Files
mercury/compiler/prog_io_util.m
Zoltan Somogyi 295415090e Convert almost all remaining modules in the compiler to use
Estimated hours taken: 6
Branches: main

compiler/*.m:
	Convert almost all remaining modules in the compiler to use
	"$module, $pred" instead of "this_file" in error messages.

	In a few cases, the old error message was misleading, since it
	contained an incorrect, out-of-date or cut-and-pasted predicate name.

tests/invalid/unresolved_overloading.err_exp:
	Update an expected output containing an updated error message.
2011-05-23 05:08:24 +00:00

1219 lines
46 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2011 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io_util.m.
% Main author: fjh.
%
% This module defines the types used by prog_io and its subcontractors
% to return the results of parsing, and some utility predicates needed
% by several of prog_io's submodules.
%
% Most parsing predicates must check for errors. They return either the
% item(s) they were looking for, or an error indication.
%
% Most of the parsing predicates return a `maybe1(T)' or a `maybe2(T1, T2)',
% which will either be the `ok(ParseTree)' (or `ok(ParseTree1, ParseTree2)'),
% if the parse is successful, or `error(Message, Term)' if it is not.
% The `Term' there should be the term which is syntactically incorrect.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module parse_tree.prog_io_util.
:- interface.
:- import_module mdbcomp.prim_data.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.error_util.
:- import_module parse_tree.prog_data.
:- import_module assoc_list.
:- import_module list.
:- import_module map.
:- import_module maybe.
:- import_module pair.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
:- type maybe1(T1)
---> error1(list(error_spec))
; ok1(T1).
:- type maybe2(T1, T2)
---> error2(list(error_spec))
; ok2(T1, T2).
:- type maybe3(T1, T2, T3)
---> error3(list(error_spec))
; ok3(T1, T2, T3).
:- type maybe4(T1, T2, T3, T4)
---> error4(list(error_spec))
; ok4(T1, T2, T3, T4).
:- func get_any_errors1(maybe1(T1)) = list(error_spec).
:- func get_any_errors2(maybe2(T1, T2)) = list(error_spec).
:- func get_any_errors3(maybe3(T1, T2, T3)) = list(error_spec).
:- func get_any_errors4(maybe4(T1, T2, T3, T4)) = list(error_spec).
:- type maybe_functor == maybe_functor(generic).
:- type maybe_functor(T) == maybe2(sym_name, list(term(T))).
% ok(SymName, Args - MaybeFuncRetArg) ; error(Msg, Term).
:- type maybe_pred_or_func(T) == maybe2(sym_name, pair(list(T), maybe(T))).
:- type var2tvar == map(var, tvar).
:- type var2pvar == map(var, prog_var).
:- type parser(T) == pred(term, maybe1(T)).
:- mode parser == (pred(in, out) is det).
% Various predicates to parse small bits of syntax.
% These predicates simply fail if they encounter a syntax error.
:- pred parse_list_of_vars(term(T)::in, list(var(T))::out) is semidet.
% Parse a list of quantified variables.
% The other input argument is a prefix for any error messages.
%
:- pred parse_vars(term(T)::in, varset(T)::in, list(format_component)::in,
maybe1(list(var(T)))::out) is det.
% Parse a list of quantified variables, splitting it into
% ordinary logic variables and state variables respectively.
% The other input argument is a prefix for any error messages.
%
:- pred parse_quantifier_vars(term(T)::in, varset(T)::in,
list(format_component)::in, maybe2(list(var(T)), list(var(T)))::out)
is det.
% Similar to parse_vars, but also allow state variables to appear
% in the list. The outputs separate the parsed variables into ordinary
% variables, state variables listed as !.X, and state variables
% listed as !:X.
%
:- pred parse_vars_and_state_vars(term(T)::in, varset(T)::in,
list(format_component)::in,
maybe4(list(var(T)), list(var(T)), list(var(T)), list(var(T)))::out)
is det.
:- pred parse_name_and_arity(module_name::in, term(T)::in,
sym_name::out, arity::out) is semidet.
:- pred parse_name_and_arity(term(T)::in, sym_name::out, arity::out)
is semidet.
:- pred parse_pred_or_func_name_and_arity(term(T)::in,
pred_or_func::out, sym_name::out, arity::out) is semidet.
:- pred parse_pred_or_func_and_args(term(_T)::in,
pred_or_func::out, sym_name::out, list(term(_T))::out) is semidet.
:- pred parse_pred_or_func_and_args_general(maybe(module_name)::in,
term(_T)::in, varset(_T)::in, list(format_component)::in,
maybe_pred_or_func(term(_T))::out) is det.
:- pred maybe_parse_type(term::in, mer_type::out) is semidet.
:- pred parse_type(term::in, varset::in, list(format_component)::in,
maybe1(mer_type)::out) is det.
:- pred maybe_parse_types(list(term)::in, list(mer_type)::out) is semidet.
:- pred parse_types(list(term)::in, varset::in, list(format_component)::in,
maybe1(list(mer_type))::out) is det.
:- pred unparse_type(mer_type::in, term::out) is det.
:- pred parse_purity_annotation(term(T)::in, purity::out, term(T)::out) is det.
:- type allow_constrained_inst_var
---> allow_constrained_inst_var
; no_allow_constrained_inst_var.
:- pred convert_mode_list(allow_constrained_inst_var::in, list(term)::in,
list(mer_mode)::out) is semidet.
:- pred convert_mode(allow_constrained_inst_var::in, term::in, mer_mode::out)
is semidet.
:- pred convert_inst_list(allow_constrained_inst_var::in, list(term)::in,
list(mer_inst)::out) is semidet.
:- pred convert_inst(allow_constrained_inst_var::in, term::in, mer_inst::out)
is semidet.
:- pred standard_det(string::in, determinism::out) is semidet.
% Convert a "disjunction" (bunch of terms separated by ';'s) to a list.
%
:- pred disjunction_to_list(term(T)::in, list(term(T))::out) is det.
% Convert a "conjunction" (bunch of terms separated by ','s) to a list.
%
:- pred conjunction_to_list(term(T)::in, list(term(T))::out) is det.
% list_to_conjunction(Context, First, Rest, Term):
% Convert a list to a "conjunction" (bunch of terms separated by ','s).
%
:- pred list_to_conjunction(prog_context::in, term(T)::in, list(term(T))::in,
term(T)::out) is det.
% Convert a "sum" (bunch of terms separated by '+' operators) to a list.
%
:- pred sum_to_list(term(T)::in, list(term(T))::out) is det.
% Parse a comma-separated list (misleading described as a "conjunction")
% of things.
%
:- pred parse_list(parser(T)::parser, term::in, maybe1(list(T))::out) is det.
:- pred map_parser(parser(T)::parser, list(term)::in, maybe1(list(T))::out)
is det.
:- pred list_term_to_term_list(term::in, list(term)::out) is semidet.
%-----------------------------------------------------------------------------%
:- type decl_attribute
---> decl_attr_purity(purity)
; decl_attr_quantifier(quantifier_type, list(var))
; decl_attr_constraints(quantifier_type, term)
% the term here is the (not yet parsed) list of constraints
; decl_attr_solver_type.
:- type quantifier_type
---> quant_type_exist
; quant_type_univ.
% The term associated with each decl_attribute is the term containing
% both the attribute and the declaration that that attribute modifies;
% this term is used when printing out error messages for cases when
% attributes are used on declarations where they are not allowed.
:- type decl_attrs == assoc_list(decl_attribute, term.context).
:- pred parse_decl_attribute(string::in, list(term)::in, decl_attribute::out,
term::out) is semidet.
:- pred check_no_attributes(maybe1(T)::in, decl_attrs::in, maybe1(T)::out)
is det.
:- func attribute_description(decl_attribute) = string.
%-----------------------------------------------------------------------------%
% parse_condition_suffix(Term, BeforeCondTerm, Condition):
%
% Bind Condition to a representation of the 'where' condition of Term,
% if any, and bind BeforeCondTerm to the other part of Term. If Term
% does not contain a condition, then set Condition to true.
%
% NU-Prolog supported type declarations of the form
% :- pred p(T) where p(X) : sorted(X).
% or
% :- type sorted_list(T) = list(T) where X : sorted(X).
% :- pred p(sorted_list(T)).
% There is some code here to support that sort of thing, but
% probably we would now need to use a different syntax, since
% Mercury now uses `where' for different purposes (e.g. specifying
% user-defined equality predicates, and also for type classes ...)
%
:- pred parse_condition_suffix(term::in, term::out, condition::out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module parse_tree.mercury_to_mercury.
:- import_module parse_tree.prog_io_sym_name.
:- import_module parse_tree.prog_out.
:- import_module parse_tree.prog_util.
:- import_module require.
:- import_module set.
:- import_module term.
%-----------------------------------------------------------------------------%
get_any_errors1(ok1(_)) = [].
get_any_errors1(error1(Specs)) = Specs.
get_any_errors2(ok2(_, _)) = [].
get_any_errors2(error2(Specs)) = Specs.
get_any_errors3(ok3(_, _, _)) = [].
get_any_errors3(error3(Specs)) = Specs.
get_any_errors4(ok4(_, _, _, _)) = [].
get_any_errors4(error4(Specs)) = Specs.
parse_name_and_arity(ModuleName, PredAndArityTerm, SymName, Arity) :-
PredAndArityTerm = term.functor(term.atom("/"),
[PredNameTerm, ArityTerm], _),
try_parse_implicitly_qualified_sym_name_and_no_args(ModuleName,
PredNameTerm, SymName),
ArityTerm = term.functor(term.integer(Arity), [], _).
parse_name_and_arity(PredAndArityTerm, SymName, Arity) :-
parse_name_and_arity(unqualified(""),
PredAndArityTerm, SymName, Arity).
parse_pred_or_func_name_and_arity(PorFPredAndArityTerm,
PredOrFunc, SymName, Arity) :-
PorFPredAndArityTerm = term.functor(term.atom(PredOrFuncStr), Args, _),
( PredOrFuncStr = "pred", PredOrFunc = pf_predicate
; PredOrFuncStr = "func", PredOrFunc = pf_function
),
Args = [Arg],
ModuleName = unqualified(""),
parse_name_and_arity(ModuleName, Arg, SymName, Arity).
parse_pred_or_func_and_args(PredAndArgsTerm, PredOrFunc, SymName, ArgTerms) :-
(
PredAndArgsTerm = term.functor(term.atom("="),
[FuncAndArgsTerm, FuncResultTerm], _)
->
try_parse_sym_name_and_args(FuncAndArgsTerm, SymName, ArgTerms0),
PredOrFunc = pf_function,
ArgTerms = ArgTerms0 ++ [FuncResultTerm]
;
try_parse_sym_name_and_args(PredAndArgsTerm, SymName, ArgTerms),
PredOrFunc = pf_predicate
).
parse_pred_or_func_and_args_general(MaybeModuleName, PredAndArgsTerm,
VarSet, ContextPieces, PredAndArgsResult) :-
(
PredAndArgsTerm = term.functor(term.atom("="),
[FuncAndArgsTerm, FuncResultTerm], _)
->
FunctorTerm = FuncAndArgsTerm,
MaybeFuncResult = yes(FuncResultTerm)
;
FunctorTerm = PredAndArgsTerm,
MaybeFuncResult = no
),
varset.coerce(VarSet, GenericVarSet),
(
MaybeModuleName = yes(ModuleName),
parse_implicitly_qualified_sym_name_and_args(ModuleName, FunctorTerm,
GenericVarSet, ContextPieces, Result)
;
MaybeModuleName = no,
parse_sym_name_and_args(FunctorTerm, GenericVarSet, ContextPieces,
Result)
),
(
Result = ok2(SymName, Args),
PredAndArgsResult = ok2(SymName, Args - MaybeFuncResult)
;
Result = error2(Specs),
PredAndArgsResult = error2(Specs)
).
maybe_parse_type(Term, Type) :-
% The values of VarSet and ContextPieces do not matter since we succeed
% only if they aren't used.
VarSet = varset.init,
ContextPieces = [],
parse_type(Term, VarSet, ContextPieces, ok1(Type)).
parse_type(Term, VarSet, ContextPieces, Result) :-
% XXX kind inference: We currently give all types kind `star'.
% This will be different when we have a kind system.
(
Term = term.variable(Var0, _)
->
term.coerce_var(Var0, Var),
Result = ok1(type_variable(Var, kind_star))
;
parse_builtin_type(Term, BuiltinType)
->
Result = ok1(builtin_type(BuiltinType))
;
parse_higher_order_type(Term, HOArgs, MaybeRet, Purity, EvalMethod)
->
Result = ok1(higher_order_type(HOArgs, MaybeRet, Purity, EvalMethod))
;
Term = term.functor(term.atom("{}"), Args, _)
->
parse_types(Args, VarSet, ContextPieces, ArgsResult),
(
ArgsResult = ok1(ArgTypes),
Result = ok1(tuple_type(ArgTypes, kind_star))
;
ArgsResult = error1(Specs),
Result = error1(Specs)
)
;
% We don't support apply/N types yet, so we just detect them
% and report an error message.
Term = term.functor(term.atom(""), _, Context)
->
TermStr = describe_error_term(VarSet, Term),
Pieces = ContextPieces ++ [lower_case_next_if_not_first,
words("Error: ill-formed type"), words(TermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(Context, [always(Pieces)])]),
Result = error1([Spec])
;
% We don't support kind annotations yet, and we don't report
% an error either. Perhaps we should?
parse_sym_name_and_args(Term, VarSet, ContextPieces, NameResult),
(
NameResult = ok2(SymName, ArgTerms),
parse_types(ArgTerms, VarSet, ContextPieces, ArgsResult),
(
ArgsResult = ok1(ArgTypes),
Result = ok1(defined_type(SymName, ArgTypes, kind_star))
;
ArgsResult = error1(Specs),
Result = error1(Specs)
)
;
NameResult = error2(Specs),
Result = error1(Specs)
)
).
maybe_parse_types(Term, Types) :-
% The values of VarSet and ContextPieces do not matter since we succeed
% only if they aren't used.
VarSet = varset.init,
ContextPieces = [],
parse_types(Term, VarSet, ContextPieces, ok1(Types)).
parse_types(Terms, VarSet, ContextPieces, Result) :-
parse_types_2(Terms, VarSet, ContextPieces, [], Result).
:- pred parse_types_2(list(term)::in, varset::in, list(format_component)::in,
list(mer_type)::in, maybe1(list(mer_type))::out) is det.
parse_types_2([], _, _, RevTypes, ok1(Types)) :-
list.reverse(RevTypes, Types).
parse_types_2([Term | Terms], VarSet, ContextPieces, RevTypes, Result) :-
parse_type(Term, VarSet, ContextPieces, Result0),
(
Result0 = ok1(Type),
parse_types_2(Terms, VarSet, ContextPieces, [Type | RevTypes], Result)
;
Result0 = error1(Specs),
Result = error1(Specs)
).
:- pred parse_builtin_type(term::in, builtin_type::out) is semidet.
parse_builtin_type(Term, BuiltinType) :-
Term = term.functor(term.atom(Name), [], _),
builtin_type_to_string(BuiltinType, Name).
% If there are any ill-formed types in the argument then we just fail.
% The predicate parse_type will then try to parse the term as an ordinary
% defined type and will produce the required error message.
%
:- pred parse_higher_order_type(term::in, list(mer_type)::out,
maybe(mer_type)::out, purity::out, lambda_eval_method::out) is semidet.
parse_higher_order_type(Term0, ArgTypes, MaybeRet, Purity, lambda_normal) :-
parse_purity_annotation(Term0, Purity, Term1),
( Term1 = term.functor(term.atom("="), [FuncAndArgs, Ret], _) ->
FuncAndArgs = term.functor(term.atom("func"), Args, _),
maybe_parse_type(Ret, RetType),
MaybeRet = yes(RetType)
;
Term1 = term.functor(term.atom("pred"), Args, _),
MaybeRet = no
),
maybe_parse_types(Args, ArgTypes).
parse_purity_annotation(Term0, Purity, Term) :-
(
Term0 = term.functor(term.atom(PurityName), [Term1], _),
purity_name(Purity0, PurityName)
->
Purity = Purity0,
Term = Term1
;
Purity = purity_pure,
Term = Term0
).
unparse_type(type_variable(TVar, _), term.variable(Var, context_init)) :-
Var = term.coerce_var(TVar).
unparse_type(defined_type(SymName, Args, _), Term) :-
unparse_type_list(Args, ArgTerms),
unparse_qualified_term(SymName, ArgTerms, Term).
unparse_type(builtin_type(BuiltinType), Term) :-
Context = term.context_init,
builtin_type_to_string(BuiltinType, Name),
Term = term.functor(term.atom(Name), [], Context).
unparse_type(higher_order_type(Args, MaybeRet, Purity, EvalMethod), Term) :-
Context = term.context_init,
unparse_type_list(Args, ArgTerms),
(
MaybeRet = yes(Ret),
Term0 = term.functor(term.atom("func"), ArgTerms, Context),
maybe_add_lambda_eval_method(EvalMethod, Term0, Term1),
unparse_type(Ret, RetTerm),
Term2 = term.functor(term.atom("="), [Term1, RetTerm], Context)
;
MaybeRet = no,
Term0 = term.functor(term.atom("pred"), ArgTerms, Context),
maybe_add_lambda_eval_method(EvalMethod, Term0, Term2)
),
maybe_add_purity_annotation(Purity, Term2, Term).
unparse_type(tuple_type(Args, _), Term) :-
Context = term.context_init,
unparse_type_list(Args, ArgTerms),
Term = term.functor(term.atom("{}"), ArgTerms, Context).
unparse_type(apply_n_type(TVar, Args, _), Term) :-
Context = term.context_init,
Var = term.coerce_var(TVar),
unparse_type_list(Args, ArgTerms),
Term = term.functor(term.atom(""), [term.variable(Var, Context) | ArgTerms],
Context).
unparse_type(kinded_type(_, _), _) :-
unexpected($module, $pred, "kind annotation").
:- pred unparse_type_list(list(mer_type)::in, list(term)::out) is det.
unparse_type_list(Types, Terms) :-
list.map(unparse_type, Types, Terms).
:- pred unparse_qualified_term(sym_name::in, list(term)::in, term::out) is det.
unparse_qualified_term(unqualified(Name), Args, Term) :-
Context = term.context_init,
Term = term.functor(term.atom(Name), Args, Context).
unparse_qualified_term(qualified(Qualifier, Name), Args, Term) :-
Context = term.context_init,
unparse_qualified_term(Qualifier, [], QualTerm),
Term0 = term.functor(term.atom(Name), Args, Context),
Term = term.functor(term.atom("."), [QualTerm, Term0], Context).
:- pred maybe_add_lambda_eval_method(lambda_eval_method::in, term::in,
term::out) is det.
maybe_add_lambda_eval_method(lambda_normal, Term, Term).
:- pred maybe_add_purity_annotation(purity::in, term::in, term::out) is det.
maybe_add_purity_annotation(purity_pure, Term, Term).
maybe_add_purity_annotation(purity_semipure, Term0, Term) :-
Context = term.context_init,
Term = term.functor(term.atom("semipure"), [Term0], Context).
maybe_add_purity_annotation(purity_impure, Term0, Term) :-
Context = term.context_init,
Term = term.functor(term.atom("impure"), [Term0], Context).
convert_mode_list(_, [], []).
convert_mode_list(AllowConstrainedInstVar, [H0 | T0], [H | T]) :-
convert_mode(AllowConstrainedInstVar, H0, H),
convert_mode_list(AllowConstrainedInstVar, T0, T).
convert_mode(AllowConstrainedInstVar, Term, Mode) :-
(
Term = term.functor(term.atom(">>"), [InstTermA, InstTermB], _)
->
convert_inst(AllowConstrainedInstVar, InstTermA, InstA),
convert_inst(AllowConstrainedInstVar, InstTermB, InstB),
Mode = (InstA -> InstB)
;
% Handle higher-order predicate modes:
% a mode of the form
% pred(<Mode1>, <Mode2>, ...) is <Det>
% is an abbreviation for the inst mapping
% ( pred(<Mode1>, <Mode2>, ...) is <Det>
% -> pred(<Mode1>, <Mode2>, ...) is <Det>
% )
Term = term.functor(term.atom("is"), [PredTerm, DetTerm], _),
PredTerm = term.functor(term.atom("pred"), ArgModesTerms, _)
->
DetTerm = term.functor(term.atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerms, ArgModes),
PredInstInfo = pred_inst_info(pf_predicate, ArgModes, Detism),
Inst = ground(shared, higher_order(PredInstInfo)),
Mode = (Inst -> Inst)
;
% Handle higher-order function modes:
% a mode of the form
% func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
% is an abbreviation for the inst mapping
% ( func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
% -> func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
% )
Term = term.functor(term.atom("is"), [EqTerm, DetTerm], _),
EqTerm = term.functor(term.atom("="), [FuncTerm, RetModeTerm], _),
FuncTerm = term.functor(term.atom("func"), ArgModesTerms, _)
->
DetTerm = term.functor(term.atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerms, ArgModes0),
convert_mode(AllowConstrainedInstVar, RetModeTerm, RetMode),
list.append(ArgModes0, [RetMode], ArgModes),
FuncInstInfo = pred_inst_info(pf_function, ArgModes, Detism),
Inst = ground(shared, higher_order(FuncInstInfo)),
Mode = (Inst -> Inst)
;
% Handle higher-order predicate modes:
% a mode of the form
% any_pred(<Mode1>, <Mode2>, ...) is <Det>
% is an abbreviation for the inst mapping
% ( any_pred(<Mode1>, <Mode2>, ...) is <Det>
% -> any_pred(<Mode1>, <Mode2>, ...) is <Det>
% )
Term = term.functor(term.atom("is"), [PredTerm, DetTerm], _),
PredTerm = term.functor(term.atom("any_pred"), ArgModesTerms, _)
->
DetTerm = term.functor(term.atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerms, ArgModes),
PredInstInfo = pred_inst_info(pf_predicate, ArgModes, Detism),
Inst = any(shared, higher_order(PredInstInfo)),
Mode = (Inst -> Inst)
;
% Handle higher-order function modes:
% a mode of the form
% any_func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
% is an abbreviation for the inst mapping
% ( any_func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
% -> any_func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
% )
Term = term.functor(term.atom("is"), [EqTerm, DetTerm], _),
EqTerm = term.functor(term.atom("="), [FuncTerm, RetModeTerm], _),
FuncTerm = term.functor(term.atom("any_func"), ArgModesTerms, _)
->
DetTerm = term.functor(term.atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerms, ArgModes0),
convert_mode(AllowConstrainedInstVar, RetModeTerm, RetMode),
list.append(ArgModes0, [RetMode], ArgModes),
FuncInstInfo = pred_inst_info(pf_function, ArgModes, Detism),
Inst = any(shared, higher_order(FuncInstInfo)),
Mode = (Inst -> Inst)
;
% If the sym_name_and_args fails, we should report the error
% (we would need to call parse_qualified_term instead).
try_parse_sym_name_and_args(Term, Name, Args),
convert_inst_list(AllowConstrainedInstVar, Args, ConvertedArgs),
Mode = user_defined_mode(Name, ConvertedArgs)
).
convert_inst_list(_, [], []).
convert_inst_list(AllowConstrainedInstVar, [H0 | T0], [H | T]) :-
convert_inst(AllowConstrainedInstVar, H0, H),
convert_inst_list(AllowConstrainedInstVar, T0, T).
convert_inst(_, term.variable(V0, _), inst_var(V)) :-
term.coerce_var(V0, V).
convert_inst(AllowConstrainedInstVar, Term, Result) :-
Term = term.functor(term.atom(Name), Args0, _Context),
(
convert_simple_builtin_inst(Name, Args0, Result0)
->
Result = Result0
;
% The syntax for a ground higher-order pred inst is
%
% pred(<Mode1>, <Mode2>, ...) is <Detism>
%
% where <Mode1>, <Mode2>, ... are a list of modes,
% and <Detism> is a determinism.
Name = "is", Args0 = [PredTerm, DetTerm],
PredTerm = term.functor(term.atom("pred"), ArgModesTerm, _)
->
DetTerm = term.functor(term.atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerm, ArgModes),
PredInst = pred_inst_info(pf_predicate, ArgModes, Detism),
Result = ground(shared, higher_order(PredInst))
;
% The syntax for a ground higher-order func inst is
%
% func(<Mode1>, <Mode2>, ...) = <RetMode> is <Detism>
%
% where <Mode1>, <Mode2>, ... are a list of modes,
% <RetMode> is a mode, and <Detism> is a determinism.
Name = "is", Args0 = [EqTerm, DetTerm],
EqTerm = term.functor(term.atom("="), [FuncTerm, RetModeTerm], _),
FuncTerm = term.functor(term.atom("func"), ArgModesTerm, _)
->
DetTerm = term.functor(term.atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerm, ArgModes0),
convert_mode(AllowConstrainedInstVar, RetModeTerm, RetMode),
list.append(ArgModes0, [RetMode], ArgModes),
FuncInst = pred_inst_info(pf_function, ArgModes, Detism),
Result = ground(shared, higher_order(FuncInst))
;
% The syntax for an `any' higher-order pred inst is
%
% any_pred(<Mode1>, <Mode2>, ...) is <Detism>
%
% where <Mode1>, <Mode2>, ... are a list of modes,
% and <Detism> is a determinism.
Name = "is", Args0 = [PredTerm, DetTerm],
PredTerm = term.functor(term.atom("any_pred"), ArgModesTerm, _)
->
DetTerm = term.functor(term.atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerm, ArgModes),
PredInst = pred_inst_info(pf_predicate, ArgModes, Detism),
Result = any(shared, higher_order(PredInst))
;
% The syntax for an `any' higher-order func inst is
%
% any_func(<Mode1>, <Mode2>, ...) = <RetMode> is <Detism>
%
% where <Mode1>, <Mode2>, ... are a list of modes,
% <RetMode> is a mode, and <Detism> is a determinism.
Name = "is", Args0 = [EqTerm, DetTerm],
EqTerm = term.functor(term.atom("="), [FuncTerm, RetModeTerm], _),
FuncTerm = term.functor(term.atom("any_func"), ArgModesTerm, _)
->
DetTerm = term.functor(term.atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerm, ArgModes0),
convert_mode(AllowConstrainedInstVar, RetModeTerm, RetMode),
list.append(ArgModes0, [RetMode], ArgModes),
FuncInst = pred_inst_info(pf_function, ArgModes, Detism),
Result = any(shared, higher_order(FuncInst))
; Name = "bound", Args0 = [Disj] ->
% `bound' insts
parse_bound_inst_list(AllowConstrainedInstVar, Disj, shared, Result)
; Name = "bound_unique", Args0 = [Disj] ->
% `bound_unique' is for backwards compatibility - use `unique' instead.
parse_bound_inst_list(AllowConstrainedInstVar, Disj, unique, Result)
; Name = "unique", Args0 = [Disj] ->
parse_bound_inst_list(AllowConstrainedInstVar, Disj, unique, Result)
; Name = "mostly_unique", Args0 = [Disj] ->
parse_bound_inst_list(AllowConstrainedInstVar, Disj, mostly_unique,
Result)
; Name = "=<", Args0 = [VarTerm, InstTerm] ->
AllowConstrainedInstVar = allow_constrained_inst_var,
VarTerm = term.variable(Var, _),
% Do not allow nested constrained_inst_vars.
convert_inst(no_allow_constrained_inst_var, InstTerm, Inst),
Result = constrained_inst_vars(set.make_singleton_set(
term.coerce_var(Var)), Inst)
;
% Anything else must be a user-defined inst.
try_parse_sym_name_and_args(Term, QualifiedName, Args1),
(
BuiltinModule = mercury_public_builtin_module,
sym_name_get_module_name_default(QualifiedName, unqualified(""),
BuiltinModule),
% If the term is qualified with the `builtin' module
% then it may be one of the simple builtin insts.
% We call convert_inst recursively to check for this.
UnqualifiedName = unqualify_name(QualifiedName),
convert_simple_builtin_inst(UnqualifiedName, Args1, Result0),
% However, if the inst is a user_inst defined inside
% the `builtin' module then we need to make sure it is
% properly module-qualified.
Result0 \= defined_inst(user_inst(_, _))
->
Result = Result0
;
convert_inst_list(AllowConstrainedInstVar, Args1, Args),
Result = defined_inst(user_inst(QualifiedName, Args))
)
).
% A "simple" builtin inst is one that has no arguments and no special
% syntax.
%
:- pred convert_simple_builtin_inst(string::in, list(term)::in, mer_inst::out)
is semidet.
convert_simple_builtin_inst(Name, [], Inst) :-
convert_simple_builtin_inst_2(Name, Inst).
:- pred convert_simple_builtin_inst_2(string::in, mer_inst::out) is semidet.
% `free' insts
convert_simple_builtin_inst_2("free", free).
% `any' insts
convert_simple_builtin_inst_2("any", any(shared, none)).
convert_simple_builtin_inst_2("unique_any", any(unique, none)).
convert_simple_builtin_inst_2("mostly_unique_any", any(mostly_unique, none)).
convert_simple_builtin_inst_2("clobbered_any", any(clobbered, none)).
convert_simple_builtin_inst_2("mostly_clobbered_any",
any(mostly_clobbered, none)).
% `ground' insts
convert_simple_builtin_inst_2("ground", ground(shared, none)).
convert_simple_builtin_inst_2("unique", ground(unique, none)).
convert_simple_builtin_inst_2("mostly_unique", ground(mostly_unique, none)).
convert_simple_builtin_inst_2("clobbered", ground(clobbered, none)).
convert_simple_builtin_inst_2("mostly_clobbered",
ground(mostly_clobbered, none)).
% `not_reached' inst
convert_simple_builtin_inst_2("not_reached", not_reached).
standard_det("det", detism_det).
standard_det("cc_nondet", detism_cc_non).
standard_det("cc_multi", detism_cc_multi).
standard_det("nondet", detism_non).
standard_det("multi", detism_multi).
standard_det("multidet", detism_multi).
standard_det("semidet", detism_semi).
standard_det("erroneous", detism_erroneous).
standard_det("failure", detism_failure).
:- pred parse_bound_inst_list(allow_constrained_inst_var::in, term::in,
uniqueness::in, mer_inst::out) is semidet.
parse_bound_inst_list(AllowConstrainedInstVar, Disj, Uniqueness,
bound(Uniqueness, Functors)) :-
disjunction_to_list(Disj, List),
convert_bound_inst_list(AllowConstrainedInstVar, List, Functors0),
list.sort(Functors0, Functors),
% Check that the list doesn't specify the same functor twice.
\+ (
list.append(_, SubList, Functors),
SubList = [F1, F2 | _],
F1 = bound_functor(ConsId, _),
F2 = bound_functor(ConsId, _)
).
:- pred convert_bound_inst_list(allow_constrained_inst_var::in, list(term)::in,
list(bound_inst)::out) is semidet.
convert_bound_inst_list(_, [], []).
convert_bound_inst_list(AllowConstrainedInstVar, [H0 | T0], [H | T]) :-
convert_bound_inst(AllowConstrainedInstVar, H0, H),
convert_bound_inst_list(AllowConstrainedInstVar, T0, T).
:- pred convert_bound_inst(allow_constrained_inst_var::in, term::in,
bound_inst::out) is semidet.
convert_bound_inst(AllowConstrainedInstVar, InstTerm, BoundInst) :-
InstTerm = term.functor(Functor, Args0, _),
(
Functor = term.atom(_),
try_parse_sym_name_and_args(InstTerm, SymName, Args1),
list.length(Args1, Arity),
ConsId = cons(SymName, Arity, cons_id_dummy_type_ctor)
;
Functor = term.implementation_defined(_),
% Implementation-defined literals should not appear in inst
% definitions.
fail
;
( Functor = term.integer(_)
; Functor = term.float(_)
; Functor = term.string(_)
),
Args1 = Args0,
list.length(Args1, Arity),
ConsId = make_functor_cons_id(Functor, Arity)
),
convert_inst_list(AllowConstrainedInstVar, Args1, Args),
BoundInst = bound_functor(ConsId, Args).
disjunction_to_list(Term, List) :-
binop_term_to_list(";", Term, List).
conjunction_to_list(Term, List) :-
binop_term_to_list(",", Term, List).
list_to_conjunction(_, Term, [], Term).
list_to_conjunction(Context, First, [Second | Rest], Term) :-
list_to_conjunction(Context, Second, Rest, Tail),
Term = term.functor(term.atom(","), [First, Tail], Context).
sum_to_list(Term, List) :-
binop_term_to_list("+", Term, List).
% General predicate to convert terms separated by any specified operator
% into a list.
%
:- pred binop_term_to_list(string::in, term(T)::in, list(term(T))::out) is det.
binop_term_to_list(Op, Term, List) :-
binop_term_to_list_2(Op, Term, [], List).
:- pred binop_term_to_list_2(string::in, term(T)::in, list(term(T))::in,
list(term(T))::out) is det.
binop_term_to_list_2(Op, Term, !List) :-
( Term = term.functor(term.atom(Op), [L, R], _Context) ->
binop_term_to_list_2(Op, R, !List),
binop_term_to_list_2(Op, L, !List)
;
!:List = [Term | !.List]
).
parse_list(Parser, Term, Result) :-
conjunction_to_list(Term, List),
map_parser(Parser, List, Result).
map_parser(_, [], ok1([])).
map_parser(Parser, [X | Xs], Result) :-
call(Parser, X, X_Result),
map_parser(Parser, Xs, Xs_Result),
combine_list_results(X_Result, Xs_Result, Result).
% If several items in a list contain errors, then we report them all.
%
:- pred combine_list_results(maybe1(T)::in, maybe1(list(T))::in,
maybe1(list(T))::out) is det.
combine_list_results(error1(HeadSpecs), error1(TailSpecs),
error1(HeadSpecs ++ TailSpecs)).
combine_list_results(error1(Specs), ok1(_), error1(Specs)).
combine_list_results(ok1(_), error1(Specs), error1(Specs)).
combine_list_results(ok1(X), ok1(Xs), ok1([X | Xs])).
%-----------------------------------------------------------------------------%
parse_list_of_vars(term.functor(term.atom("[]"), [], _), []).
parse_list_of_vars(term.functor(term.atom("[|]"), [Head, Tail], _),
[Var | Vars]) :-
Head = term.variable(Var, _),
parse_list_of_vars(Tail, Vars).
parse_vars(Term, VarSet, ContextPieces, MaybeVars) :-
( Term = functor(atom("[]"), [], _) ->
MaybeVars = ok1([])
; Term = functor(atom("[|]"), [HeadTerm, TailTerm], _) ->
(
HeadTerm = variable(HeadVar, _),
parse_vars(TailTerm, VarSet, ContextPieces, MaybeVarsTail),
(
MaybeVarsTail = ok1(TailVars),
( list.member(HeadVar, TailVars) ->
generate_repeated_var_msg(ContextPieces, VarSet,
HeadTerm, Spec),
MaybeVars = error1([Spec])
;
Vars = [HeadVar | TailVars],
MaybeVars = ok1(Vars)
)
;
MaybeVarsTail = error1(_),
MaybeVars = MaybeVarsTail
)
;
HeadTerm = functor(_, _, _),
generate_unexpected_term_message(ContextPieces, VarSet,
"variable", HeadTerm, Spec),
MaybeVars = error1([Spec])
)
;
generate_unexpected_term_message(ContextPieces, VarSet,
"list of variables", Term, Spec),
MaybeVars = error1([Spec])
).
:- type ordinary_state_var(T)
---> os_ordinary_var(var(T))
; os_state_var(var(T)).
parse_quantifier_vars(Term, VarSet, ContextPieces, MaybeVars) :-
( Term = functor(atom("[]"), [], _) ->
MaybeVars = ok2([], [])
; Term = functor(atom("[|]"), [HeadTerm, TailTerm], _) ->
(
(
HeadTerm = variable(V0, _),
VarKind = os_ordinary_var(V0)
;
HeadTerm = functor(atom("!"), [variable(SV0, _)], _),
VarKind = os_state_var(SV0)
)
->
parse_quantifier_vars(TailTerm, VarSet, ContextPieces,
MaybeVarsTail),
(
MaybeVarsTail = ok2(TailVars, TailStateVars),
(
VarKind = os_ordinary_var(V),
( list.member(V, TailVars) ->
generate_repeated_var_msg(ContextPieces, VarSet,
HeadTerm, Spec),
MaybeVars = error2([Spec])
;
Vars = [V | TailVars],
MaybeVars = ok2(Vars, TailStateVars)
)
;
VarKind = os_state_var(SV),
( list.member(SV, TailStateVars) ->
generate_repeated_state_var_msg(ContextPieces, VarSet,
HeadTerm, Spec),
MaybeVars = error2([Spec])
;
StateVars = [SV | TailStateVars],
MaybeVars = ok2(TailVars, StateVars)
)
)
;
MaybeVarsTail = error2(_),
MaybeVars = MaybeVarsTail
)
;
generate_unexpected_term_message(ContextPieces, VarSet,
"variable or state variable", HeadTerm, Spec),
MaybeVars = error2([Spec])
)
;
generate_unexpected_term_message(ContextPieces, VarSet,
"list of variables and/or state variables", Term, Spec),
MaybeVars = error2([Spec])
).
:- type ordinary_state_dot_colon_var(T)
---> osdc_ordinary_var(var(T))
; osdc_state_var(var(T))
; osdc_dot_var(var(T))
; osdc_colon_var(var(T)).
parse_vars_and_state_vars(Term, VarSet, ContextPieces, MaybeVars) :-
( Term = functor(atom("[]"), [], _) ->
MaybeVars = ok4([], [], [], [])
; Term = functor(atom("[|]"), [HeadTerm, Tail], _) ->
(
(
HeadTerm = variable(V0, _),
VarKind = osdc_ordinary_var(V0)
;
HeadTerm = functor(atom("!"), [variable(SV0, _)], _),
VarKind = osdc_state_var(SV0)
;
HeadTerm = functor(atom("!."), [variable(SV0, _)], _),
VarKind = osdc_dot_var(SV0)
;
HeadTerm = functor(atom("!:"), [variable(SV0, _)], _),
VarKind = osdc_colon_var(SV0)
)
->
parse_vars_and_state_vars(Tail, VarSet, ContextPieces,
MaybeVarsTail),
(
MaybeVarsTail = ok4(TailVars, TailStateVars,
TailDotVars, TailColonVars),
(
VarKind = osdc_ordinary_var(V),
( list.member(V, TailVars) ->
generate_repeated_var_msg(ContextPieces, VarSet,
HeadTerm, Spec),
MaybeVars = error4([Spec])
;
Vars = [V | TailVars],
MaybeVars = ok4(Vars, TailStateVars,
TailDotVars, TailColonVars)
)
;
VarKind = osdc_state_var(SV),
(
( list.member(SV, TailStateVars )
; list.member(SV, TailDotVars )
; list.member(SV, TailColonVars )
)
->
generate_repeated_var_msg(ContextPieces, VarSet,
HeadTerm, Spec),
MaybeVars = error4([Spec])
;
StateVars = [SV | TailStateVars],
MaybeVars = ok4(TailVars, StateVars,
TailDotVars, TailColonVars)
)
;
VarKind = osdc_dot_var(SV),
(
( list.member(SV, TailStateVars )
; list.member(SV, TailDotVars )
; list.member(SV, TailColonVars )
)
->
generate_repeated_var_msg(ContextPieces, VarSet,
HeadTerm, Spec),
MaybeVars = error4([Spec])
;
DotVars = [SV | TailDotVars],
MaybeVars = ok4(TailVars, TailStateVars,
DotVars, TailColonVars)
)
;
VarKind = osdc_colon_var(SV),
(
( list.member(SV, TailStateVars )
; list.member(SV, TailDotVars )
; list.member(SV, TailColonVars )
)
->
generate_repeated_var_msg(ContextPieces, VarSet,
HeadTerm, Spec),
MaybeVars = error4([Spec])
;
ColonVars = [SV | TailColonVars],
MaybeVars = ok4(TailVars, TailStateVars,
TailDotVars, ColonVars)
)
)
;
MaybeVarsTail = error4(_),
MaybeVars = MaybeVarsTail
)
;
generate_unexpected_term_message(ContextPieces, VarSet,
"variable or state variable", HeadTerm, Spec),
MaybeVars = error4([Spec])
)
;
generate_unexpected_term_message(ContextPieces, VarSet,
"list of variables and/or state variables", Term, Spec),
MaybeVars = error4([Spec])
).
:- pred generate_repeated_var_msg(list(format_component)::in,
varset(T)::in, term(T)::in, error_spec::out) is det.
generate_repeated_var_msg(ContextPieces, VarSet, Term, Spec) :-
TermStr = describe_error_term(VarSet, Term),
Pieces = ContextPieces ++ [lower_case_next_if_not_first,
words("Repeated variable"), words(TermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]).
:- pred generate_repeated_state_var_msg(list(format_component)::in,
varset(T)::in, term(T)::in, error_spec::out) is det.
generate_repeated_state_var_msg(ContextPieces, VarSet, Term, Spec) :-
TermStr = describe_error_term(VarSet, Term),
Pieces = ContextPieces ++ [lower_case_next_if_not_first,
words("Repeated state variable"), words(TermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]).
:- pred generate_unexpected_term_message(list(format_component)::in,
varset(T)::in, string::in, term(T)::in, error_spec::out) is det.
generate_unexpected_term_message(ContextPieces, VarSet, Expected, Term,
Spec) :-
TermStr = describe_error_term(VarSet, Term),
Pieces = ContextPieces ++ [lower_case_next_if_not_first,
words("Expected"), words(Expected), suffix(","),
words("not"), words(TermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]).
%-----------------------------------------------------------------------------%
list_term_to_term_list(Term, Terms) :-
(
Term = term.functor(term.atom("[|]"), [HeadTerm, TailTerm], _),
list_term_to_term_list(TailTerm, TailTerms),
Terms = [HeadTerm | TailTerms]
;
Term = term.functor(term.atom("[]"), [], _),
Terms = []
).
%-----------------------------------------------------------------------------%
parse_decl_attribute(Functor, ArgTerms, Attribute, SubTerm) :-
(
Functor = "impure",
ArgTerms = [SubTerm],
Attribute = decl_attr_purity(purity_impure)
;
Functor = "semipure",
ArgTerms = [SubTerm],
Attribute = decl_attr_purity(purity_semipure)
;
Functor = "<=",
ArgTerms = [SubTerm, ConstraintsTerm],
Attribute = decl_attr_constraints(quant_type_univ, ConstraintsTerm)
;
Functor = "=>",
ArgTerms = [SubTerm, ConstraintsTerm],
Attribute = decl_attr_constraints(quant_type_exist, ConstraintsTerm)
;
Functor = "some",
ArgTerms = [TVarsTerm, SubTerm],
parse_list_of_vars(TVarsTerm, TVars),
Attribute = decl_attr_quantifier(quant_type_exist, TVars)
;
Functor = "all",
ArgTerms = [TVarsTerm, SubTerm],
parse_list_of_vars(TVarsTerm, TVars),
Attribute = decl_attr_quantifier(quant_type_univ, TVars)
;
Functor = "solver",
ArgTerms = [SubTerm],
Attribute = decl_attr_solver_type
).
check_no_attributes(Result0, Attributes, Result) :-
(
Result0 = ok1(_),
Attributes = [Attr - Context | _]
->
% XXX Shouldn't we mention EVERY element of Attributes?
Pieces = [words("Error:"), words(attribute_description(Attr)),
words("not allowed here."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(Context, [always(Pieces)])]),
Result = error1([Spec])
;
Result = Result0
).
attribute_description(decl_attr_purity(_)) = "purity specifier".
attribute_description(decl_attr_quantifier(quant_type_univ, _)) =
"universal quantifier (`all')".
attribute_description(decl_attr_quantifier(quant_type_exist, _)) =
"existential quantifier (`some')".
attribute_description(decl_attr_constraints(quant_type_univ, _)) =
"type class constraint (`<=')".
attribute_description(decl_attr_constraints(quant_type_exist, _)) =
"existentially quantified type class constraint (`=>')".
attribute_description(decl_attr_solver_type) = "solver type specifier".
%-----------------------------------------------------------------------------%
parse_condition_suffix(Term, Term, cond_true).
% parse_condition_suffix(B, Body, Condition) :-
% (
% B = term.functor(term.atom("where"), [Body1, Condition1],
% _Context)
% ->
% Body = Body1,
% Condition = where(Condition1)
% ;
% Body = B,
% Condition = true
% ).
%-----------------------------------------------------------------------------%
:- end_module parse_tree.prog_io_util.
%-----------------------------------------------------------------------------%