Files
mercury/compiler/bytecode_gen.m
Zoltan Somogyi 2b2f3d3cbe This diff contains no algorithmic changes.
Estimated hours taken: 8
Branches: main

This diff contains no algorithmic changes. It merely renames apart a bunch of
function symbols to reduce ambiguity. Basically I went through prog_data.m,
prog_item.m, hlds_data.m, hlds_goal.m and hlds_pred.m looking for type
definitions containing function symbol names that were either language
"keywords" (e.g. "terminates", which is an annotation on foreign_procs),
used with slightly different meanings in several types (e.g. "sym"),
or both (e.g. "call"). When I found such type definitions, I changed the
names of the function symbols, usually by adding a prefix or suffix
indicating the type to all function symbols of the type. For example,
the old function symbol "foreign_proc" in type "pragma_type" is now named
"pragma_foreign_proc", and the names of all other function symbols in that
type also start with "pragma_".

All of this should yield simpler compiler error messages when we make mistakes,
and will make it more likely that looking up a function symbol using a tags
file will take you to the actual definition of the relevant instance of that
function symbol. However, the most important benefit is the increase in
the readability of unfamiliar code; the reader won't have to emulate the
compiler's type ambiguity resolution algorithm (which in many cases used to
require distinguishing between f/14 and f/15 by counting the arguments,
e.g. for "pred_or_func").

compiler/prog_data.m:
compiler/prog_item.m:
compiler/hlds_data.m:
compiler/hlds_goal.m:
compiler/hlds_pred.m:
	Rename function symbols as explained above.

compiler/*.m:
	Conform to the function symbol renames.

	In some cases, rename other function symbols as well.

	Minor style fixes, e.g. replace if-then-elses with switches,
	or simple det predicates with functions.
2006-08-20 08:21:36 +00:00

913 lines
34 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%---------------------------------------------------------------------------%
% Copyright (C) 1996-2006 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: bytecode_gen.m.
% Author: zs.
%
% This module generates bytecode, which is intended to be used by a
% (not yet implemented) bytecode interpreter/debugger.
%
%---------------------------------------------------------------------------%
:- module bytecode_backend.bytecode_gen.
:- interface.
:- import_module bytecode_backend.bytecode.
:- import_module hlds.hlds_module.
:- import_module io.
:- import_module list.
%---------------------------------------------------------------------------%
:- pred gen_module(module_info::in, list(byte_code)::out,
io::di, io::uo) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
% We make use of some stuff from the LLDS back-end, in particular the stuff
% relating to the argument passing convention in arg_info.m and call_gen.m.
% The intent here is to use the same argument passing convention as for
% the LLDS, to allow interoperability between code compiled to bytecode
% and code compiled to machine code.
%
% XXX It might be nice to move the argument passing related stuff
% in call_gen.m that we use here into arg_info.m, and to then rework
% arg_info.m so that it didn't depend on the LLDS.
:- import_module backend_libs.builtin_ops.
:- import_module check_hlds.mode_util.
:- import_module check_hlds.type_util.
:- import_module hlds.arg_info.
:- import_module hlds.code_model.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_code_util.
:- import_module hlds.hlds_data.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_pred.
:- import_module hlds.passes_aux.
:- import_module libs.compiler_util.
:- import_module libs.globals.
:- import_module libs.tree.
:- import_module ll_backend.call_gen. % XXX for arg passing convention
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_out.
:- import_module parse_tree.prog_type.
:- import_module assoc_list.
:- import_module bool.
:- import_module counter.
:- import_module deconstruct.
:- import_module int.
:- import_module list.
:- import_module map.
:- import_module pair.
:- import_module set.
:- import_module string.
:- import_module term.
:- import_module varset.
%---------------------------------------------------------------------------%
gen_module(ModuleInfo, Code, !IO) :-
module_info_predids(ModuleInfo, PredIds),
gen_preds(PredIds, ModuleInfo, CodeTree, !IO),
tree.flatten(CodeTree, CodeList),
list.condense(CodeList, Code).
:- pred gen_preds(list(pred_id)::in, module_info::in, byte_tree::out,
io::di, io::uo) is det.
gen_preds([], _ModuleInfo, empty, !IO).
gen_preds([PredId | PredIds], ModuleInfo, Code, !IO) :-
module_info_preds(ModuleInfo, PredTable),
map.lookup(PredTable, PredId, PredInfo),
ProcIds = pred_info_non_imported_procids(PredInfo),
(
ProcIds = [],
PredCode = empty
;
ProcIds = [_ | _],
gen_pred(PredId, ProcIds, PredInfo, ModuleInfo, ProcsCode, !IO),
PredName = predicate_name(ModuleInfo, PredId),
list.length(ProcIds, ProcsCount),
Arity = pred_info_orig_arity(PredInfo),
get_is_func(PredInfo, IsFunc),
EnterCode = node([byte_enter_pred(PredName, Arity, IsFunc,
ProcsCount)]),
EndofCode = node([byte_endof_pred]),
PredCode = tree_list([EnterCode, ProcsCode, EndofCode])
),
gen_preds(PredIds, ModuleInfo, OtherCode, !IO),
Code = tree(PredCode, OtherCode).
:- pred gen_pred(pred_id::in, list(proc_id)::in, pred_info::in,
module_info::in, byte_tree::out, io::di, io::uo) is det.
gen_pred(_PredId, [], _PredInfo, _ModuleInfo, empty, !IO).
gen_pred(PredId, [ProcId | ProcIds], PredInfo, ModuleInfo, Code, !IO) :-
write_proc_progress_message("% Generating bytecode for ",
PredId, ProcId, ModuleInfo, !IO),
gen_proc(ProcId, PredInfo, ModuleInfo, ProcCode),
gen_pred(PredId, ProcIds, PredInfo, ModuleInfo, ProcsCode, !IO),
Code = tree(ProcCode, ProcsCode).
:- pred gen_proc(proc_id::in, pred_info::in,
module_info::in, byte_tree::out) is det.
gen_proc(ProcId, PredInfo, ModuleInfo, Code) :-
pred_info_get_procedures(PredInfo, ProcTable),
map.lookup(ProcTable, ProcId, ProcInfo),
proc_info_get_goal(ProcInfo, Goal),
proc_info_get_vartypes(ProcInfo, VarTypes),
proc_info_get_varset(ProcInfo, VarSet),
proc_info_interface_determinism(ProcInfo, Detism),
determinism_to_code_model(Detism, CodeModel),
goal_util.goal_vars(Goal, GoalVars),
proc_info_get_headvars(ProcInfo, ArgVars),
set.insert_list(GoalVars, ArgVars, Vars),
set.to_sorted_list(Vars, VarList),
map.init(VarMap0),
create_varmap(VarList, VarSet, VarTypes, 0, VarMap0, VarMap, VarInfos),
init_byte_info(ModuleInfo, VarMap, VarTypes, ByteInfo0),
get_next_label(ZeroLabel, ByteInfo0, ByteInfo1),
proc_info_arg_info(ProcInfo, ArgInfo),
assoc_list.from_corresponding_lists(ArgVars, ArgInfo, Args),
call_gen.input_arg_locs(Args, InputArgs),
gen_pickups(InputArgs, ByteInfo, PickupCode),
call_gen.output_arg_locs(Args, OutputArgs),
gen_places(OutputArgs, ByteInfo, PlaceCode),
% If semideterministic, reserve temp slot 0 for the return value
( CodeModel = model_semi ->
get_next_temp(_FrameTemp, ByteInfo1, ByteInfo2)
;
ByteInfo2 = ByteInfo1
),
gen_goal(Goal, ByteInfo2, ByteInfo3, GoalCode),
get_next_label(EndLabel, ByteInfo3, ByteInfo),
get_counts(ByteInfo, LabelCount, TempCount),
ZeroLabelCode = node([byte_label(ZeroLabel)]),
BodyTree = tree_list([PickupCode, ZeroLabelCode, GoalCode, PlaceCode]),
tree.flatten(BodyTree, BodyList),
list.condense(BodyList, BodyCode0),
( list.member(byte_not_supported, BodyCode0) ->
BodyCode = node([byte_not_supported])
;
BodyCode = node(BodyCode0)
),
proc_id_to_int(ProcId, ProcInt),
EnterCode = node([byte_enter_proc(ProcInt, Detism, LabelCount, EndLabel,
TempCount, VarInfos)]),
( CodeModel = model_semi ->
EndofCode = node([byte_semidet_succeed, byte_label(EndLabel),
byte_endof_proc])
;
EndofCode = node([byte_label(EndLabel), byte_endof_proc])
),
Code = tree_list([EnterCode, BodyCode, EndofCode]).
%---------------------------------------------------------------------------%
:- pred gen_goal(hlds_goal::in, byte_info::in, byte_info::out,
byte_tree::out) is det.
gen_goal(GoalExpr - GoalInfo, !ByteInfo, Code) :-
gen_goal_expr(GoalExpr, GoalInfo, !ByteInfo, GoalCode),
goal_info_get_context(GoalInfo, Context),
term.context_line(Context, Line),
Code = tree(node([byte_context(Line)]), GoalCode).
:- pred gen_goal_expr(hlds_goal_expr::in, hlds_goal_info::in,
byte_info::in, byte_info::out, byte_tree::out) is det.
gen_goal_expr(GoalExpr, GoalInfo, !ByteInfo, Code) :-
(
GoalExpr = generic_call(GenericCallType,
ArgVars, ArgModes, Detism),
( GenericCallType = higher_order(PredVar, _, _, _) ->
gen_higher_order_call(PredVar, ArgVars, ArgModes, Detism,
!.ByteInfo, Code)
;
% XXX
% string.append_list([
% "bytecode for ", GenericCallFunctor, " calls"], Msg),
% sorry(this_file, Msg)
functor(GenericCallType, canonicalize, _GenericCallFunctor, _),
Code = node([byte_not_supported])
)
;
GoalExpr = plain_call(PredId, ProcId, ArgVars, BuiltinState, _, _),
( BuiltinState = not_builtin ->
goal_info_get_determinism(GoalInfo, Detism),
gen_call(PredId, ProcId, ArgVars, Detism, !.ByteInfo, Code)
;
gen_builtin(PredId, ProcId, ArgVars, !.ByteInfo, Code)
)
;
GoalExpr = unify(Var, RHS, _Mode, Unification, _),
gen_unify(Unification, Var, RHS, !.ByteInfo, Code)
;
GoalExpr = negation(Goal),
gen_goal(Goal, !ByteInfo, SomeCode),
get_next_label(EndLabel, !ByteInfo),
get_next_temp(FrameTemp, !ByteInfo),
EnterCode = node([byte_enter_negation(FrameTemp, EndLabel)]),
EndofCode = node([byte_endof_negation_goal(FrameTemp),
byte_label(EndLabel), byte_endof_negation]),
Code = tree_list([EnterCode, SomeCode, EndofCode])
;
GoalExpr = scope(_, InnerGoal),
gen_goal(InnerGoal, !ByteInfo, InnerCode),
goal_info_get_determinism(GoalInfo, OuterDetism),
InnerGoal = _ - InnerGoalInfo,
goal_info_get_determinism(InnerGoalInfo, InnerDetism),
determinism_to_code_model(OuterDetism, OuterCodeModel),
determinism_to_code_model(InnerDetism, InnerCodeModel),
( InnerCodeModel = OuterCodeModel ->
Code = InnerCode
;
get_next_temp(Temp, !ByteInfo),
EnterCode = node([byte_enter_commit(Temp)]),
EndofCode = node([byte_endof_commit(Temp)]),
Code = tree_list([EnterCode, InnerCode, EndofCode])
)
;
GoalExpr = conj(plain_conj, GoalList),
gen_conj(GoalList, !ByteInfo, Code)
;
GoalExpr = conj(parallel_conj, _GoalList),
sorry(this_file, "bytecode_gen of parallel conjunction")
;
GoalExpr = disj(GoalList),
(
GoalList = [],
Code = node([byte_fail])
;
GoalList = [_ | _],
get_next_label(EndLabel, !ByteInfo),
gen_disj(GoalList, EndLabel, !ByteInfo, DisjCode),
EnterCode = node([byte_enter_disjunction(EndLabel)]),
EndofCode = node([byte_endof_disjunction, byte_label(EndLabel)]),
Code = tree_list([EnterCode, DisjCode, EndofCode])
)
;
GoalExpr = switch(Var, _, CasesList),
get_next_label(EndLabel, !ByteInfo),
gen_switch(CasesList, Var, EndLabel, !ByteInfo, SwitchCode),
map_var(!.ByteInfo, Var, ByteVar),
EnterCode = node([byte_enter_switch(ByteVar, EndLabel)]),
EndofCode = node([byte_endof_switch, byte_label(EndLabel)]),
Code = tree_list([EnterCode, SwitchCode, EndofCode])
;
GoalExpr = if_then_else(_Vars, Cond, Then, Else),
get_next_label(EndLabel, !ByteInfo),
get_next_label(ElseLabel, !ByteInfo),
get_next_temp(FrameTemp, !ByteInfo),
gen_goal(Cond, !ByteInfo, CondCode),
gen_goal(Then, !ByteInfo, ThenCode),
gen_goal(Else, !ByteInfo, ElseCode),
EnterIfCode = node([byte_enter_if(ElseLabel, EndLabel, FrameTemp)]),
EnterThenCode = node([byte_enter_then(FrameTemp)]),
EndofThenCode = node([byte_endof_then(EndLabel), byte_label(ElseLabel),
byte_enter_else(FrameTemp)]),
EndofIfCode = node([byte_endof_if, byte_label(EndLabel)]),
Code = tree_list([EnterIfCode, CondCode, EnterThenCode, ThenCode,
EndofThenCode, ElseCode, EndofIfCode])
;
GoalExpr = call_foreign_proc(_, _, _, _, _, _, _),
Code = node([byte_not_supported])
;
GoalExpr = shorthand(_),
% these should have been expanded out by now
unexpected(this_file, "goal_expr: unexpected shorthand")
).
%---------------------------------------------------------------------------%
:- pred gen_places(list(pair(prog_var, arg_loc))::in,
byte_info::in, byte_tree::out) is det.
gen_places([], _, empty).
gen_places([Var - Loc | OutputArgs], ByteInfo, Code) :-
gen_places(OutputArgs, ByteInfo, OtherCode),
map_var(ByteInfo, Var, ByteVar),
Code = tree(node([byte_place_arg(r, Loc, ByteVar)]), OtherCode).
:- pred gen_pickups(list(pair(prog_var, arg_loc))::in,
byte_info::in, byte_tree::out) is det.
gen_pickups([], _, empty).
gen_pickups([Var - Loc | OutputArgs], ByteInfo, Code) :-
gen_pickups(OutputArgs, ByteInfo, OtherCode),
map_var(ByteInfo, Var, ByteVar),
Code = tree(node([byte_pickup_arg(r, Loc, ByteVar)]), OtherCode).
%---------------------------------------------------------------------------%
% Generate bytecode for a higher order call.
%
:- pred gen_higher_order_call(prog_var::in, list(prog_var)::in,
list(mer_mode)::in, determinism::in, byte_info::in, byte_tree::out) is det.
gen_higher_order_call(PredVar, ArgVars, ArgModes, Detism, ByteInfo, Code) :-
determinism_to_code_model(Detism, CodeModel),
get_module_info(ByteInfo, ModuleInfo),
list.map(get_var_type(ByteInfo), ArgVars, ArgTypes),
make_arg_infos(ArgTypes, ArgModes, CodeModel, ModuleInfo, ArgInfo),
assoc_list.from_corresponding_lists(ArgVars, ArgInfo, ArgVarsInfos),
arg_info.partition_args(ArgVarsInfos, InVars, OutVars),
list.length(InVars, NInVars),
list.length(OutVars, NOutVars),
call_gen.input_arg_locs(ArgVarsInfos, InputArgs),
gen_places(InputArgs, ByteInfo, PlaceArgs),
call_gen.output_arg_locs(ArgVarsInfos, OutputArgs),
gen_pickups(OutputArgs, ByteInfo, PickupArgs),
map_var(ByteInfo, PredVar, BytePredVar),
Call = node([byte_higher_order_call(BytePredVar, NInVars, NOutVars,
Detism)]),
( CodeModel = model_semi ->
Check = node([byte_semidet_success_check])
;
Check = empty
),
Code = tree(PlaceArgs, tree(Call, tree(Check, PickupArgs))).
% Generate bytecode for an ordinary call.
%
:- pred gen_call(pred_id::in, proc_id::in, list(prog_var)::in,
determinism::in, byte_info::in, byte_tree::out) is det.
gen_call(PredId, ProcId, ArgVars, Detism, ByteInfo, Code) :-
get_module_info(ByteInfo, ModuleInfo),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
proc_info_arg_info(ProcInfo, ArgInfo),
assoc_list.from_corresponding_lists(ArgVars, ArgInfo, ArgVarsInfos),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
get_is_func(PredInfo, IsFunc),
call_gen.input_arg_locs(ArgVarsInfos, InputArgs),
gen_places(InputArgs, ByteInfo, PlaceArgs),
call_gen.output_arg_locs(ArgVarsInfos, OutputArgs),
gen_pickups(OutputArgs, ByteInfo, PickupArgs),
predicate_id(ModuleInfo, PredId, ModuleName, PredName, Arity),
proc_id_to_int(ProcId, ProcInt),
Call = node([byte_call(ModuleName, PredName, Arity, IsFunc, ProcInt)]),
determinism_to_code_model(Detism, CodeModel),
( CodeModel = model_semi ->
Check = node([byte_semidet_success_check])
;
Check = empty
),
Code = tree(PlaceArgs, tree(Call, tree(Check, PickupArgs))).
% Generate bytecode for a call to a builtin.
%
:- pred gen_builtin(pred_id::in, proc_id::in, list(prog_var)::in,
byte_info::in, byte_tree::out) is det.
gen_builtin(PredId, ProcId, Args, ByteInfo, Code) :-
get_module_info(ByteInfo, ModuleInfo),
ModuleName = predicate_module(ModuleInfo, PredId),
PredName = predicate_name(ModuleInfo, PredId),
(
builtin_ops.translate_builtin(ModuleName, PredName, ProcId,
Args, SimpleCode)
->
(
SimpleCode = test(Test),
map_test(ByteInfo, Test, Code)
;
SimpleCode = assign(Var, Expr),
map_assign(ByteInfo, Var, Expr, Code)
;
SimpleCode = ref_assign(_Var, _Expr),
unexpected(this_file, "ref_assign")
;
SimpleCode = noop(_DefinedVars),
Code = node([])
)
;
string.append("unknown builtin predicate ", PredName, Msg),
unexpected(this_file, Msg)
).
:- pred map_test(byte_info::in, simple_expr(prog_var)::in(simple_test_expr),
byte_tree::out) is det.
map_test(ByteInfo, TestExpr, Code) :-
(
TestExpr = binary(Binop, X, Y),
map_arg(ByteInfo, X, ByteX),
map_arg(ByteInfo, Y, ByteY),
Code = node([byte_builtin_bintest(Binop, ByteX, ByteY)])
;
TestExpr = unary(Unop, X),
map_arg(ByteInfo, X, ByteX),
Code = node([byte_builtin_untest(Unop, ByteX)])
).
:- pred map_assign(byte_info::in, prog_var::in,
simple_expr(prog_var)::in(simple_assign_expr), byte_tree::out) is det.
map_assign(ByteInfo, Var, Expr, Code) :-
(
Expr = binary(Binop, X, Y),
map_arg(ByteInfo, X, ByteX),
map_arg(ByteInfo, Y, ByteY),
map_var(ByteInfo, Var, ByteVar),
Code = node([byte_builtin_binop(Binop, ByteX, ByteY, ByteVar)])
;
Expr = unary(Unop, X),
map_arg(ByteInfo, X, ByteX),
map_var(ByteInfo, Var, ByteVar),
Code = node([byte_builtin_unop(Unop, ByteX, ByteVar)])
;
Expr = leaf(X),
map_var(ByteInfo, X, ByteX),
map_var(ByteInfo, Var, ByteVar),
Code = node([byte_assign(ByteVar, ByteX)])
).
:- pred map_arg(byte_info::in, simple_expr(prog_var)::in(simple_arg_expr),
byte_arg::out) is det.
map_arg(ByteInfo, Expr, ByteArg) :-
(
Expr = leaf(Var),
map_var(ByteInfo, Var, ByteVar),
ByteArg = var(ByteVar)
;
Expr = int_const(IntVal),
ByteArg = int_const(IntVal)
;
Expr = float_const(FloatVal),
ByteArg = float_const(FloatVal)
).
%---------------------------------------------------------------------------%
% Generate bytecode for a unification.
%
:- pred gen_unify(unification::in, prog_var::in, unify_rhs::in,
byte_info::in, byte_tree::out) is det.
gen_unify(construct(Var, ConsId, Args, UniModes, _, _, _), _, _,
ByteInfo, Code) :-
map_var(ByteInfo, Var, ByteVar),
map_vars(ByteInfo, Args, ByteArgs),
map_cons_id(ByteInfo, Var, ConsId, ByteConsId),
( ByteConsId = pred_const(_, _, _, _, _) ->
Code = node([byte_construct(ByteVar, ByteConsId, ByteArgs)])
;
% Don't call map_uni_modes until after
% the pred_const test fails, since the arg-modes on
% unifications that create closures aren't like other arg-modes.
map_uni_modes(UniModes, Args, ByteInfo, Dirs),
( all_dirs_same(Dirs, to_var) ->
Code = node([byte_construct(ByteVar, ByteConsId, ByteArgs)])
;
assoc_list.from_corresponding_lists(ByteArgs, Dirs, Pairs),
Code = node([byte_complex_construct(ByteVar, ByteConsId, Pairs)])
)
).
gen_unify(deconstruct(Var, ConsId, Args, UniModes, _, _), _, _,
ByteInfo, Code) :-
map_var(ByteInfo, Var, ByteVar),
map_vars(ByteInfo, Args, ByteArgs),
map_cons_id(ByteInfo, Var, ConsId, ByteConsId),
map_uni_modes(UniModes, Args, ByteInfo, Dirs),
( all_dirs_same(Dirs, to_arg) ->
Code = node([byte_deconstruct(ByteVar, ByteConsId, ByteArgs)])
;
assoc_list.from_corresponding_lists(ByteArgs, Dirs, Pairs),
Code = node([byte_complex_deconstruct(ByteVar, ByteConsId, Pairs)])
).
gen_unify(assign(Target, Source), _, _, ByteInfo, Code) :-
map_var(ByteInfo, Target, ByteTarget),
map_var(ByteInfo, Source, ByteSource),
Code = node([byte_assign(ByteTarget, ByteSource)]).
gen_unify(simple_test(Var1, Var2), _, _, ByteInfo, Code) :-
map_var(ByteInfo, Var1, ByteVar1),
map_var(ByteInfo, Var2, ByteVar2),
get_var_type(ByteInfo, Var1, Var1Type),
get_var_type(ByteInfo, Var2, Var2Type),
(
type_to_ctor_and_args(Var1Type, TypeCtor1, _),
type_to_ctor_and_args(Var2Type, TypeCtor2, _)
->
( TypeCtor2 = TypeCtor1 ->
TypeCtor = TypeCtor1
; unexpected(this_file,
"simple_test between different types")
)
;
unexpected(this_file, "failed lookup of type id")
),
ByteInfo = byte_info(_, _, ModuleInfo, _, _),
TypeCategory = classify_type_ctor(ModuleInfo, TypeCtor),
(
TypeCategory = type_cat_int,
TestId = int_test
;
TypeCategory = type_cat_char,
TestId = char_test
;
TypeCategory = type_cat_string,
TestId = string_test
;
TypeCategory = type_cat_float,
TestId = float_test
;
TypeCategory = type_cat_dummy,
TestId = dummy_test
;
TypeCategory = type_cat_enum,
TestId = enum_test
;
TypeCategory = type_cat_higher_order,
unexpected(this_file, "higher_order_type in simple_test")
;
TypeCategory = type_cat_tuple,
unexpected(this_file, "tuple_type in simple_test")
;
TypeCategory = type_cat_user_ctor,
unexpected(this_file, "user_ctor_type in simple_test")
;
TypeCategory = type_cat_variable,
unexpected(this_file, "variable_type in simple_test")
;
TypeCategory = type_cat_void,
unexpected(this_file, "void_type in simple_test")
;
TypeCategory = type_cat_type_info,
unexpected(this_file, "type_info_type in simple_test")
;
TypeCategory = type_cat_type_ctor_info,
unexpected(this_file, "type_ctor_info_type in simple_test")
;
TypeCategory = type_cat_typeclass_info,
unexpected(this_file, "typeclass_info_type in simple_test")
;
TypeCategory = type_cat_base_typeclass_info,
unexpected(this_file, "base_typeclass_info_type in simple_test")
),
Code = node([byte_test(ByteVar1, ByteVar2, TestId)]).
gen_unify(complicated_unify(_,_,_), _Var, _RHS, _ByteInfo, _Code) :-
unexpected(this_file, "complicated unifications " ++
"should have been handled by polymorphism.m").
:- pred map_uni_modes(list(uni_mode)::in, list(prog_var)::in,
byte_info::in, list(byte_dir)::out) is det.
map_uni_modes([], [], _, []).
map_uni_modes([UniMode | UniModes], [Arg | Args], ByteInfo, [Dir | Dirs]) :-
UniMode = ((VarInitial - ArgInitial) -> (VarFinal - ArgFinal)),
get_module_info(ByteInfo, ModuleInfo),
get_var_type(ByteInfo, Arg, Type),
mode_to_arg_mode(ModuleInfo, (VarInitial -> VarFinal), Type, VarMode),
mode_to_arg_mode(ModuleInfo, (ArgInitial -> ArgFinal), Type, ArgMode),
(
VarMode = top_in,
ArgMode = top_out
->
Dir = to_arg
;
VarMode = top_out,
ArgMode = top_in
->
Dir = to_var
;
VarMode = top_unused,
ArgMode = top_unused
->
Dir = to_none
;
unexpected(this_file,
"invalid mode for (de)construct unification")
),
map_uni_modes(UniModes, Args, ByteInfo, Dirs).
map_uni_modes([], [_|_], _, _) :-
unexpected(this_file, "map_uni_modes: length mismatch").
map_uni_modes([_|_], [], _, _) :-
unexpected(this_file, "map_uni_modes: length mismatch").
:- pred all_dirs_same(list(byte_dir)::in, byte_dir::in)
is semidet.
all_dirs_same([], _).
all_dirs_same([Dir | Dirs], Dir) :-
all_dirs_same(Dirs, Dir).
%---------------------------------------------------------------------------%
% Generate bytecode for a conjunction
%
:- pred gen_conj(list(hlds_goal)::in, byte_info::in, byte_info::out,
byte_tree::out) is det.
gen_conj([], !ByteInfo, empty).
gen_conj([Goal | Goals], !ByteInfo, Code) :-
gen_goal(Goal, !ByteInfo, ThisCode),
gen_conj(Goals, !ByteInfo, OtherCode),
Code = tree(ThisCode, OtherCode).
%---------------------------------------------------------------------------%
% Generate bytecode for each disjunct of a disjunction.
%
:- pred gen_disj(list(hlds_goal)::in, int::in,
byte_info::in, byte_info::out, byte_tree::out) is det.
gen_disj([], _, _, _, _) :-
unexpected(this_file, "empty disjunction in disj").
gen_disj([Disjunct | Disjuncts], EndLabel, !ByteInfo, Code) :-
gen_goal(Disjunct, !ByteInfo, ThisCode),
(
Disjuncts = [],
EnterCode = node([byte_enter_disjunct(-1)]),
EndofCode = node([byte_endof_disjunct(EndLabel)]),
Code = tree_list([EnterCode, ThisCode, EndofCode])
;
Disjuncts = [_ | _],
gen_disj(Disjuncts, EndLabel, !ByteInfo, OtherCode),
get_next_label(NextLabel, !ByteInfo),
EnterCode = node([byte_enter_disjunct(NextLabel)]),
EndofCode = node([byte_endof_disjunct(EndLabel),
byte_label(NextLabel)]),
Code = tree_list([EnterCode, ThisCode, EndofCode, OtherCode])
).
%---------------------------------------------------------------------------%
% Generate bytecode for each arm of a switch.
%
:- pred gen_switch(list(case)::in, prog_var::in, int::in,
byte_info::in, byte_info::out, byte_tree::out) is det.
gen_switch([], _, _, !ByteInfo, empty).
gen_switch([case(ConsId, Goal) | Cases], Var, EndLabel,
!ByteInfo, Code) :-
map_cons_id(!.ByteInfo, Var, ConsId, ByteConsId),
gen_goal(Goal, !ByteInfo, ThisCode),
gen_switch(Cases, Var, EndLabel, !ByteInfo, OtherCode),
get_next_label(NextLabel, !ByteInfo),
EnterCode = node([byte_enter_switch_arm(ByteConsId, NextLabel)]),
EndofCode = node([byte_endof_switch_arm(EndLabel), byte_label(NextLabel)]),
Code = tree_list([EnterCode, ThisCode, EndofCode, OtherCode]).
%---------------------------------------------------------------------------%
:- pred map_cons_id(byte_info::in, prog_var::in, cons_id::in,
byte_cons_id::out) is det.
map_cons_id(ByteInfo, Var, ConsId, ByteConsId) :-
get_module_info(ByteInfo, ModuleInfo),
(
ConsId = cons(Functor, Arity),
get_var_type(ByteInfo, Var, Type),
(
% Everything other than characters and tuples should
% be module qualified.
Functor = unqualified(FunctorName),
\+ type_is_tuple(Type, _)
->
string.to_char_list(FunctorName, FunctorList),
( FunctorList = [Char] ->
ByteConsId = char_const(Char)
;
unexpected(this_file, "map_cons_id: " ++
"unqualified cons_id is not a char_const")
)
;
(
Functor = unqualified(FunctorName),
ModuleName = unqualified("builtin")
;
Functor = qualified(ModuleName, FunctorName)
),
ConsTag = cons_id_to_tag(ConsId, Type, ModuleInfo),
map_cons_tag(ConsTag, ByteConsTag),
ByteConsId = cons(ModuleName, FunctorName, Arity, ByteConsTag)
)
;
ConsId = int_const(IntVal),
ByteConsId = int_const(IntVal)
;
ConsId = string_const(StringVal),
ByteConsId = string_const(StringVal)
;
ConsId = float_const(FloatVal),
ByteConsId = float_const(FloatVal)
;
ConsId = pred_const(ShroudedPredProcId, _EvalMethod),
proc(PredId, ProcId) = unshroud_pred_proc_id(ShroudedPredProcId),
predicate_id(ModuleInfo, PredId, ModuleName, PredName, Arity),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
get_is_func(PredInfo, IsFunc),
proc_id_to_int(ProcId, ProcInt),
ByteConsId = pred_const(ModuleName, PredName, Arity, IsFunc, ProcInt)
;
ConsId = type_ctor_info_const(ModuleName, TypeName, TypeArity),
ByteConsId = type_ctor_info_const(ModuleName, TypeName, TypeArity)
;
ConsId = base_typeclass_info_const(ModuleName, ClassId, _, Instance),
ByteConsId = base_typeclass_info_const(ModuleName, ClassId, Instance)
;
ConsId = type_info_cell_constructor(_),
ByteConsId = type_info_cell_constructor
;
ConsId = typeclass_info_cell_constructor,
ByteConsId = typeclass_info_cell_constructor
;
ConsId = tabling_info_const(_),
sorry(this_file, "bytecode cannot implement tabling")
;
ConsId = table_io_decl(_),
sorry(this_file, "bytecode cannot implement table io decl")
;
ConsId = deep_profiling_proc_layout(_),
sorry(this_file, "bytecode cannot implement deep profiling")
).
:- pred map_cons_tag(cons_tag::in, byte_cons_tag::out) is det.
map_cons_tag(no_tag, no_tag).
% `single_functor' is just an optimized version of `unshared_tag(0)'
% this optimization is not important for the bytecode
map_cons_tag(single_functor_tag, unshared_tag(0)).
map_cons_tag(unshared_tag(Primary), unshared_tag(Primary)).
map_cons_tag(shared_remote_tag(Primary, Secondary),
shared_remote_tag(Primary, Secondary)).
map_cons_tag(shared_local_tag(Primary, Secondary),
shared_local_tag(Primary, Secondary)).
map_cons_tag(string_tag(_), _) :-
unexpected(this_file, "string_tag cons tag " ++
"for non-string_constant cons id").
map_cons_tag(int_tag(IntVal), enum_tag(IntVal)).
map_cons_tag(float_tag(_), _) :-
unexpected(this_file, "float_tag cons tag " ++
"for non-float_constant cons id").
map_cons_tag(pred_closure_tag(_, _, _), _) :-
unexpected(this_file, "pred_closure_tag cons tag " ++
"for non-pred_const cons id").
map_cons_tag(type_ctor_info_tag(_, _, _), _) :-
unexpected(this_file, "type_ctor_info_tag cons tag " ++
"for non-type_ctor_info_constant cons id").
map_cons_tag(base_typeclass_info_tag(_, _, _), _) :-
unexpected(this_file, "base_typeclass_info_tag cons tag " ++
"for non-base_typeclass_info_constant cons id").
map_cons_tag(tabling_info_tag(_, _), _) :-
unexpected(this_file, "tabling_info_tag cons tag " ++
"for non-tabling_info_constant cons id").
map_cons_tag(deep_profiling_proc_layout_tag(_, _), _) :-
unexpected(this_file, "deep_profiling_proc_layout_tag cons tag " ++
"for non-deep_profiling_proc_static cons id").
map_cons_tag(table_io_decl_tag(_, _), _) :-
unexpected(this_file, "table_io_decl_tag cons tag " ++
"for non-table_io_decl cons id").
map_cons_tag(reserved_address_tag(_), _) :-
% These should only be generated if the --num-reserved-addresses
% or --num-reserved-objects options are used.
sorry(this_file, "bytecode with --num-reserved-addresses " ++
"or --num-reserved-objects").
map_cons_tag(shared_with_reserved_addresses_tag(_, _), _) :-
% These should only be generated if the --num-reserved-addresses
% or --num-reserved-objects options are used.
sorry(this_file, "bytecode with --num-reserved-addresses " ++
"or --num-reserved-objects").
%---------------------------------------------------------------------------%
:- pred create_varmap(list(prog_var)::in, prog_varset::in,
vartypes::in, int::in, map(prog_var, byte_var)::in,
map(prog_var, byte_var)::out, list(byte_var_info)::out) is det.
create_varmap([], _, _, _, !VarMap, []).
create_varmap([Var | VarList], VarSet, VarTypes, N0, !VarMap, VarInfos) :-
map.det_insert(!.VarMap, Var, N0, !:VarMap),
N1 = N0 + 1,
varset.lookup_name(VarSet, Var, VarName),
map.lookup(VarTypes, Var, VarType),
create_varmap(VarList, VarSet, VarTypes, N1, !VarMap, VarInfosTail),
VarInfos = [var_info(VarName, VarType) | VarInfosTail].
%---------------------------------------------------------------------------%(
:- type byte_info
---> byte_info(
byteinfo_varmap :: map(prog_var, byte_var),
byteinfo_vartypes :: vartypes,
byteinfo_moduleinfo :: module_info,
byteinfo_label_counter :: counter,
byteinfo_temp_counter :: counter
).
:- pred init_byte_info(module_info::in, map(prog_var, byte_var)::in,
vartypes::in, byte_info::out) is det.
init_byte_info(ModuleInfo, VarMap, VarTypes, ByteInfo) :-
ByteInfo = byte_info(VarMap, VarTypes, ModuleInfo,
counter.init(0), counter.init(0)).
:- pred get_module_info(byte_info::in, module_info::out) is det.
get_module_info(ByteInfo, ByteInfo ^ byteinfo_moduleinfo).
:- pred map_vars(byte_info::in,
list(prog_var)::in, list(byte_var)::out) is det.
map_vars(ByteInfo, Vars, ByteVars) :-
map_vars_2(ByteInfo ^ byteinfo_varmap, Vars, ByteVars).
:- pred map_vars_2(map(prog_var, byte_var)::in,
list(prog_var)::in, list(byte_var)::out) is det.
map_vars_2(_VarMap, [], []).
map_vars_2(VarMap, [Var | Vars], [ByteVar | ByteVars]) :-
map.lookup(VarMap, Var, ByteVar),
map_vars_2(VarMap, Vars, ByteVars).
:- pred map_var(byte_info::in, prog_var::in,
byte_var::out) is det.
map_var(ByteInfo, Var, ByteVar) :-
map.lookup(ByteInfo ^ byteinfo_varmap, Var, ByteVar).
:- pred get_var_type(byte_info::in, prog_var::in,
mer_type::out) is det.
get_var_type(ByteInfo, Var, Type) :-
map.lookup(ByteInfo ^ byteinfo_vartypes, Var, Type).
:- pred get_next_label(int::out, byte_info::in, byte_info::out)
is det.
get_next_label(Label, !ByteInfo) :-
LabelCounter0 = !.ByteInfo ^ byteinfo_label_counter,
counter.allocate(Label, LabelCounter0, LabelCounter),
!:ByteInfo = !.ByteInfo ^ byteinfo_label_counter := LabelCounter.
:- pred get_next_temp(int::out, byte_info::in, byte_info::out)
is det.
get_next_temp(Temp, !ByteInfo) :-
TempCounter0 = !.ByteInfo ^ byteinfo_temp_counter,
counter.allocate(Temp, TempCounter0, TempCounter),
!:ByteInfo = !.ByteInfo ^ byteinfo_temp_counter := TempCounter.
:- pred get_counts(byte_info::in, int::out, int::out) is det.
get_counts(ByteInfo0, Label, Temp) :-
LabelCounter0 = ByteInfo0 ^ byteinfo_label_counter,
counter.allocate(Label, LabelCounter0, _LabelCounter),
TempCounter0 = ByteInfo0 ^ byteinfo_temp_counter,
counter.allocate(Temp, TempCounter0, _TempCounter).
%---------------------------------------------------------------------------%
:- pred get_is_func(pred_info::in, byte_is_func::out) is det.
get_is_func(PredInfo, IsFunc) :-
( pred_info_is_pred_or_func(PredInfo) = predicate ->
IsFunc = 0
;
IsFunc = 1
).
%---------------------------------------------------------------------------%
:- func this_file = string.
this_file = "bytecode_gen.m".
%---------------------------------------------------------------------------%
:- end_module bytecode_gen.
%---------------------------------------------------------------------------%