Files
mercury/compiler/proc_gen.m
Zoltan Somogyi 295415090e Convert almost all remaining modules in the compiler to use
Estimated hours taken: 6
Branches: main

compiler/*.m:
	Convert almost all remaining modules in the compiler to use
	"$module, $pred" instead of "this_file" in error messages.

	In a few cases, the old error message was misleading, since it
	contained an incorrect, out-of-date or cut-and-pasted predicate name.

tests/invalid/unresolved_overloading.err_exp:
	Update an expected output containing an updated error message.
2011-05-23 05:08:24 +00:00

1355 lines
54 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%---------------------------------------------------------------------------%
% Copyright (C) 1994-2011 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: code_gen.m.
% Main authors: conway, zs.
%
% Code generation - convert from HLDS to LLDS.
%
% The two main tasks of this module are
%
% 1 to look after the aspects of generating code for a procedure
% that do not involve generating code for a specific goal, and
%
% 2 to provide a generic predicate that can be called from anywhere in
% the code generator to generate code for a goal.
%
% Code_gen forwards most of the actual construction of code for particular
% goals to other modules. The generation of code for unifications is done
% by unify_gen, for calls, higher-order calls and method calls by call_gen,
% for commits by commit_gen, for if-then-elses and negations by ite_gen,
% for switches by switch_gen and its subsidiary modules, for disjunctions
% by disj_gen, and for pragma_c_codes by pragma_c_gen. The only kind of goal
% handled directly by code_gen is the conjunction.
%
%---------------------------------------------------------------------------%
:- module ll_backend.proc_gen.
:- interface.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module ll_backend.global_data.
:- import_module ll_backend.llds.
:- import_module io.
:- import_module list.
%---------------------------------------------------------------------------%
% Translate a HLDS module to LLDS.
%
:- pred generate_module_code(module_info::in, module_info::out,
global_data::in, global_data::out,
list(c_procedure)::out, io::di, io::uo) is det.
% Translate a HLDS procedure to LLDS, threading through the data structure
% that records information about layout structures.
%
:- pred generate_proc_code(pred_info::in, proc_info::in,
pred_id::in, proc_id::in, module_info::in,
global_data::in, global_data::out, c_procedure::out) is det.
% Return the message that identifies the procedure to pass to
% the incr_sp_push_msg macro in the generated C code.
%
:- func push_msg(module_info, pred_id, proc_id) = string.
% Add all the global variables required for tabling by the procedures
% of the module.
%
:- pred add_all_tabling_info_structs(module_info::in,
global_data::in, global_data::out) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- import_module backend_libs.builtin_ops.
:- import_module backend_libs.proc_label.
:- import_module hlds.code_model.
:- import_module hlds.goal_path.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_clauses.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_llds.
:- import_module hlds.hlds_out.
:- import_module hlds.hlds_out.hlds_out_util.
:- import_module hlds.hlds_rtti.
:- import_module hlds.instmap.
:- import_module libs.file_util.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module libs.trace_params.
:- import_module ll_backend.code_gen.
:- import_module ll_backend.code_info.
:- import_module ll_backend.code_util.
:- import_module ll_backend.continuation_info.
:- import_module ll_backend.layout.
:- import_module ll_backend.middle_rec.
:- import_module ll_backend.stack_layout.
:- import_module ll_backend.trace_gen.
:- import_module mdbcomp.prim_data.
:- import_module mdbcomp.program_representation.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_out.
:- import_module assoc_list.
:- import_module bool.
:- import_module cord.
:- import_module counter.
:- import_module int.
:- import_module map.
:- import_module maybe.
:- import_module pair.
:- import_module require.
:- import_module set.
:- import_module solutions.
:- import_module string.
:- import_module term.
%---------------------------------------------------------------------------%
generate_module_code(!ModuleInfo, !GlobalData, Procedures, !IO) :-
% Get a list of all the predicate ids for which we will generate code.
module_info_get_valid_predids(PredIds, !ModuleInfo),
% Check if we want to use parallel code generation.
module_info_get_globals(!.ModuleInfo, Globals),
globals.lookup_bool_option(Globals, parallel_code_gen, ParallelCodeGen),
globals.lookup_bool_option(Globals, very_verbose, VeryVerbose),
globals.lookup_bool_option(Globals, detailed_statistics, Statistics),
(
ParallelCodeGen = yes,
% Can't do parallel code generation if I/O is required.
VeryVerbose = no,
Statistics = no
->
generate_code_parallel(!.ModuleInfo, PredIds, !GlobalData,
Procedures)
;
generate_code_sequential(!.ModuleInfo, PredIds, !GlobalData,
Procedures, !IO)
).
:- pred generate_code_sequential(module_info::in, list(pred_id)::in,
global_data::in, global_data::out, list(c_procedure)::out, io::di, io::uo)
is det.
generate_code_sequential(ModuleInfo0, PredIds, !GlobalData, Procedures, !IO) :-
list.map_foldl2(generate_maybe_pred_code(ModuleInfo0),
PredIds, PredProcedures, !GlobalData, !IO),
list.condense(PredProcedures, Procedures).
%-----------------------------------------------------------------------------%
:- pred generate_code_parallel(module_info::in, list(pred_id)::in,
global_data::in, global_data::out, list(c_procedure)::out) is det.
generate_code_parallel(ModuleInfo0, PredIds, !GlobalData, Procedures) :-
% Split up the list of predicates into pieces for processing in parallel.
% Splitting the list in the middle does not work well as the load will be
% unbalanced. Splitting the list in any other way (as we do) does mean
% that the generated code will be slightly different due to the static
% data being reordered.
%
% We only try to make use of two processors (threads) for now. Using more
% processors efficiently probably requires knowing how many processors are
% available, so we can divide the pred list whilst minimise the time
% merging global_datas and updating static cell references.
%
list.chunk(PredIds, pred_list_chunk_size, ListsOfPredIds),
interleave(ListsOfPredIds, ListsOfPredIdsA, ListsOfPredIdsB),
GlobalData0 = !.GlobalData,
(
list.condense(ListsOfPredIdsA, PredIdsA),
list.map_foldl(generate_pred_code_par(ModuleInfo0),
PredIdsA, PredProceduresA, GlobalData0, GlobalDataA),
list.condense(PredProceduresA, ProceduresA)
% XXX the following should be a parallel conjunction
,
list.condense(ListsOfPredIdsB, PredIdsB),
bump_type_num_counter(type_num_skip, GlobalData0, GlobalData1),
list.map_foldl(generate_pred_code_par(ModuleInfo0),
PredIdsB, PredProceduresB0, GlobalData1, GlobalDataB),
list.condense(PredProceduresB0, ProceduresB0)
),
merge_global_datas(GlobalDataA, GlobalDataB, !:GlobalData,
Remap),
list.map(remap_references_to_global_data(Remap),
ProceduresB0, ProceduresB),
Procedures = ProceduresA ++ ProceduresB.
% These numbers are rather arbitrary.
%
:- func pred_list_chunk_size = int.
pred_list_chunk_size = 50.
:- func type_num_skip = int.
type_num_skip = 10000.
:- pred interleave(list(T)::in, list(T)::out, list(T)::out) is det.
:- pred interleave_2(list(T)::in, list(T)::in, list(T)::out,
list(T)::in, list(T)::out) is det.
interleave(L, reverse(As), reverse(Bs)) :-
interleave_2(L, [], As, [], Bs).
interleave_2([], !As, !Bs).
interleave_2([H|T], As0, As, Bs0, Bs) :-
interleave_2(T, Bs0, Bs, [H|As0], As).
%-----------------------------------------------------------------------------%
:- pred generate_maybe_pred_code(module_info::in,
pred_id::in, list(c_procedure)::out,
global_data::in, global_data::out, io::di, io::uo) is det.
% Note that some of the logic of generate_maybe_pred_code is duplicated
% by mercury_compile.backend_pass_by_preds, so modifications here may
% also need to be repeated there.
%
generate_maybe_pred_code(ModuleInfo, PredId, Predicates, !GlobalData, !IO) :-
module_info_get_preds(ModuleInfo, PredInfos),
map.lookup(PredInfos, PredId, PredInfo),
ProcIds = pred_info_non_imported_procids(PredInfo),
(
ProcIds = [],
Predicates = []
;
ProcIds = [_ | _],
module_info_get_globals(ModuleInfo, Globals),
globals.lookup_bool_option(Globals, very_verbose, VeryVerbose),
(
VeryVerbose = yes,
io.write_string("% Generating code for ", !IO),
write_pred_id(ModuleInfo, PredId, !IO),
io.write_string("\n", !IO),
globals.lookup_bool_option(Globals, detailed_statistics,
Statistics),
maybe_report_stats(Statistics, !IO)
;
VeryVerbose = no
),
generate_pred_code(ModuleInfo, PredId, PredInfo, ProcIds, Predicates,
!GlobalData)
).
:- pred generate_pred_code_par(module_info::in, pred_id::in,
list(c_procedure)::out, global_data::in, global_data::out) is det.
generate_pred_code_par(ModuleInfo, PredId, Predicates, !GlobalData) :-
module_info_get_preds(ModuleInfo, PredInfos),
map.lookup(PredInfos, PredId, PredInfo),
ProcIds = pred_info_non_imported_procids(PredInfo),
generate_pred_code(ModuleInfo, PredId, PredInfo, ProcIds, Predicates,
!GlobalData).
% Translate a HLDS predicate to LLDS.
%
:- pred generate_pred_code(module_info::in,
pred_id::in, pred_info::in, list(proc_id)::in, list(c_procedure)::out,
global_data::in, global_data::out) is det.
generate_pred_code(ModuleInfo, PredId, PredInfo, ProcIds, Code, !GlobalData) :-
generate_proc_list_code(ProcIds, PredId, PredInfo, ModuleInfo,
!GlobalData, [], Code).
% Translate all the procedures of a HLDS predicate to LLDS.
%
:- pred generate_proc_list_code(list(proc_id)::in, pred_id::in, pred_info::in,
module_info::in, global_data::in, global_data::out,
list(c_procedure)::in, list(c_procedure)::out) is det.
generate_proc_list_code([], _PredId, _PredInfo, _ModuleInfo,
!GlobalData, !Procs).
generate_proc_list_code([ProcId | ProcIds], PredId, PredInfo, ModuleInfo0,
!GlobalData, !Procs) :-
pred_info_get_procedures(PredInfo, ProcInfos),
map.lookup(ProcInfos, ProcId, ProcInfo),
generate_proc_code(PredInfo, ProcInfo, PredId, ProcId, ModuleInfo0,
!GlobalData, Proc),
!:Procs = [Proc | !.Procs],
generate_proc_list_code(ProcIds, PredId, PredInfo, ModuleInfo0,
!GlobalData, !Procs).
%---------------------------------------------------------------------------%
% Values of this type hold information about stack frames that is
% generated when generating prologs and is used in generating epilogs
% and when massaging the code generated for the procedure.
:- type frame_info
---> frame(
int, % Number of slots in frame.
maybe(int), % Slot number of succip if succip is
% present in a general slot.
bool % Is this the frame of a model_non
% proc defined via pragma C code?
).
%---------------------------------------------------------------------------%
generate_proc_code(PredInfo, ProcInfo0, PredId, ProcId, ModuleInfo0,
!GlobalData, CProc) :-
% The modified module_info and proc_info are both discarded
% on return from generate_proc_code.
maybe_set_trace_level(PredInfo, ModuleInfo0, ModuleInfo),
ensure_all_headvars_are_named(ProcInfo0, ProcInfo1),
module_info_get_globals(ModuleInfo, Globals),
globals.get_trace_level(Globals, TraceLevel),
proc_info_get_has_parallel_conj(ProcInfo1, HasParConj),
globals.lookup_bool_option(Globals, parallel, Parallel),
(
% Make the containing goal map availble if we need it, it is needed
% for tracing or for parallel conjunctions.
(
given_trace_level_is_none(TraceLevel) = no
;
HasParConj = yes,
Parallel = yes
)
->
fill_goal_id_slots_in_proc(ModuleInfo, ContainingGoalMap,
ProcInfo1, ProcInfo),
MaybeContainingGoalMap = yes(ContainingGoalMap)
;
MaybeContainingGoalMap = no,
ProcInfo = ProcInfo1
),
proc_info_interface_determinism(ProcInfo, Detism),
CodeModel = proc_info_interface_code_model(ProcInfo),
proc_info_get_goal(ProcInfo, Goal),
Goal = hlds_goal(_, GoalInfo),
goal_info_get_follow_vars(GoalInfo, MaybeFollowVars),
(
MaybeFollowVars = yes(FollowVars)
;
MaybeFollowVars = no,
map.init(FollowVarsMap),
FollowVars = abs_follow_vars(FollowVarsMap, 1)
),
basic_stack_layout_for_proc(PredInfo, Globals, BasicStackLayout,
ForceProcId),
SaveSuccip = BasicStackLayout,
% Initialise the code_info structure. Generate_category_code below will use
% the returned OutsideResumePoint as the entry to the code that handles
% the failure of the procedure, if such code is needed. It is never needed
% for model_det procedures, always needed for model_semi procedures, and
% needed for model_non procedures only if we are doing execution tracing.
global_data_get_static_cell_info(!.GlobalData, StaticCellInfo0),
global_data_get_threadscope_rev_string_table(!.GlobalData,
TSRevStringTable0, TSStringTableSize0),
code_info_init(SaveSuccip, Globals, PredId, ProcId, PredInfo,
ProcInfo, FollowVars, ModuleInfo, StaticCellInfo0,
OutsideResumePoint, TraceSlotInfo, MaybeContainingGoalMap,
TSRevStringTable0, TSStringTableSize0, CodeInfo0),
% Find out the approriate context for the predicate's interface events.
pred_info_get_clauses_info(PredInfo, ClausesInfo),
get_clause_list(ClausesInfo ^ cli_rep, Clauses),
(
Clauses = [],
% This predicate must have been created by the compiler. In that case,
% the context of the body goal is the best we can do.
ProcContext = goal_info_get_context(GoalInfo)
;
Clauses = [FirstClause | _],
ProcContext = FirstClause ^ clause_context
),
% Generate code for the procedure.
generate_category_code(CodeModel, ProcContext, Goal, OutsideResumePoint,
TraceSlotInfo, CodeTree, MaybeTraceCallLabel, FrameInfo,
CodeInfo0, CodeInfo),
get_max_reg_in_use_at_trace(CodeInfo, MaxTraceReg),
get_static_cell_info(CodeInfo, StaticCellInfo),
global_data_set_static_cell_info(StaticCellInfo, !GlobalData),
get_threadscope_rev_string_table(CodeInfo,
TSRevStringTable, TSStringTableSize),
global_data_set_threadscope_rev_string_table(TSRevStringTable,
TSStringTableSize, !GlobalData),
get_created_temp_frame(CodeInfo, CreatedTempFrame),
get_proc_trace_events(CodeInfo, ProcTraceEvents),
% You can have user trace events even if the effective trace level is none.
(
ProcTraceEvents = yes,
CreatedTempFrame = yes,
CodeModel \= model_non
->
% If tracing is enabled, the procedure lives on the det stack and the
% code created any temporary nondet stack frames, then we must have
% reserved a stack slot for storing the value of maxfr; if we didn't,
% a retry command in the debugger from a point in the middle of this
% procedure will do the wrong thing.
proc_info_get_need_maxfr_slot(ProcInfo, HaveMaxfrSlot),
expect(unify(HaveMaxfrSlot, yes), $module, $pred,
"should have reserved a slot for maxfr, but didn't")
;
true
),
Instructions0 = cord.list(CodeTree),
FrameInfo = frame(TotalSlots, MaybeSuccipSlot, _),
(
MaybeSuccipSlot = yes(SuccipSlot),
% The set of recorded live values at calls (for value numbering)
% and returns (for accurate gc and execution tracing) do not yet record
% the stack slot holding the succip, so add it to those sets.
add_saved_succip(Instructions0, SuccipSlot, Instructions)
;
MaybeSuccipSlot = no,
Instructions = Instructions0
),
proc_info_get_maybe_proc_table_io_info(ProcInfo, MaybeTableIOInfo),
(
( BasicStackLayout = yes
; MaybeTableIOInfo = yes(_TableIODeclInfo)
)
->
% Create the procedure layout structure.
RttiProcLabel = make_rtti_proc_label(ModuleInfo, PredId, ProcId),
get_layout_info(CodeInfo, InternalMap),
EntryLabel = make_local_entry_label(ModuleInfo, PredId, ProcId, no),
proc_info_get_eval_method(ProcInfo, EvalMethod),
proc_info_get_initial_instmap(ProcInfo, ModuleInfo, InstMap0),
proc_info_get_headvars(ProcInfo, HeadVars),
proc_info_get_varset(ProcInfo, VarSet),
proc_info_get_argmodes(ProcInfo, ArgModes),
proc_info_get_vartypes(ProcInfo, VarTypes),
globals.get_trace_suppress(Globals, TraceSuppress),
(
eff_trace_needs_proc_body_reps(ModuleInfo, PredInfo, ProcInfo,
TraceLevel, TraceSuppress) = yes
->
NeedGoalRep = trace_needs_body_rep
;
NeedGoalRep = trace_does_not_need_body_rep
),
NeedsAllNames = eff_trace_needs_all_var_names(ModuleInfo, PredInfo,
ProcInfo, TraceLevel, TraceSuppress),
proc_info_get_maybe_deep_profile_info(ProcInfo, MaybeHLDSDeepInfo),
(
MaybeHLDSDeepInfo = yes(HLDSDeepInfo),
DeepProfInfo = generate_deep_prof_info(ProcInfo, HLDSDeepInfo),
MaybeDeepProfInfo = yes(DeepProfInfo)
;
MaybeHLDSDeepInfo = no,
MaybeDeepProfInfo = no
),
EffTraceLevel = eff_trace_level(ModuleInfo, PredInfo, ProcInfo,
TraceLevel),
module_info_get_table_struct_map(ModuleInfo, TableStructMap),
PredProcId = proc(PredId, ProcId),
(
MaybeTableIOInfo = no,
( map.search(TableStructMap, PredProcId, TableStructInfo) ->
TableStructInfo = table_struct_info(ProcTableStructInfo,
_Attributes),
MaybeTableInfo = yes(proc_table_struct(ProcTableStructInfo))
;
MaybeTableInfo = no
)
;
MaybeTableIOInfo = yes(TableIOInfo),
( map.search(TableStructMap, PredProcId, _TableStructInfo) ->
unexpected($module, $pred, "conflicting kinds of tabling")
;
MaybeTableInfo = yes(proc_table_io_decl(TableIOInfo))
)
),
ProcLayout = proc_layout_info(RttiProcLabel, EntryLabel,
Detism, TotalSlots, MaybeSuccipSlot, EvalMethod,
EffTraceLevel, MaybeTraceCallLabel, MaxTraceReg,
HeadVars, ArgModes, Goal, NeedGoalRep, InstMap0,
TraceSlotInfo, ForceProcId, VarSet, VarTypes,
InternalMap, MaybeTableInfo, NeedsAllNames,
MaybeDeepProfInfo),
global_data_add_new_proc_layout(proc(PredId, ProcId), ProcLayout,
!GlobalData)
;
true
),
get_closure_layouts(CodeInfo, ClosureLayouts),
global_data_add_new_closure_layouts(ClosureLayouts, !GlobalData),
ProcLabel = make_proc_label(ModuleInfo, PredId, ProcId),
get_alloc_sites(CodeInfo, AllocSites),
global_data_add_new_alloc_sites(AllocSites, !GlobalData),
Name = pred_info_name(PredInfo),
Arity = pred_info_orig_arity(PredInfo),
get_label_counter(CodeInfo, LabelCounter),
% You can have user trace events even if the effective trace level is none.
(
ProcTraceEvents = no,
MayAlterRtti = may_alter_rtti
;
ProcTraceEvents = yes,
MayAlterRtti = must_not_alter_rtti
),
globals.lookup_bool_option(Globals, generate_bytecode, GenBytecode),
(
% XXX: There is a mass of calls above that the bytecode doesn't need;
% work out which is and isn't needed and put inside the else case
% below.
GenBytecode = yes,
% We don't generate bytecode for unify and compare preds.
% The automatically generated unify and compare predicates
% are correct by construction; for user-defined unify and
% compare predicates, we *assume* their correctness for now
% (perhaps not wisely).
\+ is_unify_or_compare_pred(PredInfo),
% Don't generate bytecode for procs with foreign code.
goal_has_foreign(Goal) = no
->
bytecode_stub(ModuleInfo, PredId, ProcId, ProcInstructions),
ProcLabelCounter = counter.init(0)
;
ProcInstructions = Instructions,
ProcLabelCounter = LabelCounter
),
get_used_env_vars(CodeInfo, UsedEnvVars),
CProc = c_procedure(Name, Arity, proc(PredId, ProcId), CodeModel,
ProcInstructions, ProcLabel, ProcLabelCounter, MayAlterRtti,
UsedEnvVars).
:- pred maybe_set_trace_level(pred_info::in,
module_info::in, module_info::out) is det.
maybe_set_trace_level(PredInfo, !ModuleInfo) :-
module_info_get_globals(!.ModuleInfo, Globals0),
(
PredModule = pred_info_module(PredInfo),
PredName = pred_info_name(PredInfo),
PredArity = pred_info_orig_arity(PredInfo),
no_type_info_builtin(PredModule, PredName, PredArity)
->
% These predicates should never be traced, since they do not obey
% typeinfo_liveness. Since they may be opt_imported into other
% modules, we must switch off the tracing of such preds on a
% pred-by-pred basis.
globals.set_trace_level_none(Globals0, Globals1),
module_info_set_globals(Globals1, !ModuleInfo)
;
pred_info_get_origin(PredInfo, origin_special_pred(_)),
globals.get_trace_level(Globals0, TraceLevel),
UC_TraceLevel = trace_level_for_unify_compare(TraceLevel)
->
globals.set_trace_level(UC_TraceLevel, Globals0, Globals1),
module_info_set_globals(Globals1, !ModuleInfo)
;
true
).
:- func generate_deep_prof_info(proc_info, deep_profile_proc_info)
= proc_deep_prof_info.
generate_deep_prof_info(ProcInfo, HLDSDeepInfo) = DeepProfInfo :-
HLDSDeepInfo ^ deep_layout = MaybeHLDSDeepLayout,
(
MaybeHLDSDeepLayout = yes(HLDSDeepLayout)
;
MaybeHLDSDeepLayout = no,
unexpected($module, $pred, "no HLDS deep profiling layout info")
),
HLDSDeepLayout = hlds_deep_layout(HLDSProcStatic, HLDSExcpVars),
HLDSDeepInfo ^ deep_orig_body = OriginalProcBody,
HLDSExcpVars = hlds_deep_excp_vars(TopCSDVar, MiddleCSDVar,
MaybeOldOutermostVar),
proc_info_get_stack_slots(ProcInfo, StackSlots),
( map.search(StackSlots, TopCSDVar, TopCSDSlot) ->
TopCSDSlotNum = stack_slot_num(TopCSDSlot),
map.lookup(StackSlots, MiddleCSDVar, MiddleCSDSlot),
MiddleCSDSlotNum = stack_slot_num(MiddleCSDSlot),
(
MaybeOldOutermostVar = yes(OldOutermostVar),
map.lookup(StackSlots, OldOutermostVar, OldOutermostSlot),
OldOutermostSlotNum = stack_slot_num(OldOutermostSlot)
;
MaybeOldOutermostVar = no,
OldOutermostSlotNum = -1
)
;
TopCSDSlotNum = -1,
MiddleCSDSlotNum = -1,
OldOutermostSlotNum = -1
),
DeepExcpSlots = deep_excp_slots(TopCSDSlotNum, MiddleCSDSlotNum,
OldOutermostSlotNum),
DeepProfInfo = proc_deep_prof_info(HLDSProcStatic, DeepExcpSlots,
OriginalProcBody).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Generate_category_code generates code for an entire procedure.
% Its algorithm has three or four main stages:
%
% - generate code for the body goal
% - generate code for the procedure entry
% - generate code for the procedure exit
% - generate code for the procedure fail (if needed)
%
% The first three tasks are forwarded to other procedures.
% The fourth task, if needed, is done by generate_category_code.
%
% The only caller of generate_category_code, generate_proc_code,
% has set up the code generator state to reflect what the machine
% state will be on entry to the procedure. Ensuring that the
% machine state at exit will conform to the expectation
% of the caller is the job of generate_exit.
%
% The reason why we generate the entry code after the body is that
% information such as the total number of stack slots needed,
% which is needed in the procedure entry prologue, cannot be
% conveniently obtained before generating the body, since the
% code generator may allocate temporary variables to hold values
% such as saved heap and trail pointers.
%
% Code_gen.generate_entry cannot depend on the code generator
% state, since when it is invoked this state is not appropriate
% for the procedure entry. Nor can it change the code generator state,
% since that would confuse generate_exit.
%
% Generating CALL trace events is done by generate_category_code,
% since only on entry to generate_category_code is the code generator
% state set up right. Generating EXIT trace events is done by
% generate_exit. Generating FAIL trace events is done
% by generate_category_code, since this requires modifying how
% we generate code for the body of the procedure (failures must
% now branch to a different place). Since FAIL trace events are
% part of the failure continuation, generate_category_code takes
% care of the failure continuation as well. (Model_det procedures
% of course have no failure continuation. Model_non procedures have
% a failure continuation, but in the absence of tracing this
% continuation needs no code. Only model_semi procedures need code
% for the failure continuation at all times.)
%
:- pred generate_category_code(code_model::in, prog_context::in, hlds_goal::in,
resume_point_info::in, trace_slot_info::in, llds_code::out,
maybe(label)::out, frame_info::out, code_info::in, code_info::out) is det.
generate_category_code(model_det, ProcContext, Goal, ResumePoint,
TraceSlotInfo, Code, MaybeTraceCallLabel, FrameInfo, !CI) :-
% Generate the code for the body of the procedure.
get_globals(!.CI, Globals),
globals.lookup_bool_option(Globals, middle_rec, MiddleRec),
(
MiddleRec = yes,
middle_rec.match_and_generate(Goal, MiddleRecCode, !CI)
->
Code = MiddleRecCode,
MaybeTraceCallLabel = no,
FrameInfo = frame(0, no, no)
;
get_maybe_trace_info(!.CI, MaybeTraceInfo),
(
MaybeTraceInfo = yes(TraceInfo),
generate_call_event(TraceInfo, ProcContext, MaybeTraceCallLabel,
TraceCallCode, !CI),
get_trace_maybe_tail_rec_info(TraceInfo, MaybeTailRecInfo),
(
MaybeTailRecInfo = yes(_TailRecLval - TailRecLabel),
TailRecLabelCode = singleton(
llds_instr(label(TailRecLabel),
"tail recursion label, nofulljump")
)
;
MaybeTailRecInfo = no,
TailRecLabelCode = empty
)
;
MaybeTraceInfo = no,
MaybeTraceCallLabel = no,
TraceCallCode = empty,
TailRecLabelCode = empty
),
generate_goal(model_det, Goal, BodyCode, !CI),
generate_entry(!.CI, model_det, Goal, ResumePoint, FrameInfo,
EntryCode),
generate_exit(model_det, FrameInfo, TraceSlotInfo, ProcContext,
_, ExitCode, !CI),
Code = EntryCode ++ TraceCallCode ++ TailRecLabelCode ++
BodyCode ++ ExitCode
).
generate_category_code(model_semi, ProcContext, Goal, ResumePoint,
TraceSlotInfo, Code, MaybeTraceCallLabel, FrameInfo, !CI) :-
set.singleton_set(FailureLiveRegs, reg(reg_r, 1)),
FailCode = from_list([
llds_instr(assign(reg(reg_r, 1), const(llconst_false)), "Fail"),
llds_instr(livevals(FailureLiveRegs), ""),
llds_instr(goto(code_succip), "Return from procedure call")
]),
get_maybe_trace_info(!.CI, MaybeTraceInfo),
(
MaybeTraceInfo = yes(TraceInfo),
generate_call_event(TraceInfo, ProcContext, MaybeTraceCallLabel,
TraceCallCode, !CI),
get_trace_maybe_tail_rec_info(TraceInfo, MaybeTailRecInfo),
(
MaybeTailRecInfo = yes(_TailRecLval - TailRecLabel),
TailRecLabelCode = singleton(
llds_instr(label(TailRecLabel), "tail recursion label")
)
;
MaybeTailRecInfo = no,
TailRecLabelCode = empty
),
generate_goal(model_semi, Goal, BodyCode, !CI),
generate_entry(!.CI, model_semi, Goal, ResumePoint,
FrameInfo, EntryCode),
generate_exit(model_semi, FrameInfo, TraceSlotInfo,
ProcContext, RestoreDeallocCode, ExitCode, !CI),
generate_resume_point(ResumePoint, ResumeCode, !CI),
resume_point_vars(ResumePoint, ResumeVarList),
set.list_to_set(ResumeVarList, ResumeVars),
set_forward_live_vars(ResumeVars, !CI),
% XXX A context that gives the end of the procedure definition
% would be better than ProcContext.
generate_external_event_code(external_port_fail, TraceInfo,
ProcContext, MaybeFailExternalInfo, !CI),
(
MaybeFailExternalInfo = yes(FailExternalInfo),
FailExternalInfo = external_event_info(_, _, TraceFailCode)
;
MaybeFailExternalInfo = no,
TraceFailCode = empty
),
Code = EntryCode ++ TraceCallCode ++ TailRecLabelCode ++
BodyCode ++ ExitCode ++ ResumeCode ++ TraceFailCode ++
RestoreDeallocCode ++ FailCode
;
MaybeTraceInfo = no,
MaybeTraceCallLabel = no,
generate_goal(model_semi, Goal, BodyCode, !CI),
generate_entry(!.CI, model_semi, Goal, ResumePoint,
FrameInfo, EntryCode),
generate_exit(model_semi, FrameInfo, TraceSlotInfo,
ProcContext, RestoreDeallocCode, ExitCode, !CI),
generate_resume_point(ResumePoint, ResumeCode, !CI),
Code = EntryCode ++ BodyCode ++ ExitCode ++ ResumeCode ++
RestoreDeallocCode ++ FailCode
).
generate_category_code(model_non, ProcContext, Goal, ResumePoint,
TraceSlotInfo, Code, MaybeTraceCallLabel, FrameInfo, !CI) :-
get_maybe_trace_info(!.CI, MaybeTraceInfo),
(
MaybeTraceInfo = yes(TraceInfo),
generate_call_event(TraceInfo, ProcContext, MaybeTraceCallLabel,
TraceCallCode, !CI),
get_trace_maybe_tail_rec_info(TraceInfo, MaybeTailRecInfo),
expect(unify(MaybeTailRecInfo, no), $module, $pred,
"tail recursive call in model_non code"),
generate_goal(model_non, Goal, BodyCode, !CI),
generate_entry(!.CI, model_non, Goal, ResumePoint,
FrameInfo, EntryCode),
generate_exit(model_non, FrameInfo, TraceSlotInfo,
ProcContext, _, ExitCode, !CI),
generate_resume_point(ResumePoint, ResumeCode, !CI),
resume_point_vars(ResumePoint, ResumeVarList),
set.list_to_set(ResumeVarList, ResumeVars),
set_forward_live_vars(ResumeVars, !CI),
% XXX A context that gives the end of the procedure definition
% would be better than ProcContext.
generate_external_event_code(external_port_fail, TraceInfo,
ProcContext, MaybeFailExternalInfo, !CI),
(
MaybeFailExternalInfo = yes(FailExternalInfo),
FailExternalInfo = external_event_info(_, _, TraceFailCode)
;
MaybeFailExternalInfo = no,
TraceFailCode = empty
),
( TraceSlotInfo ^ slot_trail = yes(_) ->
MaybeFromFull = TraceSlotInfo ^ slot_from_full,
(
MaybeFromFull = yes(FromFullSlot),
% Generate code which discards the ticket only if it was
% allocated, i.e. only if MR_trace_from_full was true on entry.
FromFullSlotLval =
llds.stack_slot_num_to_lval(nondet_stack, FromFullSlot),
get_next_label(SkipLabel, !CI),
DiscardTraceTicketCode = from_list([
llds_instr(
if_val(unop(logical_not, lval(FromFullSlotLval)),
code_label(SkipLabel)), ""),
llds_instr(discard_ticket, "discard retry ticket"),
llds_instr(label(SkipLabel), "")
])
;
MaybeFromFull = no,
DiscardTraceTicketCode = singleton(
llds_instr(discard_ticket, "discard retry ticket")
)
)
;
DiscardTraceTicketCode = empty
),
FailCode = singleton(
llds_instr(goto(do_fail), "fail after fail trace port")
),
Code = EntryCode ++ TraceCallCode ++ BodyCode ++ ExitCode ++
ResumeCode ++ TraceFailCode ++ DiscardTraceTicketCode ++ FailCode
;
MaybeTraceInfo = no,
MaybeTraceCallLabel = no,
generate_goal(model_non, Goal, BodyCode, !CI),
generate_entry(!.CI, model_non, Goal, ResumePoint,
FrameInfo, EntryCode),
generate_exit(model_non, FrameInfo, TraceSlotInfo,
ProcContext, _, ExitCode, !CI),
Code = EntryCode ++ BodyCode ++ ExitCode
).
:- pred generate_call_event(trace_info::in, prog_context::in,
maybe(label)::out, llds_code::out, code_info::in, code_info::out) is det.
generate_call_event(TraceInfo, ProcContext, MaybeTraceCallLabel, TraceCallCode,
!CI) :-
generate_external_event_code(external_port_call, TraceInfo,
ProcContext, MaybeCallExternalInfo, !CI),
(
MaybeCallExternalInfo = yes(CallExternalInfo),
CallExternalInfo = external_event_info(TraceCallLabel, _,
TraceCallCode),
MaybeTraceCallLabel = yes(TraceCallLabel)
;
MaybeCallExternalInfo = no,
% This can happen for procedures containing user events
% in shallow traced modules.
TraceCallCode = empty,
MaybeTraceCallLabel = no
).
%---------------------------------------------------------------------------%
% Generate the prologue for a procedure.
%
% The prologue will contain
%
% a comment to mark prologue start
% a comment explaining the stack layout
% the procedure entry label
% code to allocate a stack frame
% code to fill in some special slots in the stack frame
% a comment to mark prologue end
%
% At the moment the only special slots are the succip slot, and
% the slots holding the call number and call depth for tracing.
%
% Not all frames will have all these components. For example, the code
% to allocate a stack frame will be missing if the procedure doesn't
% need a stack frame, and if the procedure is nondet, then the code
% to fill in the succip slot is subsumed by the mkframe.
:- pred generate_entry(code_info::in, code_model::in, hlds_goal::in,
resume_point_info::in, frame_info::out, llds_code::out) is det.
generate_entry(CI, CodeModel, Goal, OutsideResumePoint, FrameInfo,
EntryCode) :-
get_stack_slots(CI, StackSlots),
get_varset(CI, VarSet),
SlotsComment = explain_stack_slots(StackSlots, VarSet),
StartComment = from_list([
llds_instr(comment("Start of procedure prologue"), ""),
llds_instr(comment(SlotsComment), "")
]),
get_total_stackslot_count(CI, MainSlots),
get_pred_id(CI, PredId),
get_proc_id(CI, ProcId),
get_module_info(CI, ModuleInfo),
EntryLabel = make_local_entry_label(ModuleInfo, PredId, ProcId, no),
LabelCode = singleton(
llds_instr(label(EntryLabel), "Procedure entry point")
),
get_succip_used(CI, Used),
(
% Do we need to save the succip across calls?
Used = yes,
% Do we need to use a general slot for storing succip?
CodeModel \= model_non
->
SuccipSlot = MainSlots + 1,
SaveSuccipCode = singleton(
llds_instr(assign(stackvar(SuccipSlot), lval(succip)),
"Save the success ip")
),
TotalSlots = SuccipSlot,
MaybeSuccipSlot = yes(SuccipSlot)
;
SaveSuccipCode = empty,
TotalSlots = MainSlots,
MaybeSuccipSlot = no
),
get_maybe_trace_info(CI, MaybeTraceInfo),
(
MaybeTraceInfo = yes(TraceInfo),
generate_slot_fill_code(CI, TraceInfo, TraceFillCode)
;
MaybeTraceInfo = no,
TraceFillCode = empty
),
PushMsg = push_msg(ModuleInfo, PredId, ProcId),
(
CodeModel = model_non,
resume_point_stack_addr(OutsideResumePoint, OutsideResumeAddress),
NondetFrameInfo = ordinary_frame(PushMsg, TotalSlots, no),
AllocCode = singleton(
llds_instr(mkframe(NondetFrameInfo, yes(OutsideResumeAddress)),
"Allocate stack frame")
),
NondetPragma = no
;
( CodeModel = model_det
; CodeModel = model_semi
),
IsLeaf = proc_body_is_leaf(Goal),
(
IsLeaf = is_not_leaf,
StackIncrKind = stack_incr_nonleaf
;
IsLeaf = is_leaf,
StackIncrKind = stack_incr_leaf
),
( TotalSlots > 0 ->
AllocCode = singleton(
llds_instr(incr_sp(TotalSlots, PushMsg, StackIncrKind),
"Allocate stack frame")
)
;
AllocCode = empty
),
NondetPragma = no
),
FrameInfo = frame(TotalSlots, MaybeSuccipSlot, NondetPragma),
EndComment = singleton(
llds_instr(comment("End of procedure prologue"), "")
),
EntryCode = StartComment ++ LabelCode ++ AllocCode ++
SaveSuccipCode ++ TraceFillCode ++ EndComment.
%---------------------------------------------------------------------------%
% Generate the success epilogue for a procedure.
%
% The success epilogue will contain
%
% a comment to mark epilogue start
% code to place the output arguments where their caller expects
% code to restore registers from some special slots
% code to deallocate the stack frame
% code to set r1 to MR_TRUE (for semidet procedures only)
% a jump back to the caller, including livevals information
% a comment to mark epilogue end
%
% The parts of this that restore registers and deallocate the stack
% frame are also part of the failure epilog, which is handled by
% our caller; this is why we return RestoreDeallocCode.
%
% At the moment the only special slots are the succip slot, and
% the tracing slots (holding the call sequence number, call event
% number, call depth, from-full indication, and trail state).
%
% Not all frames will have all these components. For example, for
% nondet procedures we don't deallocate the stack frame before
% success.
%
% Epilogues for procedures defined by nondet pragma C codes do not
% follow the rules above. For such procedures, the normal functions
% of the epilogue are handled when traversing the pragma C code goal;
% we need only #undef a macro defined by the procedure prologue.
:- pred generate_exit(code_model::in, frame_info::in,
trace_slot_info::in, prog_context::in, llds_code::out, llds_code::out,
code_info::in, code_info::out) is det.
generate_exit(CodeModel, FrameInfo, TraceSlotInfo, ProcContext,
RestoreDeallocCode, ExitCode, !CI) :-
StartComment = singleton(
llds_instr(comment("Start of procedure epilogue"), "")
),
EndComment = singleton(
llds_instr(comment("End of procedure epilogue"), "")
),
FrameInfo = frame(TotalSlots, MaybeSuccipSlot, NondetPragma),
(
NondetPragma = yes,
UndefStr = "#undef\tMR_ORDINARY_SLOTS\n",
UndefComponents = [foreign_proc_raw_code(cannot_branch_away,
proc_does_not_affect_liveness, live_lvals_info(set.init),
UndefStr)],
MD = proc_may_not_duplicate,
UndefCode = singleton(
llds_instr(foreign_proc_code([], UndefComponents,
proc_will_not_call_mercury, no, no, no, no, no, no, MD), "")
),
RestoreDeallocCode = empty, % always empty for nondet code
ExitCode = StartComment ++ UndefCode ++ EndComment
;
NondetPragma = no,
get_instmap(!.CI, InstMap),
ArgModes = get_arginfo(!.CI),
HeadVars = get_headvars(!.CI),
assoc_list.from_corresponding_lists(HeadVars, ArgModes, Args),
( instmap_is_unreachable(InstMap) ->
OutLvals = set.init,
FlushCode = empty
;
setup_return(Args, OutLvals, FlushCode, !CI)
),
(
MaybeSuccipSlot = yes(SuccipSlot),
RestoreSuccipCode = singleton(
llds_instr(assign(succip, lval(stackvar(SuccipSlot))),
"restore the success ip")
)
;
MaybeSuccipSlot = no,
RestoreSuccipCode = empty
),
(
( TotalSlots = 0
; CodeModel = model_non
)
->
DeallocCode = empty
;
DeallocCode = singleton(
llds_instr(decr_sp(TotalSlots), "Deallocate stack frame")
)
),
(
TraceSlotInfo ^ slot_trail = yes(_),
CodeModel \= model_non
->
MaybeFromFull = TraceSlotInfo ^ slot_from_full,
(
MaybeFromFull = yes(FromFullSlot),
% Generate code which prunes the ticket only if it was
% allocated, i.e. only if MR_trace_from_full was true on entry.
%
% Note that to avoid duplicating label names, we need to
% generate two different copies of this with different labels;
% this is needed for semidet code, which will get one copy
% in the success epilogue and one copy in the failure epilogue.
StackId = code_model_to_main_stack(CodeModel),
FromFullSlotLval =
llds.stack_slot_num_to_lval(StackId, FromFullSlot),
get_next_label(SkipLabel, !CI),
get_next_label(SkipLabelCopy, !CI),
PruneTraceTicketCode = from_list([
llds_instr(if_val(unop(logical_not, lval(FromFullSlotLval)),
code_label(SkipLabel)), ""),
llds_instr(prune_ticket, "prune retry ticket"),
llds_instr(label(SkipLabel), "")
]),
PruneTraceTicketCodeCopy = from_list([
llds_instr(if_val(unop(logical_not, lval(FromFullSlotLval)),
code_label(SkipLabelCopy)), ""),
llds_instr(prune_ticket, "prune retry ticket"),
llds_instr(label(SkipLabelCopy), "")
])
;
MaybeFromFull = no,
PruneTraceTicketCode = singleton(
llds_instr(prune_ticket, "prune retry ticket")
),
PruneTraceTicketCodeCopy = PruneTraceTicketCode
)
;
PruneTraceTicketCode = empty,
PruneTraceTicketCodeCopy = empty
),
RestoreDeallocCode = RestoreSuccipCode ++
PruneTraceTicketCode ++ DeallocCode,
RestoreDeallocCodeCopy = RestoreSuccipCode ++
PruneTraceTicketCodeCopy ++ DeallocCode,
get_maybe_trace_info(!.CI, MaybeTraceInfo),
(
MaybeTraceInfo = yes(TraceInfo),
% XXX A context that gives the end of the procedure definition
% would be better than CallContext.
generate_external_event_code(external_port_exit, TraceInfo,
ProcContext, MaybeExitExternalInfo, !CI),
(
MaybeExitExternalInfo = yes(ExitExternalInfo),
ExitExternalInfo = external_event_info(_, TypeInfoDatas,
TraceExitCode)
;
MaybeExitExternalInfo = no,
TypeInfoDatas = map.init,
TraceExitCode = empty
),
map.values(TypeInfoDatas, TypeInfoLocnSets),
FindBaseLvals = (pred(Lval::out) is nondet :-
list.member(LocnSet, TypeInfoLocnSets),
set.member(Locn, LocnSet),
(
Locn = locn_direct(Lval)
;
Locn = locn_indirect(Lval, _)
)
),
solutions.solutions(FindBaseLvals, TypeInfoLvals),
set.insert_list(TypeInfoLvals, OutLvals, LiveLvals)
;
MaybeTraceInfo = no,
TraceExitCode = empty,
LiveLvals = OutLvals
),
get_proc_info(!.CI, ProcInfo),
proc_info_get_maybe_special_return(ProcInfo, MaybeSpecialReturn),
(
CodeModel = model_det,
expect(unify(MaybeSpecialReturn, no), $module, $pred,
"det special_return"),
SuccessCode = from_list([
llds_instr(livevals(LiveLvals), ""),
llds_instr(goto(code_succip), "Return from procedure call")
]),
AllSuccessCode = TraceExitCode ++ RestoreDeallocCodeCopy ++
SuccessCode
;
CodeModel = model_semi,
expect(unify(MaybeSpecialReturn, no), $module, $pred,
"semi special_return"),
set.insert(reg(reg_r, 1), LiveLvals, SuccessLiveRegs),
SuccessCode = from_list([
llds_instr(assign(reg(reg_r, 1), const(llconst_true)),
"Succeed"),
llds_instr(livevals(SuccessLiveRegs), ""),
llds_instr(goto(code_succip), "Return from procedure call")
]),
AllSuccessCode = TraceExitCode ++ RestoreDeallocCodeCopy ++
SuccessCode
;
CodeModel = model_non,
(
MaybeTraceInfo = yes(TraceInfo2),
maybe_setup_redo_event(TraceInfo2, SetupRedoCode)
;
MaybeTraceInfo = no,
SetupRedoCode = empty
),
(
MaybeSpecialReturn = yes(SpecialReturn),
SpecialReturn = generator_return(GeneratorLocnStr, DebugStr),
ReturnMacroName = "MR_tbl_mmos_return_answer",
ReturnCodeStr = "\t" ++ ReturnMacroName ++ "(" ++
DebugStr ++ ", " ++ GeneratorLocnStr ++ ");\n",
Component = foreign_proc_user_code(no,
proc_does_not_affect_liveness, ReturnCodeStr),
MD = proc_may_not_duplicate,
SuccessCode = from_list([
llds_instr(livevals(LiveLvals), ""),
llds_instr(foreign_proc_code([], [Component],
proc_may_call_mercury, no, no, no, no, no, no, MD), "")
])
;
MaybeSpecialReturn = no,
SuccessCode = from_list([
llds_instr(livevals(LiveLvals), ""),
llds_instr(goto(do_succeed(no)),
"Return from procedure call")
])
),
AllSuccessCode = SetupRedoCode ++ TraceExitCode ++
SuccessCode
),
ExitCode = StartComment ++ FlushCode ++ AllSuccessCode ++ EndComment
).
%---------------------------------------------------------------------------%
% Add the succip to the livevals before and after calls. Traverses the list
% of instructions looking for livevals and calls, adding succip in the
% stackvar number given as an argument.
%
:- pred add_saved_succip(list(instruction)::in, int::in,
list(instruction)::out) is det.
add_saved_succip([], _StackLoc, []).
add_saved_succip([Instr0 | Instrs0], StackLoc, [Instr | Instrs]) :-
Instr0 = llds_instr(Uinstr0, Comment),
(
Uinstr0 = livevals(LiveVals0),
Instrs0 \= [llds_instr(goto(code_succip), _) | _]
% XXX We should also test for tailcalls
% once we start generating them directly.
->
set.insert(stackvar(StackLoc), LiveVals0, LiveVals1),
Uinstr = livevals(LiveVals1),
Instr = llds_instr(Uinstr, Comment)
;
Uinstr0 = llcall(Target, ReturnLabel, LiveVals0, Context, GP, CM)
->
map.init(Empty),
LiveVals = [live_lvalue(locn_direct(stackvar(StackLoc)),
live_value_succip, Empty) | LiveVals0],
Uinstr = llcall(Target, ReturnLabel, LiveVals, Context, GP, CM),
Instr = llds_instr(Uinstr, Comment)
;
Instr = Instr0
),
add_saved_succip(Instrs0, StackLoc, Instrs).
%---------------------------------------------------------------------------%
:- pred bytecode_stub(module_info::in, pred_id::in, proc_id::in,
list(instruction)::out) is det.
bytecode_stub(ModuleInfo, PredId, ProcId, BytecodeInstructions) :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
ModuleSymName = pred_info_module(PredInfo),
ModuleName = sym_name_to_string_sep(ModuleSymName, "__"),
EntryLabel = make_local_entry_label(ModuleInfo, PredId, ProcId, no),
PredName = pred_info_name(PredInfo),
proc_id_to_int(ProcId, ProcNum),
string.int_to_string(ProcNum, ProcStr),
Arity = pred_info_orig_arity(PredInfo),
int_to_string(Arity, ArityStr),
PredOrFunc = pred_info_is_pred_or_func(PredInfo),
CallStructName = "bytecode_call_info",
append_list([
"\t\tstatic MB_Call ", CallStructName, " = {\n",
"\t\t\t(MB_Word)NULL,\n",
"\t\t\t""", ModuleName, """,\n",
"\t\t\t""", PredName, """,\n",
"\t\t\t", ProcStr, ",\n",
"\t\t\t", ArityStr, ",\n",
"\t\t\t", (PredOrFunc = pf_function -> "MR_TRUE" ; "MR_FALSE"), "\n",
"\t\t};\n"
], CallStruct),
append_list([
"\t\tMB_Native_Addr return_addr;\n",
"\t\tMR_save_registers();\n",
"\t\treturn_addr = MB_bytecode_call_entry(", "&",CallStructName,");\n",
"\t\tMR_restore_registers();\n",
"\t\tMR_GOTO(return_addr);\n"
], BytecodeCall),
BytecodeInstructionsComponents = [
foreign_proc_raw_code(cannot_branch_away,
proc_does_not_affect_liveness, live_lvals_info(set.init), "\t{\n"),
foreign_proc_raw_code(cannot_branch_away,
proc_does_not_affect_liveness, live_lvals_info(set.init),
CallStruct),
foreign_proc_raw_code(cannot_branch_away,
proc_does_not_affect_liveness, no_live_lvals_info, BytecodeCall),
foreign_proc_raw_code(cannot_branch_away,
proc_does_not_affect_liveness, live_lvals_info(set.init), "\t}\n")
],
MD = proc_may_not_duplicate,
BytecodeInstructions = [
llds_instr(label(EntryLabel), "Procedure entry point"),
llds_instr(foreign_proc_code([], BytecodeInstructionsComponents,
proc_may_call_mercury, no, no, no, no, no, no, MD), "Entry stub")
].
%---------------------------------------------------------------------------%
:- type type_giving_arg
---> last_arg
; last_but_one_arg.
push_msg(ModuleInfo, PredId, ProcId) = PushMsg :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
PredOrFunc = pred_info_is_pred_or_func(PredInfo),
ModuleName = pred_info_module(PredInfo),
PredName = pred_info_name(PredInfo),
Arity = pred_info_orig_arity(PredInfo),
pred_info_get_origin(PredInfo, Origin),
( Origin = origin_special_pred(SpecialId - TypeCtor) ->
find_arg_type_ctor_name(TypeCtor, TypeName),
SpecialPredName = get_special_pred_id_generic_name(SpecialId),
FullPredName = SpecialPredName ++ "_for_" ++ TypeName
;
FullPredName = PredName
),
% XXX if ModuleNameString ends with [0-9] and/or FullPredName starts with
% [0-9] then ideally we should use "'.'" rather than just ".".
%
PushMsg = pred_or_func_to_str(PredOrFunc) ++ " " ++
sym_name_to_string(ModuleName) ++ "." ++
FullPredName ++ "/" ++ int_to_string(Arity) ++ "-" ++
int_to_string(proc_id_to_int(ProcId)).
:- pred find_arg_type_ctor_name((type_ctor)::in, string::out) is det.
find_arg_type_ctor_name(TypeCtor, TypeName) :-
TypeCtor = type_ctor(TypeCtorSymName, TypeCtorArity),
TypeCtorName = sym_name_to_string(TypeCtorSymName),
string.int_to_string(TypeCtorArity, ArityStr),
string.append_list([TypeCtorName, "_", ArityStr], TypeName).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
add_all_tabling_info_structs(ModuleInfo, !GlobalData) :-
module_info_get_table_struct_map(ModuleInfo, TableStructMap),
map.to_assoc_list(TableStructMap, TableStructs),
list.foldl(add_tabling_info_struct, TableStructs, !GlobalData).
:- pred add_tabling_info_struct(pair(pred_proc_id, table_struct_info)::in,
global_data::in, global_data::out) is det.
add_tabling_info_struct(PredProcId - TableStructInfo, !GlobalData) :-
TableStructInfo = table_struct_info(ProcTableStructInfo, TableAttributes),
ProcTableStructInfo = proc_table_struct_info(RttiProcLabel, _TVarSet,
_Context, NumInputs, NumOutputs, InputSteps, MaybeOutputSteps,
ArgInfos, EvalMethod),
global_data_get_static_cell_info(!.GlobalData, StaticCellInfo0),
convert_table_arg_info(ArgInfos, NumPTIs, PTIVectorRval,
TVarVectorRval, StaticCellInfo0, StaticCellInfo),
global_data_set_static_cell_info(StaticCellInfo, !GlobalData),
NumArgs = NumInputs + NumOutputs,
expect(unify(NumArgs, NumPTIs), $module, $pred, "args mismatch"),
MaybeSizeLimit = TableAttributes ^ table_attr_size_limit,
Statistics = TableAttributes ^ table_attr_statistics,
ProcLabel = make_proc_label_from_rtti(RttiProcLabel),
Var = tabling_info_struct(ProcLabel, EvalMethod,
NumInputs, NumOutputs, InputSteps, MaybeOutputSteps, PTIVectorRval,
TVarVectorRval, MaybeSizeLimit, Statistics),
global_data_add_new_proc_var(PredProcId, Var, !GlobalData).
%---------------------------------------------------------------------------%
:- end_module ll_backend.proc_gen.
%---------------------------------------------------------------------------%