = ho_arg_not_ground
),
WaitingVars = set_of_var.make_singleton(X),
ModeError = mode_error_unify_var_multimode_pred(X, PredId),
mode_info_error(WaitingVars, ModeError, !ModeInfo),
% Return any old garbage.
Goal = true_goal_expr
;
MatchResult = possible_modes([ProcId]),
fix_undetermined_mode_lambda_goal(ProcId, RHS0, RHS, ModuleInfo),
goal_info_remove_feature(feature_lambda_undetermined_mode,
GoalInfo0, GoalInfo),
% Modecheck this unification in its new form.
modecheck_unification_rhs_lambda(X, RHS, Unification, UnifyContext,
GoalInfo, Goal, !ModeInfo)
;
MatchResult = possible_modes([_, _ | _]),
WaitingVars = set_of_var.make_singleton(X),
ModeError =
mode_error_unify_var_multimode_pred_undetermined(X, PredId),
mode_info_error(WaitingVars, ModeError, !ModeInfo),
% Return any old garbage.
Goal = true_goal_expr
)
;
unexpected($module, $pred, "expecting single call")
).
%-----------------------------------------------------------------------------%
:- pred modecheck_unify_const_struct(prog_var::in, cons_id::in, int::in,
unify_context::in, hlds_goal_expr::out,
mode_info::in, mode_info::out) is det.
modecheck_unify_const_struct(X, ConsId, ConstNum, UnifyContext,
UnifyGoalExpr, !ModeInfo) :-
mode_info_get_instmap(!.ModeInfo, InstMap),
instmap_lookup_var(InstMap, X, InstOfX),
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
module_info_get_const_struct_db(ModuleInfo0, ConstStructDb),
lookup_const_struct_num(ConstStructDb, ConstNum, ConstStruct),
ConstStruct = const_struct(_, _, _, InstOfY),
( inst_is_free(ModuleInfo0, InstOfX) ->
Inst = InstOfY,
modecheck_set_var_inst(X, Inst, yes(InstOfY), !ModeInfo),
Unification = construct(X, ConsId, [], [], construct_statically,
cell_is_shared, no_construct_sub_info),
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Modes = ModeOfX - ModeOfY,
UnifyGoalExpr = unify(X, rhs_functor(ConsId, no, []), Modes,
Unification, UnifyContext)
;
% abstractly_unify_inst(LiveX, InstOfX, InstOfY, real_unify,
% UnifyInst, Det1, ModuleInfo0, ModuleInfo1)
% ->
% Inst = UnifyInst,
% Det = Det1,
% mode_info_set_module_info(ModuleInfo1, !ModeInfo),
% modecheck_set_var_inst(Y, Inst, yes(InstOfX), !ModeInfo),
% ModeOfX = (InstOfX -> Inst),
% ModeOfY = (InstOfY -> Inst),
% categorize_unify_var_const_struct(ModeOfX, ModeOfY, LiveX, X, ConsId,
% Det, UnifyContext, UnifyGoalInfo0, VarTypes, Unification0,
% UnifyGoalExpr0, !ModeInfo),
% ;
set_of_var.list_to_set([X], WaitingVars),
ModeError = mode_error_unify_var_functor(X, ConsId, [], InstOfX, []),
mode_info_error(WaitingVars, ModeError, !ModeInfo),
% If we get an error, set the inst to not_reached to suppress
% follow-on errors. But don't call categorize_unification, because
% that could cause an invalid call to `unify_proc.request_unify'
Inst = not_reached,
modecheck_set_var_inst(X, Inst, no, !ModeInfo),
% Return any old garbage.
Unification = construct(X, ConsId, [], [], construct_statically,
cell_is_shared, no_construct_sub_info),
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Modes = ModeOfX - ModeOfY,
UnifyGoalExpr = unify(X, rhs_functor(ConsId, no, []), Modes,
Unification, UnifyContext)
).
%-----------------------------------------------------------------------------%
:- pred modecheck_unify_functor(prog_var::in, mer_type::in, cons_id::in,
is_existential_construction::in, list(prog_var)::in, unification::in,
unify_context::in, hlds_goal_info::in, hlds_goal_expr::out,
mode_info::in, mode_info::out) is det.
modecheck_unify_functor(X0, TypeOfX, ConsId0, IsExistConstruction, ArgVars0,
Unification0, UnifyContext, GoalInfo0, Goal, !ModeInfo) :-
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
mode_info_get_how_to_check(!.ModeInfo, HowToCheckGoal),
mode_info_get_instmap(!.ModeInfo, InstMap0),
instmap_lookup_var(InstMap0, X0, InstOfX0),
(
% If the unification was originally of the form X = 'new f'(Y),
% it must be classified as a construction. If it were classified as a
% deconstruction, the argument unifications would be ill-typed.
IsExistConstruction = yes,
\+ inst_is_free(ModuleInfo0, InstOfX0)
->
% To make sure the unification is classified as a construction,
% if X is already bound, we must add a unification with an extra
% variable:
% Z = 'new f'(Y),
% X = Z.
InstOfX = free,
LiveX = is_live,
make_complicated_sub_unify(X0, X, ExtraGoals0, !ModeInfo)
;
InstOfX = InstOfX0,
X = X0,
mode_info_var_is_live(!.ModeInfo, X, LiveX),
ExtraGoals0 = no_extra_goals
),
% This needs to come after make_complicated_sub_unify because
% make_complicated_sub_unify may introduce new variables
% whose types we need to look-up.
mode_info_get_var_types(!.ModeInfo, VarTypes),
(
% If we are allowed to insert solver type initialisation calls and
% InstOfX0 is free and all ArgVars0 are either non-free or have
% solver types, then we know that this is going to be a construction,
% so we can insert the necessary initialisation calls.
ArgVars0 = [_ | _],
HowToCheckGoal = check_modes,
inst_match.inst_is_free(ModuleInfo0, InstOfX),
mode_info_may_init_solver_vars(!.ModeInfo),
mode_info_solver_init_is_supported(!.ModeInfo),
instmap_lookup_vars(InstMap0, ArgVars0, InstArgs0),
all_arg_vars_are_non_free_or_solver_vars(ArgVars0, InstArgs0,
VarTypes, ModuleInfo0, ArgVarsToInit)
->
construct_initialisation_calls(ArgVarsToInit, InitGoals, !ModeInfo),
(
InitGoals = [],
ExtraGoals1 = no_extra_goals
;
InitGoals = [_ | _],
ExtraGoals1 = extra_goals(InitGoals, [])
)
;
ExtraGoals1 = no_extra_goals
),
mode_info_get_instmap(!.ModeInfo, InstMap1),
instmap_lookup_vars(InstMap1, ArgVars0, InstArgs),
mode_info_var_list_is_live(!.ModeInfo, ArgVars0, LiveArgs),
qualify_cons_id(ArgVars0, ConsId0, ConsId, InstConsId),
InstOfY = bound(unique, inst_test_no_results,
[bound_functor(InstConsId, InstArgs)]),
(
% The occur check: X = f(X) is considered a mode error unless X is
% ground. (Actually it wouldn't be that hard to generate code for it
% - it always fails! - but it is most likely to be a programming error,
% so it is better to report it.)
list.member(X, ArgVars0),
\+ inst_is_ground(ModuleInfo0, InstOfX)
->
set_of_var.list_to_set([X], WaitingVars),
ModeError = mode_error_unify_var_functor(X, InstConsId, ArgVars0,
InstOfX, InstArgs),
mode_info_error(WaitingVars, ModeError, !ModeInfo),
Inst = not_reached,
Det = detism_erroneous,
% If we get an error, set the inst to not_reached to avoid cascading
% errors. But don't call categorize_unification, because that could
% cause an invalid call to `unify_proc.request_unify'.
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Mode = ModeOfX - ModeOfY,
modecheck_set_var_inst(X, Inst, no, !ModeInfo),
NoArgInsts = list.duplicate(length(ArgVars0), no),
bind_args(Inst, ArgVars0, NoArgInsts, !ModeInfo),
% Return any old garbage.
Unification = Unification0,
ArgVars = ArgVars0,
ExtraGoals2 = no_extra_goals
;
% XXX We forbid the construction of partially instantiated structures
% involving solver types. We'd like to forbid all such constructions
% here, but that causes trouble with the current implementation of
% term.term_to_univ_special_case which does use partial instantiation
% (in a rather horrible way). This is a hacky solution that gets us
% most of what we want w.r.t. solver types.
not (
inst_is_free(ModuleInfo0, InstOfX),
list.member(InstArg, InstArgs),
inst_is_free(ModuleInfo0, InstArg),
list.member(ArgVar, ArgVars0),
lookup_var_type(VarTypes, ArgVar, ArgType),
type_is_or_may_contain_solver_type(ModuleInfo0, ArgType)
),
abstractly_unify_inst_functor(LiveX, InstOfX, InstConsId,
InstArgs, LiveArgs, real_unify, TypeOfX,
UnifyInst, Det1, ModuleInfo0, ModuleInfo1)
->
Inst = UnifyInst,
Det = Det1,
mode_info_set_module_info(ModuleInfo1, !ModeInfo),
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Mode = ModeOfX - ModeOfY,
( get_mode_of_args(Inst, InstArgs, ModeArgs0) ->
ModeArgs = ModeArgs0
;
unexpected($module, $pred, "get_mode_of_args failed")
),
(
inst_expand_and_remove_constrained_inst_vars(ModuleInfo1,
InstOfX, InstOfX1),
list.length(ArgVars0, Arity),
get_arg_insts(InstOfX1, InstConsId, Arity, InstOfXArgs0),
get_mode_of_args(Inst, InstOfXArgs0, ModeOfXArgs0)
->
ModeOfXArgs = ModeOfXArgs0,
InstOfXArgs = InstOfXArgs0
;
unexpected($module, $pred, "get_(inst/mode)_of_args failed")
),
categorize_unify_var_functor(ModeOfX, ModeOfXArgs, ModeArgs,
X, ConsId, ArgVars0, VarTypes, UnifyContext,
Unification0, Unification1, !ModeInfo),
split_complicated_subunifies(Unification1, Unification,
ArgVars0, ArgVars, ExtraGoals2, !ModeInfo),
modecheck_set_var_inst(X, Inst, yes(InstOfY), !ModeInfo),
UnifyArgInsts = list.map(func(I) = yes(I), InstOfXArgs),
% The call to bind_args below serves to update the insts of the
% argument variables on the right hand side of the unification,
% putting into them any information we can derive from the original
% inst of the variable on the left hand side.
%
% Unfortunately, the update can be very expensive. For example,
% for a ground list with N elements, there will be N variables
% bound to the cons cells of the list. Since the average size of the
% insts of these variables is proportional to N/2, the task
% of recording all their insts is at least quadratic in N.
% In practice, it can actually be worse, because of the way the code
% called by bind_args works. It keeps track of sets of insts seen
% so far, and checks new insts for membership of such sets.
% If the initial elements of a list are repeated, then the membership
% test can try to unify e.g. [a, a, a, a] with [], [a], [a, a]
% and [a, a, a]. This means that each step of the quadratic algorithm
% is itself quadratic, for an overall complexity of O(n^4).
%
% It is therefore crucial that we avoid calling bind_args if at all
% possible.
%
% There are two cases in which we definitely know we can avoid
% calling bind_args. First, if the variable on the left hand side, X,
% is originally free, then it cannot change the already recorded insts
% of the variables on the right hand side. Second, in from_ground_term
% scopes, the variables on the right hand sides of construct
% unifications are all local to the scope of the from_ground_term
% scope. We can avoid updating their insts because no part of the
% compiler will ever want to see their insts.
%
% We test for the first case first, because we expect it to be
% much more common.
( inst_is_free(ModuleInfo0, InstOfX) ->
true
;
mode_info_get_in_from_ground_term(!.ModeInfo, InFromGroundTerm),
(
InFromGroundTerm = in_from_ground_term_scope
;
InFromGroundTerm = not_in_from_ground_term_scope,
bind_args(Inst, ArgVars, UnifyArgInsts, !ModeInfo)
)
)
;
set_of_var.list_to_set([X | ArgVars0], WaitingVars), % conservative
ModeError = mode_error_unify_var_functor(X, InstConsId, ArgVars0,
InstOfX, InstArgs),
mode_info_error(WaitingVars, ModeError, !ModeInfo),
% If we get an error, set the inst to not_reached to avoid cascading
% errors. But don't call categorize_unification, because that could
% cause an invalid call to `unify_proc.request_unify'.
Inst = not_reached,
Det = detism_erroneous,
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Mode = ModeOfX - ModeOfY,
modecheck_set_var_inst(X, Inst, no, !ModeInfo),
NoArgInsts = list.duplicate(length(ArgVars0), no),
bind_args(Inst, ArgVars0, NoArgInsts, !ModeInfo),
% Return any old garbage.
Unification = Unification0,
ArgVars = ArgVars0,
ExtraGoals2 = no_extra_goals
),
% Optimize away construction of unused terms by replacing the unification
% with `true'. Optimize away unifications which always fail by replacing
% them with `fail'.
(
Unification = construct(_, _, _, _, _, _, _),
LiveX = is_dead
->
Goal = conj(plain_conj, [])
;
Det = detism_failure
->
% This optimisation is safe because the only way that we can analyse
% a unification as having no solutions is that the unification always
% fails.
%
% Unifying two preds is not erroneous as far as the mode checker
% is concerned, but a mode _error_.
Goal = disj([]),
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
module_info_get_globals(ModuleInfo, Globals),
globals.lookup_bool_option(Globals, warn_unification_cannot_succeed,
WarnCannotSucceed),
(
WarnCannotSucceed = yes,
mode_info_get_in_dupl_for_switch(!.ModeInfo, InDuplForSwitch),
(
InDuplForSwitch = in_dupl_for_switch
% Suppress the warning, since the unification may succeed
% in another copy of this duplicated switch arm.
;
InDuplForSwitch = not_in_dupl_for_switch,
mode_info_get_pred_id(!.ModeInfo, PredId),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_get_origin(PredInfo, Origin),
ReportWarning =
should_report_mode_warning_for_pred_origin(Origin),
(
ReportWarning = yes,
Warning = cannot_succeed_var_functor(X, InstOfX, ConsId),
mode_info_warning(Warning, !ModeInfo)
;
ReportWarning = no
)
)
;
WarnCannotSucceed = no
)
;
Functor = rhs_functor(ConsId, IsExistConstruction, ArgVars),
Unify = unify(X, Functor, Mode, Unification, UnifyContext),
% Modecheck_unification sometimes needs to introduce new goals
% to handle complicated sub-unifications in deconstructions.
% The only time this can happen during unique mode analysis is if
% the instmap is unreachable, since inst_is_bound succeeds for
% not_reached. (If it did in other cases, the code would be wrong
% since it wouldn't have the correct determinism annotations.)
append_extra_goals(ExtraGoals0, ExtraGoals1, ExtraGoals01),
append_extra_goals(ExtraGoals01, ExtraGoals2, ExtraGoals),
(
HowToCheckGoal = check_unique_modes,
ExtraGoals = extra_goals(_, _),
instmap_is_reachable(InstMap1)
->
unexpected($module, $pred,
"re-modecheck of unification " ++
"encountered complicated sub-unifies")
;
true
),
handle_extra_goals(Unify, ExtraGoals, GoalInfo0,
[X0 | ArgVars0], [X | ArgVars], InstMap0, Goal, !ModeInfo)
).
:- pred all_arg_vars_are_non_free_or_solver_vars(list(prog_var)::in,
list(mer_inst)::in, vartypes::in, module_info::in, list(prog_var)::out)
is semidet.
all_arg_vars_are_non_free_or_solver_vars([], [], _, _, []).
all_arg_vars_are_non_free_or_solver_vars([], [_ | _], _, _, _) :-
unexpected($module, $pred, "mismatched list lengths").
all_arg_vars_are_non_free_or_solver_vars([_ | _], [], _, _, _) :-
unexpected($module, $pred, "mismatched list lengths").
all_arg_vars_are_non_free_or_solver_vars([ArgVar | ArgVars], [Inst | Insts],
VarTypes, ModuleInfo, ArgVarsToInit) :-
( inst_match.inst_is_free(ModuleInfo, Inst) ->
lookup_var_type(VarTypes, ArgVar, ArgType),
type_is_or_may_contain_solver_type(ModuleInfo, ArgType),
all_arg_vars_are_non_free_or_solver_vars(ArgVars, Insts,
VarTypes, ModuleInfo, ArgVarsToInitTail),
ArgVarsToInit = [ArgVar | ArgVarsToInitTail]
;
all_arg_vars_are_non_free_or_solver_vars(ArgVars, Insts,
VarTypes, ModuleInfo, ArgVarsToInit)
).
%-----------------------------------------------------------------------------%
% The argument unifications in a construction or deconstruction
% unification must be simple assignments, they cannot be
% complicated unifications. If they are, we split them out
% into separate unifications by introducing fresh variables here.
%
:- pred split_complicated_subunifies(unification::in, unification::out,
list(prog_var)::in, list(prog_var)::out, extra_goals::out,
mode_info::in, mode_info::out) is det.
split_complicated_subunifies(Unification0, Unification, ArgVars0, ArgVars,
ExtraGoals, !ModeInfo) :-
(
Unification0 = deconstruct(X, ConsId, ArgVars0, ArgModes0, Det, CanCGC)
->
(
split_complicated_subunifies_2(ArgVars0, ArgModes0,
ArgVars1, ExtraGoals1, !ModeInfo)
->
ExtraGoals = ExtraGoals1,
ArgVars = ArgVars1,
Unification = deconstruct(X, ConsId, ArgVars, ArgModes0, Det,
CanCGC)
;
unexpected($module, $pred, "split_complicated_subunifies_2 failed")
)
;
Unification = Unification0,
ArgVars = ArgVars0,
ExtraGoals = no_extra_goals
).
:- pred split_complicated_subunifies_2(list(prog_var)::in, list(uni_mode)::in,
list(prog_var)::out, extra_goals::out, mode_info::in, mode_info::out)
is semidet.
split_complicated_subunifies_2([], [], [], no_extra_goals, !ModeInfo).
split_complicated_subunifies_2([Var0 | Vars0], [UniMode0 | UniModes0],
Vars, ExtraGoals, !ModeInfo) :-
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
UniMode0 = (InitialInstX - InitialInstY -> FinalInstX - FinalInstY),
ModeX = (InitialInstX -> FinalInstX),
ModeY = (InitialInstY -> FinalInstY),
mode_info_get_var_types(!.ModeInfo, VarTypes0),
lookup_var_type(VarTypes0, Var0, VarType),
(
mode_to_arg_mode(ModuleInfo, ModeX, VarType, top_in),
mode_to_arg_mode(ModuleInfo, ModeY, VarType, top_in)
->
make_complicated_sub_unify(Var0, Var, ExtraGoals0, !ModeInfo),
% Recursive call to handle the remaining variables...
split_complicated_subunifies_2(Vars0, UniModes0,
Vars1, ExtraGoals1, !ModeInfo),
Vars = [Var | Vars1],
append_extra_goals(ExtraGoals0, ExtraGoals1, ExtraGoals)
;
split_complicated_subunifies_2(Vars0, UniModes0, Vars1,
ExtraGoals, !ModeInfo),
Vars = [Var0 | Vars1]
).
:- pred make_complicated_sub_unify(prog_var::in, prog_var::out,
extra_goals::out, mode_info::in, mode_info::out) is det.
make_complicated_sub_unify(Var0, Var, ExtraGoals0, !ModeInfo) :-
% introduce a new variable `Var'
mode_info_get_varset(!.ModeInfo, VarSet0),
mode_info_get_var_types(!.ModeInfo, VarTypes0),
varset.new_var(Var, VarSet0, VarSet),
lookup_var_type(VarTypes0, Var0, VarType),
add_var_type(Var, VarType, VarTypes0, VarTypes),
mode_info_set_varset(VarSet, !ModeInfo),
mode_info_set_var_types(VarTypes, !ModeInfo),
create_var_var_unification(Var0, Var, VarType, !.ModeInfo, ExtraGoal),
% Insert the new unification at the start of the extra goals.
ExtraGoals0 = extra_goals([], [ExtraGoal]).
create_var_var_unification(Var0, Var, Type, ModeInfo, Goal) :-
Goal = hlds_goal(GoalExpr, GoalInfo),
mode_info_get_context(ModeInfo, Context),
mode_info_get_mode_context(ModeInfo, ModeContext),
mode_context_to_unify_context(ModeInfo, ModeContext, UnifyContext),
UnifyContext = unify_context(MainContext, SubContexts),
create_pure_atomic_complicated_unification(Var0, rhs_var(Var), Context,
MainContext, SubContexts, hlds_goal(GoalExpr0, GoalInfo0)),
% Compute the goal_info nonlocal vars for the newly created goal
% (excluding the type_info vars -- they are added below).
% N.B. This may overestimate the set of non-locals,
% but that shouldn't cause any problems.
set_of_var.list_to_set([Var0, Var], NonLocals),
goal_info_set_nonlocals(NonLocals, GoalInfo0, GoalInfo1),
goal_info_set_context(Context, GoalInfo1, GoalInfo2),
% Look up the map(tvar, type_info_locn) in the proc_info,
% since it is needed by polymorphism.unification_typeinfos.
mode_info_get_module_info(ModeInfo, ModuleInfo),
mode_info_get_pred_id(ModeInfo, PredId),
mode_info_get_proc_id(ModeInfo, ProcId),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
_PredInfo, ProcInfo),
proc_info_get_rtti_varmaps(ProcInfo, RttiVarMaps),
% Call polymorphism.unification_typeinfos to add the appropriate
% type-info and type-class-info variables to the nonlocals
% and to the unification.
( GoalExpr0 = unify(X, Y, Mode, Unification0, FinalUnifyContext) ->
unification_typeinfos_rtti_varmaps(Type, RttiVarMaps,
Unification0, Unification, GoalInfo2, GoalInfo),
GoalExpr = unify(X, Y, Mode, Unification, FinalUnifyContext)
;
unexpected($module, $pred, "unexpected GoalExpr0")
).
%-----------------------------------------------------------------------------%
% categorize_unify_var_var works out which category a unification
% between a variable and another variable expression is - whether it is
% an assignment, a simple test or a complicated unify.
%
:- pred categorize_unify_var_var(mer_mode::in, mer_mode::in,
is_live::in, is_live::in, prog_var::in,
prog_var::in, determinism::in, unify_context::in, hlds_goal_info::in,
vartypes::in, unification::in, hlds_goal_expr::out,
mode_info::in, mode_info::out) is det.
categorize_unify_var_var(ModeOfX, ModeOfY, LiveX, LiveY, X, Y, Det,
UnifyContext, GoalInfo, VarTypes, Unification0, Unify, !ModeInfo) :-
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
(
mode_is_output(ModuleInfo0, ModeOfX)
->
Unification = assign(X, Y)
;
mode_is_output(ModuleInfo0, ModeOfY)
->
Unification = assign(Y, X)
;
mode_is_unused(ModuleInfo0, ModeOfX),
mode_is_unused(ModuleInfo0, ModeOfY)
->
% For free-free unifications, we pretend for a moment that they are
% an assignment to the dead variable - they will then be optimized
% away.
(
LiveX = is_dead,
Unification = assign(X, Y)
;
LiveX = is_live,
(
LiveY = is_dead,
Unification = assign(Y, X)
;
LiveY = is_live,
unexpected($module, $pred, "free-free unify!")
)
)
;
% Check for unreachable unifications.
( mode_get_insts(ModuleInfo0, ModeOfX, not_reached, _)
; mode_get_insts(ModuleInfo0, ModeOfY, not_reached, _)
)
->
% For these, we can generate any old junk here --
% we just need to avoid calling modecheck_complicated_unify,
% since that might abort.
Unification = simple_test(X, Y)
;
lookup_var_type(VarTypes, X, Type),
(
type_is_atomic(ModuleInfo0, Type),
not type_has_user_defined_equality_pred(ModuleInfo0, Type, _)
->
Unification = simple_test(X, Y)
;
% Unification of c_pointers is a runtime error unless introduced by
% the compiler.
Type = c_pointer_type,
goal_info_has_feature(GoalInfo, feature_pretest_equality_condition)
->
Unification = simple_test(X, Y)
;
modecheck_complicated_unify(X, Y, Type, ModeOfX, ModeOfY, Det,
UnifyContext, Unification0, Unification, !ModeInfo)
)
),
% Optimize away unifications with dead variables and simple tests that
% cannot fail by replacing them with `true'. (The optimization of simple
% tests is necessary because otherwise determinism analysis assumes they
% can fail. The optimization of assignments to dead variables may be
% necessary to stop the code generator from getting confused.)
%
% Optimize away unifications which always fail by replacing them with
% `fail'.
(
Unification = assign(AssignTarget, AssignSource),
mode_info_var_is_live(!.ModeInfo, AssignTarget, is_dead)
->
Unify = conj(plain_conj, []),
record_optimize_away(GoalInfo, AssignTarget, AssignSource, !ModeInfo)
;
Unification = simple_test(TestVar1, TestVar2),
Det = detism_det
->
Unify = conj(plain_conj, []),
record_optimize_away(GoalInfo, TestVar1, TestVar2, !ModeInfo)
;
Det = detism_failure
->
% This optimisation is safe because the only way that we can analyse
% a unification as having no solutions is that the unification
% always fails.
%
% Unifying two preds is not erroneous as far as the
% mode checker is concerned, but a mode _error_.
Unify = disj([]),
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
module_info_get_globals(ModuleInfo, Globals),
globals.lookup_bool_option(Globals, warn_unification_cannot_succeed,
WarnCannotSucceed),
(
WarnCannotSucceed = yes,
mode_get_insts(ModuleInfo0, ModeOfX, InstOfX, _),
mode_get_insts(ModuleInfo0, ModeOfY, InstOfY, _),
mode_info_get_pred_id(!.ModeInfo, PredId),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_get_origin(PredInfo, Origin),
ReportWarning = should_report_mode_warning_for_pred_origin(Origin),
(
ReportWarning = yes,
Warning = cannot_succeed_var_var(X, Y, InstOfX, InstOfY),
mode_info_warning(Warning, !ModeInfo)
;
ReportWarning = no
)
;
WarnCannotSucceed = no
)
;
Unify = unify(X, rhs_var(Y), ModeOfX - ModeOfY,
Unification, UnifyContext)
).
% If we optimize away a singleton variable in a unification in one branch
% of e.g. a switch, it is possible that the same variable is a singleton
% in another branch, but cannot be optimized away because it is bound in
% a call (which cannot be optimized away). In such cases, we must make sure
% that we call requantification to delete the variable from the nonlocals
% set of the switch, because otherwise, the arms of the switch would
% disagree on which nonlocals are bound.
%
:- pred record_optimize_away(hlds_goal_info::in, prog_var::in, prog_var::in,
mode_info::in, mode_info::out) is det.
record_optimize_away(GoalInfo, Var1, Var2, !ModeInfo) :-
NonLocals = goal_info_get_nonlocals(GoalInfo),
(
set_of_var.member(NonLocals, Var1),
set_of_var.member(NonLocals, Var2)
->
true
;
mode_info_need_to_requantify(!ModeInfo)
).
% Modecheck_complicated_unify does some extra checks that are needed
% for mode-checking complicated unifications.
%
:- pred modecheck_complicated_unify(prog_var::in, prog_var::in,
mer_type::in, mer_mode::in, mer_mode::in, determinism::in,
unify_context::in, unification::in, unification::out,
mode_info::in, mode_info::out) is det.
modecheck_complicated_unify(X, Y, Type, ModeOfX, ModeOfY, Det, UnifyContext,
Unification0, Unification, !ModeInfo) :-
% Build up the unification.
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
mode_get_insts(ModuleInfo0, ModeOfX, InitialInstX, FinalInstX),
mode_get_insts(ModuleInfo0, ModeOfY, InitialInstY, FinalInstY),
UniMode = ((InitialInstX - InitialInstY) -> (FinalInstX - FinalInstY)),
determinism_components(Det, CanFail, _),
( Unification0 = complicated_unify(_, _, UnifyTypeInfoVars0) ->
UnifyTypeInfoVars = UnifyTypeInfoVars0
;
unexpected($module, $pred, "non-complicated unify")
),
Unification = complicated_unify(UniMode, CanFail, UnifyTypeInfoVars),
% Check that all the type_info or type_class_info variables used
% by the polymorphic unification are ground.
(
% Optimize common case.
UnifyTypeInfoVars = []
;
UnifyTypeInfoVars = [_ | _],
list.length(UnifyTypeInfoVars, NumTypeInfoVars),
list.duplicate(NumTypeInfoVars, ground(shared, none), ExpectedInsts),
mode_info_set_call_context(call_context_unify(UnifyContext), !ModeInfo),
InitialArgNum = 0,
modecheck_var_has_inst_list_no_exact_match(UnifyTypeInfoVars,
ExpectedInsts, InitialArgNum, _InstVarSub, !ModeInfo),
% we can ignore _InstVarSub since type_info variables
% should not have variable insts.
mode_info_unset_call_context(!ModeInfo)
),
mode_info_get_module_info(!.ModeInfo, ModuleInfo3),
(
mode_info_get_errors(!.ModeInfo, Errors),
Errors = [_ | _]
->
true
;
% Check that we're not trying to do a polymorphic unification
% in a mode other than (in, in).
% [Actually we also allow `any' insts, since the (in, in)
% mode of unification for types which have `any' insts must
% also be able to handle (in(any), in(any)) unifications.]
Type = type_variable(_, _),
\+ inst_is_ground_or_any(ModuleInfo3, InitialInstX)
->
WaitingVars = set_of_var.make_singleton(X),
ModeError = mode_error_poly_unify(X, InitialInstX),
mode_info_error(WaitingVars, ModeError, !ModeInfo)
;
Type = type_variable(_, _),
\+ inst_is_ground_or_any(ModuleInfo3, InitialInstY)
->
WaitingVars = set_of_var.make_singleton(Y),
ModeError = mode_error_poly_unify(Y, InitialInstY),
mode_info_error(WaitingVars, ModeError, !ModeInfo)
;
% Check that we're not trying to do a higher-order unification.
type_is_higher_order_details(Type, _, PredOrFunc, _, _)
->
% We do not want to report this as an error if it occurs in a
% compiler-generated predicate - instead, we delay the error
% until runtime so that it only occurs if the compiler-generated
% predicate gets called. not_reached is considered bound, so the
% error message would be spurious if the instmap is unreachable.
mode_info_get_pred_id(!.ModeInfo, PredId),
module_info_pred_info(ModuleInfo3, PredId, PredInfo),
mode_info_get_instmap(!.ModeInfo, InstMap0),
(
( is_unify_or_compare_pred(PredInfo)
; instmap_is_unreachable(InstMap0)
)
->
true
;
set_of_var.init(WaitingVars),
ModeError =
mode_error_unify_pred(X, error_at_var(Y), Type, PredOrFunc),
mode_info_error(WaitingVars, ModeError, !ModeInfo)
)
;
% Ensure that we will generate code for the unification procedure
% that will be used to implement this complicated unification.
type_to_ctor(Type, TypeCtor)
->
mode_info_get_context(!.ModeInfo, Context),
mode_info_get_instvarset(!.ModeInfo, InstVarSet),
UnifyProcId = unify_proc_id(TypeCtor, UniMode),
unify_proc.request_unify(UnifyProcId, InstVarSet,
Det, Context, ModuleInfo3, ModuleInfo),
mode_info_set_module_info(ModuleInfo, !ModeInfo)
;
true
).
% Categorize_unify_var_lambda works out which category a unification
% between a variable and a lambda expression is - whether it is a
% construction unification or a deconstruction. It also works out
% whether it will be deterministic or semideterministic.
%
:- pred categorize_unify_var_lambda(mer_mode::in, list(mer_mode)::in,
prog_var::in, list(prog_var)::in, pred_or_func::in,
unify_rhs::in, unify_rhs::out, unification::in, unification::out,
mode_info::in, mode_info::out) is det.
categorize_unify_var_lambda(ModeOfX, ArgModes0, X, ArgVars, PredOrFunc,
RHS0, RHS, Unification0, Unification, !ModeInfo) :-
% If we are re-doing mode analysis, preserve the existing cons_id.
list.length(ArgVars, Arity),
(
Unification0 = construct(_, ConsId, _, _, _, _, SubInfo),
(
SubInfo = construct_sub_info(MaybeTakeAddr, _MaybeSize),
expect(unify(MaybeTakeAddr, no), $module, $pred, "take_addr")
;
SubInfo = no_construct_sub_info
)
;
Unification0 = deconstruct(_, ConsId, _, _, _, _),
SubInfo = no_construct_sub_info
;
( Unification0 = assign(_, _)
; Unification0 = simple_test(_, _)
; Unification0 = complicated_unify(_, _, _)
),
SubInfo = no_construct_sub_info,
% The real cons_id will be computed by lambda.m;
% we just put in a dummy one for now.
TypeCtor = type_ctor(unqualified("int"), 0),
ConsId = cons(unqualified("__LambdaGoal__"), Arity, TypeCtor)
),
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
modes_to_uni_modes(ModuleInfo, ArgModes0, ArgModes0, ArgModes),
mode_info_get_instmap(!.ModeInfo, InstMap),
( mode_is_output(ModuleInfo, ModeOfX) ->
(
% If pred_consts are present, lambda expansion has already been
% done. Rerunning mode analysis should not produce a lambda_goal
% which cannot be directly converted back into a higher-order
% predicate constant. If the instmap is not reachable, the call
% may have been handled as an implied mode, since not_reached
% is considered to be bound. In this case the lambda_goal may
% not be converted back to a predicate constant, but that doesn't
% matter since the code will be pruned away later by simplify.m.
ConsId = closure_cons(ShroudedPredProcId, EvalMethod),
instmap_is_reachable(InstMap)
->
proc(PredId, ProcId) = unshroud_pred_proc_id(ShroudedPredProcId),
(
RHS0 = rhs_lambda_goal(_, _, _, EvalMethod, _, _, _, _, Goal),
Goal = hlds_goal(plain_call(PredId, ProcId, _, _, _, _), _)
->
module_info_pred_info(ModuleInfo, PredId, PredInfo),
PredModule = pred_info_module(PredInfo),
PredName = pred_info_name(PredInfo),
mode_info_get_var_types(!.ModeInfo, VarTypes),
lookup_var_type(VarTypes, X, Type),
( Type = higher_order_type(_, MaybeReturnType, _, _) ->
(
MaybeReturnType = no,
RHSTypeCtor = type_ctor(unqualified("pred"), 0)
;
MaybeReturnType = yes(_),
RHSTypeCtor = type_ctor(unqualified("func"), 0)
)
;
unexpected($module, $pred, "bad HO type")
),
RHSConsId = cons(qualified(PredModule, PredName), Arity,
RHSTypeCtor),
RHS = rhs_functor(RHSConsId, no, ArgVars)
;
unexpected($module, $pred, "reintroduced lambda goal")
)
;
RHS = RHS0
),
Unification = construct(X, ConsId, ArgVars, ArgModes,
construct_dynamically, cell_is_unique, SubInfo)
; instmap_is_reachable(InstMap) ->
% If it is a deconstruction, it is a mode error.
% The error message would be incorrect in unreachable code,
% since not_reached is considered bound.
set_of_var.init(WaitingVars),
mode_info_get_var_types(!.ModeInfo, VarTypes0),
lookup_var_type(VarTypes0, X, Type),
ModeError = mode_error_unify_pred(X,
error_at_lambda(ArgVars, ArgModes0), Type, PredOrFunc),
mode_info_error(WaitingVars, ModeError, !ModeInfo),
% Return any old garbage.
Unification = Unification0,
RHS = RHS0
;
Unification = Unification0,
RHS = RHS0
).
% Categorize_unify_var_functor works out which category a unification
% between a variable and a functor is - whether it is a construction
% unification or a deconstruction. It also works out whether it will be
% deterministic or semideterministic.
%
:- pred categorize_unify_var_functor(mer_mode::in, list(mer_mode)::in,
list(mer_mode)::in, prog_var::in, cons_id::in, list(prog_var)::in,
vartypes::in, unify_context::in,
unification::in, unification::out,
mode_info::in, mode_info::out) is det.
categorize_unify_var_functor(ModeOfX, ModeOfXArgs, ArgModes0,
X, NewConsId, ArgVars, VarTypes, UnifyContext,
Unification0, Unification, !ModeInfo) :-
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
lookup_var_type(VarTypes, X, TypeOfX),
% If we are re-doing mode analysis, preserve the existing cons_id.
(
Unification0 = construct(_, ConsIdPrime, _, _, _, _, SubInfo0),
(
SubInfo0 = construct_sub_info(MaybeTakeAddr, _MaybeSize0),
expect(unify(MaybeTakeAddr, no), $module, $pred, "take_addr")
;
SubInfo0 = no_construct_sub_info
),
SubInfo = SubInfo0,
ConsId = ConsIdPrime
;
Unification0 = deconstruct(_, ConsIdPrime, _, _, _, _),
SubInfo = no_construct_sub_info,
ConsId = ConsIdPrime
;
( Unification0 = assign(_, _)
; Unification0 = simple_test(_, _)
; Unification0 = complicated_unify(_, _, _)
),
SubInfo = no_construct_sub_info,
ConsId = NewConsId
),
modes_to_uni_modes(ModuleInfo, ModeOfXArgs, ArgModes0, ArgModes),
( mode_is_output(ModuleInfo, ModeOfX) ->
% It is a construction.
Unification = construct(X, ConsId, ArgVars, ArgModes,
construct_dynamically, cell_is_unique, SubInfo),
% For existentially quantified data types, check that any type_info
% or type_class_info variables in the construction are ground.
mode_info_set_call_context(call_context_unify(UnifyContext),
!ModeInfo),
check_type_info_args_are_ground(ArgVars, VarTypes, UnifyContext,
!ModeInfo),
mode_info_unset_call_context(!ModeInfo)
;
% It is a deconstruction.
(
% If the variable was already known to be bound to a single
% particular functor, then the unification either always succeeds
% or always fails. In the latter case, the final inst will be
% `not_reached' or `bound([])'. So if both the initial and final
% inst are `bound([_])', then the unification must be
% deterministic.
mode_get_insts(ModuleInfo, ModeOfX, InitialInst0, FinalInst0),
inst_expand(ModuleInfo, InitialInst0, InitialInst),
inst_expand(ModuleInfo, FinalInst0, FinalInst),
InitialInst = bound(_, _, [_]),
FinalInst = bound(_, _, [_])
->
CanFail = cannot_fail
;
% If the type has only one constructor, then the unification
% cannot fail.
type_constructors(ModuleInfo, TypeOfX, Constructors),
Constructors = [_]
->
CanFail = cannot_fail
;
% Otherwise, it can fail.
CanFail = can_fail,
mode_info_get_instmap(!.ModeInfo, InstMap0),
(
type_is_higher_order_details(TypeOfX, _, PredOrFunc, _, _),
instmap_is_reachable(InstMap0)
->
set_of_var.init(WaitingVars),
ModeError = mode_error_unify_pred(X,
error_at_functor(ConsId, ArgVars), TypeOfX, PredOrFunc),
mode_info_error(WaitingVars, ModeError, !ModeInfo)
;
true
)
),
Unification = deconstruct(X, ConsId, ArgVars, ArgModes, CanFail,
cannot_cgc)
).
% Check that any type_info or type_class_info variables
% in the argument list are ground.
%
:- pred check_type_info_args_are_ground(list(prog_var)::in,
vartypes::in, unify_context::in, mode_info::in, mode_info::out) is det.
check_type_info_args_are_ground([], _VarTypes, _UnifyContext, !ModeInfo).
check_type_info_args_are_ground([ArgVar | ArgVars], VarTypes, UnifyContext,
!ModeInfo) :-
(
lookup_var_type(VarTypes, ArgVar, ArgType),
is_introduced_type_info_type(ArgType)
->
mode_info_set_call_arg_context(1, !ModeInfo),
modecheck_introduced_type_info_var_has_inst_no_exact_match(ArgVar,
ArgType, ground(shared, none), !ModeInfo),
check_type_info_args_are_ground(ArgVars, VarTypes, UnifyContext,
!ModeInfo)
;
true
).
%-----------------------------------------------------------------------------%
:- type match_modes_result
---> possible_modes(list(proc_id))
; ho_arg_not_ground.
:- type match_mode_result
---> ho_insts_match
; ho_insts_do_not_match
; ho_arg_not_ground.
:- pred match_modes_by_higher_order_insts(module_info::in, instmap::in,
vartypes::in, prog_vars::in, pred_info::in, match_modes_result::out) is det.
match_modes_by_higher_order_insts(ModuleInfo, InstMap, VarTypes, ArgVars,
CalleePredInfo, Result) :-
CalleeProcIds = pred_info_procids(CalleePredInfo),
match_modes_by_higher_order_insts_2(ModuleInfo, InstMap, VarTypes,
ArgVars, CalleePredInfo, CalleeProcIds, [], Result).
:- pred match_modes_by_higher_order_insts_2(module_info::in, instmap::in,
vartypes::in, prog_vars::in, pred_info::in, list(proc_id)::in,
list(proc_id)::in, match_modes_result::out) is det.
match_modes_by_higher_order_insts_2(_, _, _, _, _,
[], RevMatchedProcIds, Result) :-
Result = possible_modes(list.reverse(RevMatchedProcIds)).
match_modes_by_higher_order_insts_2(ModuleInfo, InstMap, VarTypes,
ArgVars, PredInfo, [ProcId | ProcIds], RevMatchedProcIds, Result) :-
pred_info_proc_info(PredInfo, ProcId, ProcInfo),
proc_info_get_argmodes(ProcInfo, ArgModes),
match_mode_by_higher_order_insts(ModuleInfo, InstMap, VarTypes, ArgVars,
ArgModes, ProcResult),
(
ProcResult = ho_insts_match,
match_modes_by_higher_order_insts_2(ModuleInfo, InstMap,
VarTypes, ArgVars, PredInfo, ProcIds, [ProcId | RevMatchedProcIds],
Result)
;
ProcResult = ho_insts_do_not_match,
match_modes_by_higher_order_insts_2(ModuleInfo, InstMap, VarTypes,
ArgVars, PredInfo, ProcIds, RevMatchedProcIds, Result)
;
ProcResult = ho_arg_not_ground,
Result = ho_arg_not_ground
).
:- pred match_mode_by_higher_order_insts(module_info::in, instmap::in,
vartypes::in, prog_vars::in, list(mer_mode)::in, match_mode_result::out)
is det.
match_mode_by_higher_order_insts(_ModuleInfo, _InstMap, _VarTypes,
[], _, ho_insts_match).
match_mode_by_higher_order_insts(ModuleInfo, InstMap, VarTypes,
[Arg | Args], ArgModesList, Result) :-
(
ArgModesList = [ArgMode | ArgModes]
;
ArgModesList = [],
unexpected($module, $pred, "too many arguments")
),
% For arguments with higher order initial insts, check if the variable in
% that position has a matching inst. If the variable is free then we need
% to delay the goal.
Initial = mode_get_initial_inst(ModuleInfo, ArgMode),
( Initial = ground(_, higher_order(_)) ->
instmap_lookup_var(InstMap, Arg, ArgInst),
lookup_var_type(VarTypes, Arg, ArgType),
( inst_matches_initial(ArgInst, Initial, ArgType, ModuleInfo) ->
match_mode_by_higher_order_insts(ModuleInfo, InstMap, VarTypes,
Args, ArgModes, Result)
; not inst_is_ground(ModuleInfo, ArgInst) ->
Result = ho_arg_not_ground
;
Result = ho_insts_do_not_match
)
;
match_mode_by_higher_order_insts(ModuleInfo, InstMap, VarTypes, Args,
ArgModes, Result)
).
%-----------------------------------------------------------------------------%
:- pred bind_args(mer_inst::in, list(prog_var)::in, list(maybe(mer_inst))::in,
mode_info::in, mode_info::out) is det.
bind_args(Inst, Args, UnifyArgInsts, !ModeInfo) :-
( try_bind_args(Inst, Args, UnifyArgInsts, !ModeInfo) ->
true
;
unexpected($module, $pred, "try_bind_args failed")
).
:- pred try_bind_args(mer_inst::in, list(prog_var)::in,
list(maybe(mer_inst))::in, mode_info::in, mode_info::out) is semidet.
try_bind_args(Inst, ArgVars, UnifyArgInsts, !ModeInfo) :-
(
Inst = not_reached,
instmap.init_unreachable(InstMap),
mode_info_set_instmap(InstMap, !ModeInfo)
;
Inst = ground(Uniq, none),
ground_args(Uniq, ArgVars, UnifyArgInsts, !ModeInfo)
;
Inst = bound(_Uniq, _InstResults, BoundInsts),
(
BoundInsts = [],
% The code is unreachable.
instmap.init_unreachable(InstMap),
mode_info_set_instmap(InstMap, !ModeInfo)
;
BoundInsts = [bound_functor(_, ArgInsts)],
try_bind_args_2(ArgVars, ArgInsts, UnifyArgInsts, !ModeInfo)
)
;
Inst = constrained_inst_vars(_, SubInst),
try_bind_args(SubInst, ArgVars, UnifyArgInsts, !ModeInfo)
).
:- pred try_bind_args_2(list(prog_var)::in, list(mer_inst)::in,
list(maybe(mer_inst))::in, mode_info::in, mode_info::out) is semidet.
try_bind_args_2([], [], [], !ModeInfo).
try_bind_args_2([Arg | Args], [Inst | Insts], [UnifyArgInst | UnifyArgInsts],
!ModeInfo) :-
modecheck_set_var_inst(Arg, Inst, UnifyArgInst, !ModeInfo),
try_bind_args_2(Args, Insts, UnifyArgInsts, !ModeInfo).
:- pred ground_args(uniqueness::in, list(prog_var)::in,
list(maybe(mer_inst))::in, mode_info::in, mode_info::out) is semidet.
ground_args(_Uniq, [], [], !ModeInfo).
ground_args(Uniq, [Arg | Args], [UnifyArgInst | UnifyArgInsts], !ModeInfo) :-
modecheck_set_var_inst(Arg, ground(Uniq, none), UnifyArgInst, !ModeInfo),
ground_args(Uniq, Args, UnifyArgInsts, !ModeInfo).
%-----------------------------------------------------------------------------%
% get_mode_of_args(FinalInst, InitialArgInsts, ArgModes):
%
% For a var-functor unification, given the final inst of the var
% and the initial insts of the functor arguments, compute the modes
% of the functor arguments.
%
:- pred get_mode_of_args(mer_inst::in, list(mer_inst)::in, list(mer_mode)::out)
is semidet.
get_mode_of_args(Inst, ArgInsts, ArgModes) :-
(
Inst = not_reached,
mode_set_args(ArgInsts, not_reached, ArgModes)
;
Inst = any(Uniq, none),
mode_set_args(ArgInsts, any(Uniq, none), ArgModes)
;
Inst = ground(Uniq, none),
mode_set_args(ArgInsts, ground(Uniq, none), ArgModes)
;
Inst = bound(_Uniq, _InstResults, BoundInsts),
(
BoundInsts = [],
% The code is unreachable.
mode_set_args(ArgInsts, not_reached, ArgModes)
;
BoundInsts = [bound_functor(_Name, FunctorArgInsts)],
get_mode_of_args_2(ArgInsts, FunctorArgInsts, ArgModes)
)
;
Inst = constrained_inst_vars(_, SubInst),
get_mode_of_args(SubInst, ArgInsts, ArgModes)
).
:- pred get_mode_of_args_2(list(mer_inst)::in, list(mer_inst)::in,
list(mer_mode)::out) is semidet.
get_mode_of_args_2([], [], []).
get_mode_of_args_2([InstA | InstsA], [InstB | InstsB], [Mode | Modes]) :-
Mode = (InstA -> InstB),
get_mode_of_args_2(InstsA, InstsB, Modes).
:- pred mode_set_args(list(mer_inst)::in, mer_inst::in, list(mer_mode)::out)
is det.
mode_set_args([], _, []).
mode_set_args([Inst | Insts], FinalInst, [Mode | Modes]) :-
Mode = (Inst -> FinalInst),
mode_set_args(Insts, FinalInst, Modes).
%-----------------------------------------------------------------------------%
:- func init_instmap_may_have_subtype(mode_info) = bool.
init_instmap_may_have_subtype(ModeInfo) = MayHaveSubtype :-
mode_info_get_initial_instmap(ModeInfo, InitialInstMap),
instmap_to_assoc_list(InitialInstMap, InitVarsInsts),
assoc_list.values(InitVarsInsts, InitInsts),
mode_info_get_module_info(ModeInfo, ModuleInfo),
MayRestrictList =
list.map(inst_may_restrict_cons_ids(ModuleInfo), InitInsts),
bool.or_list(MayRestrictList, MayHaveSubtype).
%-----------------------------------------------------------------------------%
:- end_module check_hlds.modecheck_unify.
%-----------------------------------------------------------------------------%