Files
mercury/compiler/prog_data.m
Julien Fischer 2755655989 Support impure initialise and finalise predicates in user code.
Estimated hours taken: 4
Branches: main

Support impure initialise and finalise predicates in user code.  In order to
support this the arity of the initialise or finalise predicate can no longer be
optionally omitted from the declaration.  Supporting impure arity zero
initialise/finalise declarations removes the restriction that every module that
has an initialise/finalise declaration must import the io module.

Allow initialize/finalize to be used as synonyms for initialise/finalise.

Improve the documentation of initialise/finalise declarations.
In particular:

	- mention the above changes.
	- mention that they may be cc_multi.
	- specify the order in which they invoked with respect to
	  standard library initialisation/finalisation.
	- mention that these declarations are not currently available
	  on non-C backends.

compiler/make_hlds_passes.m:
	Support impure user initialise/finalise predicates.

compiler/mercury_to_mercury.m:
	Write out the arities of the predicates specified in
	initialise and finalise declarations.

compiler/prog_data.m:
	Add an arity field to the initialise and finalise items.

compiler/prog_io.m:
	Don't allow the arity to be omitted in initialise and finalise
	declarations.

compiler/module_qual.m:
compiler/modules.m:
compiler/recompilation.check.m:
compiler/recompilation.version.m:
	Conform to the changes in the initialise and finalise items.

library/ops.m:
	Add the alternate spellings of initialise and finalise to the ops
	table.

doc/reference_manual.texi:
	Update the ops table.

	Mention that initialise and finalise predicates may be cc_multi.

	Document impure initialisation and finalisation predicates.

	Add some disclaimers: mutable, initialise and finalise declarations
	are not implemented for the non-C backends.

tests/hard_coded/Mmakefile:
tests/hard_coded/impure_init_and_final.m:
tests/hard_coded/impure_init_and_final.exp:
	Test impure initialise and finalise declarations.

tests/hard_coded/finalise_decl.m:
tests/hard_coded/intialise_decl.m:
	Conform to the above changes.  Also test the versions of the
	declarations that use the -ize ending.

tests/hard_coded/sub-modules/finalise_parent.m:
tests/hard_coded/sub-modules/initialise_child.m:
tests/hard_coded/sub-modules/initialise_parent.m:
	Conform to the above changes.

tests/invalid/bad_finalise.m:
tests/invalid/bad_finalise.err_exp:
tests/invalid/bad_initialise.m:
tests/invalid/bad_initialise.err_exp:
	Extend these tests to check for missing or bad arities
	in intialise or finalise declarations.

vim/syntax/mercury.vim:
	Highlight recently added syntax appropriately.
2005-10-04 07:20:24 +00:00

2166 lines
64 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_data.m.
% Main author: fjh.
%
% This module defines a data structure for representing Mercury programs.
%
% This data structure specifies basically the same information as is
% contained in the source code, but in a parse tree rather than a flat file.
% Simplifications are done only by make_hlds.m, which transforms
% the parse tree which we built here into the HLDS.
:- module parse_tree__prog_data.
:- interface.
:- import_module libs__globals.
:- import_module libs__options.
:- import_module libs__rat.
:- import_module mdbcomp__prim_data.
:- import_module recompilation.
:- import_module assoc_list.
:- import_module bool.
:- import_module list.
:- import_module map.
:- import_module set.
:- import_module std_util.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
% This is how programs (and parse errors) are represented.
:- type message_list == list(pair(string, term)).
% the error/warning message, and the
% term to which it relates
:- type compilation_unit
---> module(
module_name,
item_list
).
% Did an item originate in user code or was it added by the
% compiler as part of a source-to-source transformation, e.g.
% the initialise declarations.
%
:- type item_origin ---> user ; compiler(item_compiler_origin).
% For items introduced by the compiler, why were they
% introduced?
%
:- type item_compiler_origin
---> initialise_decl
% The item was introduced by the transformation
% for `:- initialise' decls. This should only
% apply to export pragms.
; finalise_decl
% This item was introduced by the transformation
% for `:- finalise' decls. This should only
% apply to export pragmas.
; mutable_decl
% The item was introduced by the transformation
% for `:- mutable' decls. This should only apply
% to `:- initialise' decls and export pragmas.
; solver_type
% Solver types cause the compiler to create
% foreign procs for the init and representation
% functions.
; foreign_imports.
% The compiler sometimes needs to insert additional
% foreign_import pragmas. XXX Why?
:- type item_list == list(item_and_context).
:- type item_and_context == pair(item, prog_context).
:- type item
---> clause(
cl_origin :: item_origin,
cl_varset :: prog_varset,
cl_pred_or_func :: pred_or_func,
cl_predname :: sym_name,
cl_head_args :: list(prog_term),
cl_body :: goal
)
% `:- type ...':
% a definition of a type, or a declaration of an abstract type.
; type_defn(
td_tvarset :: tvarset,
td_ctor_name :: sym_name,
td_ctor_args :: list(type_param),
td_ctor_defn :: type_defn,
td_cond :: condition
)
% `:- inst ... = ...':
% a definition of an inst.
; inst_defn(
id_varset :: inst_varset,
id_inst_name :: sym_name,
id_inst_args :: list(inst_var),
id_inst_defn :: inst_defn,
id_cond :: condition
)
% `:- mode ... = ...':
% a definition of a mode.
; mode_defn(
md_varset :: inst_varset,
md_mode_name :: sym_name,
md_mode_args :: list(inst_var),
md_mode_defn :: mode_defn,
md_cond :: condition
)
; module_defn(
module_defn_varset :: prog_varset,
module_defn_module_defn :: module_defn
)
% `:- pred ...' or `:- func ...':
% a predicate or function declaration.
% This specifies the type of the predicate or function,
% and it may optionally also specify the mode and determinism.
; pred_or_func(
pf_tvarset :: tvarset,
pf_instvarset :: inst_varset,
pf_existqvars :: existq_tvars,
pf_which :: pred_or_func,
pf_name :: sym_name,
pf_arg_decls :: list(type_and_mode),
pf_maybe_with_type :: maybe(type),
pf_maybe_with_inst :: maybe(inst),
pf_maybe_detism :: maybe(determinism),
pf_cond :: condition,
pf_purity :: purity,
pf_class_context :: prog_constraints
)
% The WithType and WithInst fields hold the `with_type`
% and `with_inst` annotations, which are syntactic
% sugar that is expanded by equiv_type.m
% equiv_type.m will set these fields to `no'.
% `:- mode ...':
% a mode declaration for a predicate or function.
; pred_or_func_mode(
pfm_instvarset :: inst_varset,
pfm_which :: maybe(pred_or_func),
pfm_name :: sym_name,
pfm_arg_modes :: list(mode),
pfm_maybe_with_inst :: maybe(inst),
pfm_maybe_detism :: maybe(determinism),
pfm_cond :: condition
)
% The WithInst field holds the `with_inst` annotation,
% which is syntactic sugar that is expanded by
% equiv_type.m. equiv_type.m will set the field to `no'.
; pragma(
pragma_origin :: item_origin,
pragma_type :: pragma_type
)
; promise(
prom_type :: promise_type,
prom_clause :: goal,
prom_varset :: prog_varset,
prom_univ_quant_vars :: prog_vars
)
; typeclass(
tc_constraints :: list(prog_constraint),
tc_fundeps :: list(prog_fundep),
tc_class_name :: class_name,
tc_class_params :: list(tvar),
tc_class_methods :: class_interface,
tc_varset :: tvarset
)
; instance(
ci_deriving_class :: list(prog_constraint),
ci_class_name :: class_name,
ci_types :: list(type),
ci_method_instances :: instance_body,
ci_varset :: tvarset,
ci_module_containing_instance :: module_name
)
% :- initialise pred_name.
; initialise(item_origin, sym_name, arity)
% :- finalise pred_name.
; finalise(item_origin, sym_name, arity)
% :- mutable(var_name, type, inst, value, attrs).
; mutable(
mut_name :: string,
mut_type :: (type),
mut_init_value :: prog_term,
mut_inst :: (inst),
mut_attrs :: mutable_var_attributes
)
; nothing(
nothing_maybe_warning :: maybe(item_warning)
).
% used for items that should be ignored (for the
% purposes of backwards compatibility etc)
% Indicates the type of information the compiler should get from the
% declaration's clause.
%
:- type promise_type
% promise ex declarations
---> exclusive % each disjunct is mutually exclusive
; exhaustive % disjunction cannot fail
; exclusive_exhaustive % both of the above
% assertions
; true. % promise goal is true
:- type type_and_mode
---> type_only(type)
; type_and_mode(type, mode).
% Purity indicates whether a goal can have side effects or can
% depend on global state. See purity.m and the "Purity" section
% of the Mercury language reference manual.
:- type purity ---> pure
; (semipure)
; (impure).
% The `determinism' type specifies how many solutions a given
% procedure may have. Procedures for manipulating this type
% are defined in det_analysis.m and hlds_data.m.
%
:- type determinism
---> det
; semidet
; nondet
; multidet
; cc_nondet
; cc_multidet
; erroneous
; failure.
% The `is_solver_type' type specifies whether a type is a "solver" type,
% for which `any' insts are interpreted as "don't know", or a non-solver
% type for which `any' is the same as `bound(...)'.
%
:- type is_solver_type
---> non_solver_type
% The inst `any' is always `bound' for this type.
; solver_type.
% The inst `any' is not always `bound' for this type
% (i.e. the type was declared with
% `:- solver type ...').
:- type item_warning
---> item_warning(
maybe(option), % Option controlling whether the
% warning should be reported.
string, % The warning.
term % The term to which it relates.
).
%-----------------------------------------------------------------------------%
%
% Mutable variables
%
% Indicates if updates to the mutable are trailed or untrailed.
%
:- type trailed ---> trailed ; untrailed.
% Has the user specified a name for us to use on the target code side
% of the FLI?
%
:- type foreign_name
---> foreign_name(
foreign_name_lang :: foreign_language,
foreign_name_name :: string
).
% An abstract type for representing a set of mutable variable
% attributes.
%
:- type mutable_var_attributes.
% Return the default attributes for a mutable variable.
%
:- func default_mutable_attributes = mutable_var_attributes.
% Access functions for the `mutable_var_attributes' structure.
%
:- func mutable_var_thread_safe(mutable_var_attributes) = thread_safe.
:- func mutable_var_trailed(mutable_var_attributes) = trailed.
:- func mutable_var_maybe_foreign_names(mutable_var_attributes)
= maybe(list(foreign_name)).
:- pred set_mutable_var_thread_safe(thread_safe::in,
mutable_var_attributes::in, mutable_var_attributes::out) is det.
:- pred set_mutable_var_trailed(trailed::in,
mutable_var_attributes::in, mutable_var_attributes::out) is det.
:- pred set_mutable_add_foreign_name(foreign_name::in,
mutable_var_attributes::in, mutable_var_attributes::out) is det.
%-----------------------------------------------------------------------------%
%
% Pragmas
%
:- type foreign_decl_is_local
---> foreign_decl_is_local
; foreign_decl_is_exported.
:- type pragma_type
%
% Foreign language interfacing pragmas
%
% a foreign language declaration, such as C
% header code.
---> foreign_decl(
decl_lang :: foreign_language,
decl_is_local :: foreign_decl_is_local,
decl_decl :: string
)
; foreign_code(
code_lang :: foreign_language,
code_code :: string)
; foreign_proc(
proc_attrs :: pragma_foreign_proc_attributes,
proc_name :: sym_name,
proc_p_or_f :: pred_or_func,
proc_vars :: list(pragma_var),
proc_varset :: prog_varset,
proc_impl :: pragma_foreign_code_impl
% Set of foreign proc attributes, eg.:
% what language this code is in
% whether or not the code may call Mercury,
% whether or not the code is thread-safe
% PredName, Predicate or Function, Vars/Mode,
% VarNames, Foreign Code Implementation Info
)
; foreign_import_module(
imp_lang :: foreign_language,
imp_module :: module_name
% Equivalent to
% `:- pragma foreign_decl(Lang, "#include <module>.h").'
% except that the name of the header file is not
% hard-coded, and mmake can use the dependency
% information.
)
; export(
exp_predname :: sym_name,
exp_p_or_f :: pred_or_func,
exp_modes :: list(mode),
exp_foreign_name :: string
% Predname, Predicate/function, Modes,
% foreign function name.
)
; import(
import_pred_name :: sym_name,
import_p_or_f :: pred_or_func,
import_modes :: list(mode),
import_attrs :: pragma_foreign_proc_attributes,
import_foreign_name :: string
% Predname, Predicate/function, Modes,
% Set of foreign proc attributes, eg.:
% whether or not the foreign code may call Mercury,
% whether or not the foreign code is thread-safe
% foreign function name.
)
%
% Optimization pragmas
%
; type_spec(
tspec_pred_name :: sym_name,
tspec_new_name :: sym_name,
tspec_arity :: arity,
tspec_p_or_f :: maybe(pred_or_func),
tspec_modes :: maybe(list(mode)),
tspec_tsubst :: type_subst,
tspec_tvarset :: tvarset,
tspec_items :: set(item_id)
% PredName, SpecializedPredName, Arity,
% PredOrFunc, Modes if a specific procedure was
% specified, type substitution (using the variable
% names from the pred declaration), TVarSet,
% Equivalence types used
)
; inline(
inline_name :: sym_name,
inline_arity :: arity
% Predname, Arity
)
; no_inline(
noinline_name :: sym_name,
noinline_arity :: arity
% Predname, Arity
)
; unused_args(
unused_p_or_f :: pred_or_func,
unused_name :: sym_name,
unused_arity :: arity,
unused_mode :: mode_num,
unused_args :: list(int)
% PredName, Arity, Mode number, Removed arguments.
% Used for inter-module unused argument
% removal, should only appear in .opt files.
)
;
exceptions(
exceptions_p_or_f :: pred_or_func,
exceptions_name :: sym_name,
exceptions_arity :: arity,
exceptions_mode :: mode_num,
exceptions_status :: exception_status
% PredName, Arity, Mode number, Exception status.
% Should only appear in `.opt' or `.trans_opt' files.
)
%
% Diagnostics pragmas (pragmas related to compiler warnings/errors)
%
; obsolete(
obsolete_name :: sym_name,
obsolete_arity :: arity
% Predname, Arity
)
; source_file(
source_file :: string
% Source file name.
)
%
% Evaluation method pragmas
%
; tabled(
tabled_method :: eval_method,
tabled_name :: sym_name,
tabled_arity :: int,
tabled_p_or_f :: maybe(pred_or_func),
tabled_mode :: maybe(list(mode))
% Tabling type, Predname, Arity, PredOrFunc?, Mode?
)
; fact_table(
fact_table_name :: sym_name,
fact_table_arity :: arity,
fact_table_file :: string
% Predname, Arity, Fact file name.
)
; reserve_tag(
restag_type :: sym_name,
restag_arity :: arity
% Typename, Arity
)
%
% Aditi pragmas
%
; aditi(
aditi_name :: sym_name,
aditi_arity :: arity
% Predname, Arity
)
; base_relation(
baserel_name :: sym_name,
baserel_arity :: arity
% Predname, Arity
%
% Eventually, these should only occur in
% automatically generated database interface
% files, but for now there's no such thing,
% so they can occur in user programs.
)
; aditi_index(
index_name :: sym_name,
index_arity :: arity,
index_spec :: index_spec
% PredName, Arity, IndexType, Attributes
%
% Specify an index on a base relation.
)
; naive(
naive_name :: sym_name,
naive_arity :: arity
% Predname, Arity
% Use naive evaluation.
)
; psn(
psn_name :: sym_name,
psn_arity :: arity
% Predname, Arity
% Use predicate semi-naive evaluation.
)
; aditi_memo(
aditimemo_name :: sym_name,
aditimemo_arity :: arity
% Predname, Arity
)
; aditi_no_memo(
aditinomemo_name :: sym_name,
aditinomemo_arity :: arity
% Predname, Arity
)
; supp_magic(
suppmagic_name :: sym_name,
suppmagic_arity :: arity
% Predname, Arity
)
; context(
context_name :: sym_name,
context_arity :: arity
% Predname, Arity
)
; owner(
owner_name :: sym_name,
owner_arity :: arity,
owner_id :: string
% PredName, Arity, String.
)
%
% Purity pragmas
%
; promise_pure(
pure_name :: sym_name,
pure_arity :: arity
% Predname, Arity
)
; promise_semipure(
semipure_name :: sym_name,
semipure_arity :: arity
% Predname, Arity
)
%
% Termination analysis pragmas
%
; termination_info(
terminfo_p_or_f :: pred_or_func,
terminfo_name :: sym_name,
terminfo_mode :: list(mode),
terminfo_args :: maybe(pragma_arg_size_info),
terminfo_term :: maybe(pragma_termination_info)
% the list(mode) is the declared argmodes of the
% procedure, unless there are no declared argmodes,
% in which case the inferred argmodes are used.
% This pragma is used to define information about a
% predicates termination properties. It is most
% useful where the compiler has insufficient
% information to be able to analyse the predicate.
% This includes c_code, and imported predicates.
% termination_info pragmas are used in opt and
% trans_opt files.
)
; termination2_info(
pred_or_func,
sym_name,
list(mode),
maybe(pragma_constr_arg_size_info),
maybe(pragma_constr_arg_size_info),
maybe(pragma_termination_info)
)
; terminates(
term_name :: sym_name,
term_arity :: arity
% Predname, Arity
)
; does_not_terminate(
noterm_name :: sym_name,
noterm_arity :: arity
% Predname, Arity
)
; check_termination(
checkterm_name :: sym_name,
checkterm_arity :: arity
% Predname, Arity
)
; mode_check_clauses(
mode_check_clause_name :: sym_name,
mode_check_clause_arity :: arity
).
%-----------------------------------------------------------------------------%
%
% Stuff for the foreign language interface pragmas
%
% A foreign_language_type represents a type that is defined in a
% foreign language and accessed in Mercury (most likely through
% pragma foreign_type).
% Currently we only support foreign_language_types for IL.
%
% It is important to distinguish between IL value types and
% reference types, the compiler may need to generate different code
% for each of these cases.
%
%
:- type foreign_language_type
---> il(il_foreign_type)
; c(c_foreign_type)
; java(java_foreign_type).
:- type il_foreign_type
---> il(
ref_or_val, % An indicator of whether the type is a
% reference of value type.
string, % The location of the .NET name (the
% assembly)
sym_name % The .NET type name
).
:- type c_foreign_type
---> c(
string % The C type name
).
:- type java_foreign_type
---> java(
string % The Java type name
).
:- type ref_or_val
---> reference
; value.
%-----------------------------------------------------------------------------%
%
% Stuff for tabling pragmas
%
:- type eval_minimal_method
---> stack_copy % saving and restoring stack segments
% as necessary
; own_stacks. % each generator has own stacks
% The evaluation method that should be used for a procedure.
% Ignored for Aditi procedures.
:- type eval_method
---> eval_normal % normal mercury
% evaluation
; eval_loop_check % loop check only
; eval_memo(call_table_strictness)
% memoing + loop check
; eval_table_io( % memoing I/O actions for debugging
table_io_is_decl,
table_io_is_unitize
)
; eval_minimal(eval_minimal_method).
% minimal model evaluation
:- type call_table_strictness
---> all_strict
; all_fast_loose
; specified(
list(maybe(arg_tabling_method))
% This list contains one element for each user-visible
% argument of the predicate. Elements that correspond
% to output arguments should be "no". Elements that
% correspond to input arguments should be "yes",
% specifying how to look up that argument in the call
% table.
).
:- type arg_tabling_method
---> arg_value
; arg_addr
; arg_promise_implied.
:- type table_io_is_decl
---> table_io_decl % The procedure is tabled for
% declarative debugging.
; table_io_proc. % The procedure is tabled only for
% procedural debugging.
:- type table_io_is_unitize
---> table_io_unitize % The procedure is tabled for I/O
% together with its Mercury
% descendants.
; table_io_alone. % The procedure is tabled for I/O
% by itself; it can have no Mercury
% descendants.
%-----------------------------------------------------------------------------%
%
% Stuff for the `aditi_index' pragma
%
% For Aditi base relations, an index_spec specifies how the base
% relation is indexed.
:- type index_spec
---> index_spec(
index_type,
list(int) % which attributes are being indexed on
% (attribute numbers start at 1)
).
% Hash indexes?
:- type index_type
---> unique_B_tree
; non_unique_B_tree.
%-----------------------------------------------------------------------------%
%
% Stuff for the `termination_info' pragma.
% See term_util.m.
%
:- type generic_arg_size_info(ErrorInfo)
---> finite(int, list(bool))
% The termination constant is a finite integer.
% The list of bool has a 1:1 correspondence
% with the input arguments of the procedure.
% It stores whether the argument contributes
% to the size of the output arguments.
; infinite(ErrorInfo).
% There is no finite integer for which the
% above equation is true.
:- type generic_termination_info(TermInfo, ErrorInfo)
---> cannot_loop(TermInfo) % This procedure definitely terminates
% for all possible inputs.
; can_loop(ErrorInfo).
% This procedure might not terminate.
:- type pragma_arg_size_info == generic_arg_size_info(unit).
:- type pragma_termination_info == generic_termination_info(unit, unit).
%-----------------------------------------------------------------------------%
%
% Stuff for the `termination2_info' pragma
%
% This is the form in which termination information from other
% modules (imported via `.opt' or `.trans_opt' files) comes.
% We convert this to an intermediate form and let the termination
% analyser convert it to the correct form.
%
% NOTE: the reason that we cannot convert it to the correct form
% is that we don't have complete information about how many typeinfo
% related arguments there are until after the polymoprhism pass.
%
:- type arg_size_constr
---> le(list(arg_size_term), rat)
; eq(list(arg_size_term), rat).
:- type arg_size_term == pair(int, rat).
:- type pragma_constr_arg_size_info == list(arg_size_constr).
%-----------------------------------------------------------------------------%
%
% Stuff for the `unused_args' pragma
%
% This `mode_num' type is only used for mode numbers written out in
% automatically-generated `pragma unused_args' pragmas in `.opt'
% files.
% The mode_num gets converted to an HLDS proc_id by make_hlds.m.
% We don't want to use the `proc_id' type here since the parse tree
% (prog_data.m) should not depend on the HLDS.
:- type mode_num == int.
%-----------------------------------------------------------------------------%
%
% Stuff for the `exceptions' pragma
%
:- type exception_status
---> will_not_throw
% This procedure will not throw an
% exception.
; may_throw(exception_type)
% This procedure may throw an exception
% The exception is classified by the
% `exception_type' type.
; conditional.
% Whether the procedure will not throw an
% exception depends upon the value of one
% or more polymorphic arguments.
% XXX This needs to be extended for ho
% preds. (See exception_analysis.m for
% more details).
:- type exception_type
---> user_exception
% The exception that might be thrown is of
% a result of some code calling
% exception.throw/1.
; type_exception.
% The exception is a result of a compiler
% introduced unification/comparison maybe
% throwing an exception (in the case of
% user-defined equality or comparison) or
% propagating an exception from them.
%-----------------------------------------------------------------------------%
%
% Stuff for the `type_spec' pragma
%
% The type substitution for a `pragma type_spec' declaration.
% Elsewhere in the compiler we generally use the `tsubst' type
% which is a map rather than an assoc_list.
%
:- type type_subst == assoc_list(tvar, type).
%-----------------------------------------------------------------------------%
%
% Stuff for `foreign_code' pragma
%
% This type holds information about the implementation details
% of procedures defined via `pragma foreign_code'.
%
% All the strings in this type may be accompanied by the context
% of their appearance in the source code. These contexts are
% used to tell the foreign language compiler where the included
% code comes from, to allow it to generate error messages that
% refer to the original appearance of the code in the Mercury
% program.
% The context is missing if the foreign code was constructed by
% the compiler.
%
% NOTE: nondet pragma foreign definitions might not be
% possible in all foreign languages.
%
:- type pragma_foreign_code_impl
---> ordinary( % This is a foreign language
% definition of a model_det
% or model_semi procedure. (We
% also allow model_non, until
% everyone has had time to adapt
% to the new way
% of handling model_non pragmas.)
string, % The code of the procedure.
maybe(prog_context)
)
; nondet( % This is a foreign language
% definition of a model_non
% procedure.
string,
maybe(prog_context),
% The info saved for the time when
% backtracking reenters this procedure
% is stored in a data structure.
% This arg contains the field
% declarations.
string,
maybe(prog_context),
% Gives the code to be executed when
% the procedure is called for the first
% time. This code may access the input
% variables.
string,
maybe(prog_context),
% Gives the code to be executed when
% control backtracks into the procedure.
% This code may not access the input
% variables.
pragma_shared_code_treatment,
% How should the shared code be
% treated during code generation.
string,
maybe(prog_context)
% Shared code that is executed after
% both the previous code fragments.
% May not access the input variables.
)
; import(
string, % Pragma imported C func name
string, % Code to handle return value
string, % Comma separated variables which
% the import function is called
% with.
maybe(prog_context)
).
% The use of this type is explained in the comment at the top of
% pragma_c_gen.m.
:- type pragma_shared_code_treatment
---> duplicate
; share
; automatic.
:- type foreign_import_module_info == list(foreign_import_module).
% in reverse order
:- type foreign_import_module
---> foreign_import_module(
foreign_language,
module_name,
prog_context
).
%-----------------------------------------------------------------------------%
%
% Stuff for type classes
%
% A class constraint represents a constraint that a given
% list of types is a member of the specified type class.
% It is an invariant of this data structure that
% the types in a class constraint do not contain any
% information in their prog_context fields.
% This invariant is needed to ensure that we can do
% unifications, map__lookups, etc., and get the
% expected semantics.
% (This invariant now applies to all types, but is
% especially important here.)
%
:- type prog_constraint
---> constraint(
class_name,
list(type)
).
:- type prog_constraints
---> constraints(
univ_constraints :: list(prog_constraint),
% universally quantified
% constraints
exist_constraints :: list(prog_constraint)
% existentially quantified
% constraints
).
% A functional dependency on the variables in the head of a class
% declaration. This asserts that, given the complete set of
% instances of this class, the binding of the range variables
% can be uniquely determined from the binding of the domain
% variables.
%
:- type prog_fundep
---> fundep(
domain :: list(tvar),
range :: list(tvar)
).
:- type class_name == sym_name.
:- type class_id
---> class_id(class_name, arity).
:- type class_interface
---> abstract
; concrete(list(class_method)).
% The name class_method is a slight misnomer;
% this type actually represents any declaration
% that occurs in the body of a type class definition.
% Such declarations may either declare class methods,
% or they may declare modes of class methods.
%
:- type class_method
% pred_or_func(...) here represents a `pred ...' or `func ...'
% declaration in a type class body, which declares
% a predicate or function method. Such declarations
% specify the type of the predicate or function,
% and may optionally also specify the mode and determinism.
%
---> pred_or_func(
tvarset, % type variables
inst_varset, % inst variables
existq_tvars, % existentially quantified
% type variables
pred_or_func,
sym_name, % name of the pred or func
list(type_and_mode), % the arguments' types and
% modes
maybe(type), % any `with_type` annotation
maybe(inst), % any `with_inst` annotation
maybe(determinism), % any determinism declaration
condition, % any attached declaration
purity, % any purity annotation
prog_constraints, % the typeclass constraints on
% the declaration
prog_context % the declaration's context
)
% pred_or_func_mode(...) here represents a `mode ...'
% declaration in a type class body. Such a declaration
% declares a mode for one of the type class methods.
%
; pred_or_func_mode(
inst_varset, % inst variables
maybe(pred_or_func), % whether the method is a pred
% or a func; for declarations
% using `with_inst`, we don't
% know which until we've
% expanded the inst.
sym_name, % the method name
list(mode), % the arguments' modes
maybe(inst), % any `with_inst` annotation
maybe(determinism), % any determinism declaration
condition, % any attached condition
prog_context % the declaration's context
).
:- type instance_method
---> instance_method(
pred_or_func,
sym_name, % method name
instance_proc_def,
arity,
prog_context % context of the instance
% declaration
).
:- type instance_proc_def
% defined using the `pred(...) is <Name>' syntax
---> name(
sym_name
)
% defined using clauses
; clauses(
list(item) % the items must be either
% pred_clause or func_clause items
).
:- type instance_body
---> abstract
; concrete(instance_methods).
:- type instance_methods == list(instance_method).
%-----------------------------------------------------------------------------%
%
% Some more stuff for the foreign language interface
%
% An abstract type for representing a set of
% `pragma_foreign_proc_attribute's.
%
:- type pragma_foreign_proc_attributes.
:- func default_attributes(foreign_language) = pragma_foreign_proc_attributes.
:- func may_call_mercury(pragma_foreign_proc_attributes) = may_call_mercury.
:- func thread_safe(pragma_foreign_proc_attributes) = thread_safe.
:- func purity(pragma_foreign_proc_attributes) = purity.
:- func terminates(pragma_foreign_proc_attributes) = terminates.
:- func foreign_language(pragma_foreign_proc_attributes) = foreign_language.
:- func tabled_for_io(pragma_foreign_proc_attributes) = tabled_for_io.
:- func legacy_purity_behaviour(pragma_foreign_proc_attributes) = bool.
:- func may_throw_exception(pragma_foreign_proc_attributes) =
may_throw_exception.
:- func ordinary_despite_detism(pragma_foreign_proc_attributes) = bool.
:- func extra_attributes(pragma_foreign_proc_attributes)
= pragma_foreign_proc_extra_attributes.
:- pred set_may_call_mercury(may_call_mercury::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_thread_safe(thread_safe::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_foreign_language(foreign_language::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_tabled_for_io(tabled_for_io::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_purity(purity::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_terminates(terminates::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_may_throw_exception(may_throw_exception::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_legacy_purity_behaviour(bool::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred set_ordinary_despite_detism(bool::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
:- pred add_extra_attribute(pragma_foreign_proc_extra_attribute::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
% For pragma c_code, there are two different calling conventions,
% one for C code that may recursively call Mercury code, and another
% more efficient one for the case when we know that the C code will
% not recursively invoke Mercury code.
:- type may_call_mercury
---> may_call_mercury
; will_not_call_mercury.
% If thread_safe execution is enabled, then we need to put a mutex
% around the C code for each `pragma c_code' declaration, unless
% it's declared to be thread_safe. If a piece of foreign code is
% declared to be maybe_thread_safe whether we put the mutex around
% the foreign code depends upon the `--maybe-thread-safe' compiler
% flag.
%
:- type thread_safe
---> not_thread_safe
; thread_safe
; maybe_thread_safe.
:- type tabled_for_io
---> not_tabled_for_io
; tabled_for_io
; tabled_for_io_unitize
; tabled_for_descendant_io.
:- type pragma_var
---> pragma_var(prog_var, string, mode).
% variable, name, mode
% we explicitly store the name because we need the real
% name in code_gen
% This type specifies the termination property of a procedure
% defined using pragma c_code or pragma foreign_proc.
%
:- type terminates
---> terminates
% The foreign code will terminate for all input.
% (assuming any input streams are finite).
; does_not_terminate
% The foreign code will not necessarily terminate for
% some (possibly all) input.
; depends_on_mercury_calls.
% The termination of the foreign code depends
% on whether the code makes calls back to Mercury
% (See termination.m for details).
:- type may_throw_exception
---> will_not_throw_exception
% The foreign code will not result in an
% exception being thrown.
; default_exception_behaviour.
% If the foreign proc. is erroneous then
% mark it as throwing an exception. Otherwise
% mark it as throwing an exception if it makes
% calls back to Mercury and not throwing an
% exception otherwise.
:- type pragma_foreign_proc_extra_attribute
---> max_stack_size(int)
; backend(backend).
:- type pragma_foreign_proc_extra_attributes ==
list(pragma_foreign_proc_extra_attribute).
% Convert the foreign code attributes to their source code
% representations suitable for placing in the attributes list of
% the pragma (not all attributes have one).
% In particular, the foreign language attribute needs to be
% handled separately as it belongs at the start of the pragma.
:- func attributes_to_strings(pragma_foreign_proc_attributes) = list(string).
%-----------------------------------------------------------------------------%
%
% Goals
%
% Here's how clauses and goals are represented.
% a => b --> implies(a, b)
% a <= b --> implies(b, a) [just flips the goals around!]
% a <=> b --> equivalent(a, b)
% clause/4 defined above
:- type goal == pair(goal_expr, prog_context).
:- type goal_expr
% conjunctions
---> (goal , goal) % (non-empty) conjunction
; true % empty conjunction
; {goal & goal} % parallel conjunction
% (The curly braces just quote the '&'/2.)
% disjunctions
; {goal ; goal} % (non-empty) disjunction
% (The curly braces just quote the ';'/2.)
; fail % empty disjunction
% quantifiers
; { some(prog_vars, goal) }
% existential quantification
% (The curly braces just quote the 'some'/2.)
; all(prog_vars, goal) % universal quantification
; some_state_vars(prog_vars, goal)
; all_state_vars(prog_vars, goal)
% state variables extracted from
% some/2 and all/2 quantifiers.
% other scopes
; promise_purity(implicit_purity_promise, purity, goal)
; promise_equivalent_solutions(prog_vars, prog_vars, prog_vars,
goal) % (OrdinaryVars, DotStateVars, ColonStateVars,
% Goal)
% implications
; implies(goal, goal) % A => B
; equivalent(goal, goal) % A <=> B
% negation and if-then-else
; not(goal)
; if_then(prog_vars, prog_vars, goal, goal)
% if_then(SomeVars, StateVars, If, Then)
; if_then_else(prog_vars, prog_vars, goal, goal, goal)
% if_then_else(SomeVars, StateVars,
% If, Then, Else)
% atomic goals
; call(sym_name, list(prog_term), purity)
; unify(prog_term, prog_term, purity).
:- type implicit_purity_promise
---> make_implicit_promises
; dont_make_implicit_promises.
:- type goals == list(goal).
% These type equivalences are for the type of program variables
% and associated structures.
:- type prog_var_type ---> prog_var_type.
:- type prog_var == var(prog_var_type).
:- type prog_varset == varset(prog_var_type).
:- type prog_substitution == substitution(prog_var_type).
:- type prog_term == term(prog_var_type).
:- type prog_vars == list(prog_var).
% A prog_context is just a term__context.
:- type prog_context == term__context.
%-----------------------------------------------------------------------------%
%
% Cons ids
%
% The representation of cons_ids below is a compromise. The cons_id
% type must be defined here, in a submodule of parse_tree.m, because
% it is a component of insts. However, after the program has been read
% in, the cons_ids cons, int_const, string_const and float_const,
% which can appear in user programs, may also be augmented by the other
% cons_ids, which can only be generated by the compiler.
%
% The problem is that some of these compiler generated cons_ids
% refer to procedures, and the natural method of identifying
% procedures requires the types pred_id and proc_id, defined
% in hlds_pred.m, which we don't want to import here.
%
% We could try to avoid this problem using two different types
% for cons_ids, one defined here for use in the parse tree and one
% defined in hlds_data.m for use in the HLDS. We could distinguish
% the two by having the HLDS cons_id have a definition such as
% hlds_cons_id ---> parse_cons_id(parse_cons_id) ; ...
% or, alternatively, by making cons_id parametric in the type of
% constants, and substitute different constant types (since all the
% cons_ids that refer to HLDS concepts are constants).
%
% Using two different types requires a translation from one to the
% other. While the runtime cost would be acceptable, the cost in code
% complexity isn't, since the translation isn't confined to
% make_hlds.m. (I found this out the hard way.) This is especially so
% if we want to use in each case only the tightest possible type.
% For example, while construct goals can involve all cons_ids,
% deconstruct goals and switches can currently involve only the
% cons_ids that can appear in parse trees.
%
% The solution we have chosen is to exploit the fact that pred_ids
% and proc_ids are integers. Those types are private to hlds_pred.m,
% but hlds_pred.m also contains functions for translating them to and
% from the shrouded versions defined below. The next three types are
% designed to be used in only two ways: for translation to their HLDS
% equivalents by the unshroud functions in hlds_pred.m, and for
% printing for diagnostics.
%
:- type shrouded_pred_id ---> shrouded_pred_id(int).
:- type shrouded_proc_id ---> shrouded_proc_id(int).
:- type shrouded_pred_proc_id ---> shrouded_pred_proc_id(int, int).
:- type cons_id
---> cons(sym_name, arity) % name, arity
% Tuples have cons_id `cons(unqualified("{}"), Arity)'.
; int_const(int)
; string_const(string)
; float_const(float)
; pred_const(shrouded_pred_proc_id, lambda_eval_method)
% Note that a pred_const represents a closure,
% not just a code address.
; type_ctor_info_const(module_name, string, int)
% module name, type name, type arity
; base_typeclass_info_const(module_name, class_id, int, string)
% module name of instance declaration
% (not filled in so that link errors result
% from overlapping instances),
% class name and arity,
% class instance, a string encoding the type
% names and arities of the arguments to the
% instance declaration
; type_info_cell_constructor(type_ctor)
; typeclass_info_cell_constructor
; tabling_pointer_const(shrouded_pred_proc_id)
% The address of the static variable
% that points to the table that implements
% memoization, loop checking or the minimal
% model semantics for the given procedure.
; deep_profiling_proc_layout(shrouded_pred_proc_id)
% The Proc_Layout structure of a procedure. Its proc_static
% field is used by deep profiling, as documented in the deep
% profiling paper.
; table_io_decl(shrouded_pred_proc_id).
% The address of a structure that describes
% the layout of the answer block used by
% I/O tabling for declarative debugging.
% Describe how a lambda expression is to be evaluated.
%
% `normal' is the top-down Mercury execution algorithm.
%
% `lambda_eval_method's other than `normal' are used for lambda
% expressions constructed for arguments of the builtin Aditi
% update constructs.
%
% `aditi_bottom_up' expressions are used as database queries to
% produce a set of tuples to be inserted or deleted.
:- type lambda_eval_method
---> normal
; (aditi_bottom_up).
%-----------------------------------------------------------------------------%
%
% Types
%
% This is how types are represented.
% one day we might allow types to take
% value parameters as well as type parameters.
% type_defn/3 is defined above as a constructor for item/0
:- type type_defn
---> du_type(
list(constructor),
maybe(unify_compare)
)
; eqv_type(
type
)
; abstract_type(
is_solver_type
)
; solver_type(
solver_type_details,
maybe(unify_compare)
)
; foreign_type(
foreign_language_type,
maybe(unify_compare),
list(foreign_type_assertion)
).
:- type foreign_type_assertion
---> can_pass_as_mercury_type
; stable.
:- type constructor
---> ctor(
cons_exist :: existq_tvars,
cons_constraints :: list(prog_constraint),
% existential constraints
cons_name :: sym_name,
cons_args :: list(constructor_arg)
).
:- type constructor_arg ==
pair(
maybe(ctor_field_name),
type
).
:- type ctor_field_name == sym_name.
% unify_compare gives the user-defined unification and/or comparison
% predicates for a noncanonical type, if they are known. The value
% `abstract_noncanonical_type' represents a type whose definition uses
% the syntax `where type_is_abstract_noncanonical' and has been read
% from a .int2 file. This means we know that the type has a
% noncanonical representation, but we don't know what the
% unification/comparison predicates are.
%
:- type unify_compare
---> unify_compare(
unify :: maybe(equality_pred),
compare :: maybe(comparison_pred)
)
; abstract_noncanonical_type(is_solver_type).
% The `where' attributes of a solver type definition must begin
% with
% representation is <<representation type>>,
% initialisation is <<init pred name>>,
% ground is <<ground inst>>,
% any is <<any inst>>
%
:- type solver_type_details
---> solver_type_details(
representation_type :: (type),
init_pred :: init_pred,
ground_inst :: (inst),
any_inst :: (inst)
).
% An init_pred specifies the name of an impure user-defined predicate
% used to initialise solver type values (the compiler will insert
% calls to this predicate to convert free solver type variables to
% inst any variables where necessary.)
%
:- type init_pred == sym_name.
% An equality_pred specifies the name of a user-defined predicate
% used for equality on a type. See the chapter on them in the
% Mercury Language Reference Manual.
:- type equality_pred == sym_name.
% The name of a user-defined comparison predicate.
:- type comparison_pred == sym_name.
% Parameters of type definitions.
:- type type_param == tvar.
% Use type_util.type_to_ctor_and_args to convert a type to a qualified
% type_ctor and a list of arguments. Use type_util.construct_type to
% construct a type from a type_ctor and a list of arguments.
%
:- type (type)
---> variable(tvar, kind)
% A type variable.
; defined(sym_name, list(type), kind)
% A user defined type constructor.
; builtin(builtin_type)
% These are all known to have kind `star'.
% The above three functors should be kept as the first three, since
% they will be the most commonly used and therefore we want them to
% get the primary tags on a 32-bit machine.
; higher_order(list(type), maybe(type), purity,
lambda_eval_method)
% A type for higher-order values. If the second
% argument is yes(T) then the values are functions
% returning T, otherwise they are predicates. The
% kind is always `star'.
; tuple(list(type), kind)
% Tuple types.
; apply_n(tvar, list(type), kind)
% An apply/N expression. `apply_n(V, [T1, ...], K)'
% would be the representation of type `V(T1, ...)'
% with kind K. The list must be non-empty.
; kinded((type), kind).
% A type expression with an explicit kind annotation.
% (These are not yet used.)
:- type builtin_type
---> int
; float
; string
; character.
:- type type_term == term(tvar_type).
:- type tvar_type ---> type_var.
:- type tvar == var(tvar_type).
% used for type variables
:- type tvarset == varset(tvar_type).
% used for sets of type variables
:- type tsubst == map(tvar, type). % used for type substitutions
:- type tvar_renaming == map(tvar, tvar). % type renaming
:- type type_ctor == pair(sym_name, arity).
:- type tvar_name_map == map(string, tvar).
% existq_tvars is used to record the set of type variables which are
% existentially quantified
:- type existq_tvars == list(tvar).
% Types may have arbitrary assertions associated with them
% (eg. you can define a type which represents sorted lists).
% Similarly, pred declarations can have assertions attached.
% The compiler will ignore these assertions - they are intended
% to be used by other tools, such as the debugger.
:- type condition
---> true
; where(term).
% Similar to varset__merge_subst but produces a tvar_renaming
% instead of a substitution, which is more suitable for types.
%
:- pred tvarset_merge_renaming(tvarset::in, tvarset::in, tvarset::out,
tvar_renaming::out) is det.
% As above, but behaves like varset__merge_subst_without_names.
%
:- pred tvarset_merge_renaming_without_names(tvarset::in, tvarset::in,
tvarset::out, tvar_renaming::out) is det.
%-----------------------------------------------------------------------------%
%
% Kinds
%
% Note that we don't support any kind other than `star' at the
% moment. The other kinds are intended for the implementation
% of constructor classes.
%
:- type kind
---> star
% An ordinary type.
; arrow(kind, kind)
% A type with kind `A' applied to a type with kind
% `arrow(A, B)' will have kind `B'.
; variable(kvar).
% A kind variable. These can be used during kind
% inference; after kind inference, all remaining
% kind variables will be bound to `star'.
:- type kvar_type ---> kind_var.
:- type kvar == var(kvar_type).
% The kinds of type variables. For efficiency, we only have entries
% for type variables that have a kind other than `star'. Any type
% variable not appearing in this map, which will usually be the
% majority of type variables, can be assumed to have kind `star'.
%
:- type tvar_kind_map == map(tvar, kind).
:- pred get_tvar_kind(tvar_kind_map::in, tvar::in, kind::out) is det.
% Return the kind of a type.
%
:- func get_type_kind(type) = kind.
%-----------------------------------------------------------------------------%
%
% Insts and modes
%
% This is how instantiatednesses and modes are represented.
% Note that while we use the normal term data structure to represent
% type terms (see above), we need a separate data structure for inst
% terms.
%
:- type (inst)
---> any(uniqueness)
; free
; free(type)
; bound(uniqueness, list(bound_inst))
% The list(bound_inst) must be sorted
; ground(uniqueness, ground_inst_info)
% The ground_inst_info holds extra information
% about the ground inst.
; not_reached
; inst_var(inst_var)
% constrained_inst_vars is a set of inst
% variables that are constrained to have the
% same uniqueness as and to match_final the
% specified inst.
; constrained_inst_vars(set(inst_var), inst)
% A defined_inst is possibly recursive
% inst whose value is stored in the
% inst_table. This is used both for
% user-defined insts and for
% compiler-generated insts.
; defined_inst(inst_name)
% An abstract inst is a defined inst which
% has been declared but not actually been
% defined (yet).
; abstract_inst(sym_name, list(inst)).
:- type uniqueness
---> shared % there might be other references
; unique % there is only one reference
; mostly_unique % there is only one reference
% but there might be more on
% backtracking
; clobbered % this was the only reference, but
% the data has already been reused
; mostly_clobbered.
% this was the only reference, but
% the data has already been reused;
% however, there may be more references
% on backtracking, so we will need to
% restore the old value on backtracking
% The ground_inst_info type gives extra information about ground insts.
:- type ground_inst_info
---> higher_order(pred_inst_info)
% The ground inst is higher-order.
; none.
% No extra information is available.
% higher-order predicate terms are given the inst
% `ground(shared, higher_order(PredInstInfo))'
% where the PredInstInfo contains the extra modes and the determinism
% for the predicate. Note that the higher-order predicate term
% itself must be ground.
:- type pred_inst_info
---> pred_inst_info(
pred_or_func, % is this a higher-order func
% mode or a higher-order pred
% mode?
list(mode), % the modes of the additional
% (i.e. not-yet-supplied)
% arguments of the pred;
% for a function, this includes
% the mode of the return value
% as the last element of the
% list.
determinism % the determinism of the
% predicate or function
).
:- type inst_id == pair(sym_name, arity).
:- type bound_inst ---> functor(cons_id, list(inst)).
:- type inst_var_type ---> inst_var_type.
:- type inst_var == var(inst_var_type).
:- type inst_term == term(inst_var_type).
:- type inst_varset == varset(inst_var_type).
:- type inst_var_sub == map(inst_var, inst).
% inst_defn/3 defined above
:- type inst_defn
---> eqv_inst(inst)
; abstract_inst.
% An `inst_name' is used as a key for the inst_table.
% It is either a user-defined inst `user_inst(Name, Args)',
% or some sort of compiler-generated inst, whose name
% is a representation of it's meaning.
%
% For example, `merge_inst(InstA, InstB)' is the name used for the
% inst that results from merging InstA and InstB using `merge_inst'.
% Similarly `unify_inst(IsLive, InstA, InstB, IsReal)' is
% the name for the inst that results from a call to
% `abstractly_unify_inst(IsLive, InstA, InstB, IsReal)'.
% And `ground_inst' and `any_inst' are insts that result
% from unifying an inst with `ground' or `any', respectively.
% `typed_inst' is an inst with added type information.
% `typed_ground(Uniq, Type)' a equivalent to
% `typed_inst(ground(Uniq, no), Type)'.
% Note that `typed_ground' is a special case of `typed_inst',
% and `ground_inst' and `any_inst' are special cases of `unify_inst'.
% The reason for having the special cases is efficiency.
%
:- type inst_name
---> user_inst(sym_name, list(inst))
; merge_inst(inst, inst)
; unify_inst(is_live, inst, inst, unify_is_real)
; ground_inst(inst_name, is_live, uniqueness, unify_is_real)
; any_inst(inst_name, is_live, uniqueness, unify_is_real)
; shared_inst(inst_name)
; mostly_uniq_inst(inst_name)
; typed_ground(uniqueness, type)
; typed_inst(type, inst_name).
% NOTE: `is_live' records liveness in the sense used by
% mode analysis. This is not the same thing as the notion of liveness
% used by code generation. See compiler/notes/glossary.html.
%
:- type is_live ---> live ; dead.
% Unifications of insts fall into two categories, "real" and "fake".
% The "real" inst unifications correspond to real unifications,
% and are not allowed to unify with `clobbered' insts (unless
% the unification would be `det').
% Any inst unification which is associated with some code that
% will actually examine the contents of the variables in question
% must be "real". Inst unifications that are not associated with
% some real code that examines the variables' values are "fake".
% "Fake" inst unifications are used for procedure calls in implied
% modes, where the final inst of the var must be computed by
% unifying its initial inst with the procedure's final inst,
% so that if you pass a ground var to a procedure whose mode
% is `free -> list_skeleton', the result is ground, not list_skeleton.
% But these fake unifications must be allowed to unify with `clobbered'
% insts. Hence we pass down a flag to `abstractly_unify_inst' which
% specifies whether or not to allow unifications with clobbered values.
%
:- type unify_is_real
---> real_unify
; fake_unify.
:- type mode_id == pair(sym_name, arity).
% mode_defn/3 defined above
:- type mode_defn
---> eqv_mode(mode).
:- type (mode)
---> ((inst) -> (inst))
; user_defined_mode(sym_name, list(inst)).
% mode/4 defined above
%-----------------------------------------------------------------------------%
%
% Module system
%
% This is how module-system declarations (such as imports
% and exports) are represented.
%
:- type module_defn
---> module(module_name)
; end_module(module_name)
; interface
; implementation
; private_interface
% This is used internally by the compiler,
% to identify items which originally
% came from an implementation section
% for a module that contains sub-modules;
% such items need to be exported to the
% sub-modules.
; imported(import_locn)
% This is used internally by the compiler,
% to identify declarations which originally
% came from some other module imported with
% a `:- import_module' declaration, and which
% section the module was imported.
; used(import_locn)
% This is used internally by the compiler,
% to identify declarations which originally
% came from some other module and for which
% all uses must be module qualified. This
% applies to items from modules imported using
% `:- use_module', and items from `.opt'
% and `.int2' files. It also records from which
% section the module was imported.
; abstract_imported
% This is used internally by the compiler,
% to identify items which originally
% came from the implementation section
% of an interface file; usually type
% declarations (especially equivalence types)
% which should be used in code generation
% but not in type checking.
; opt_imported
% This is used internally by the compiler,
% to identify items which originally
% came from a .opt file.
; transitively_imported
% This is used internally by the compiler,
% to identify items which originally
% came from a `.opt' or `.int2' file.
% These should not be allowed to
% match items in the current module.
% Note that unlike `:- interface', `:- implementation'
% and the other pseudo-declarations `:- imported(interface)',
% etc., a `:- transitively_imported' declaration
% applies to all of the following items in the list,
% not just up to the next pseudo-declaration.
; external(maybe(backend), sym_name_specifier)
; export(sym_list)
; import(sym_list)
; use(sym_list)
; include_module(list(module_name))
% This is used to represent the version numbers
% of items in an interface file for use in
% smart recompilation.
; version_numbers(module_name, recompilation__version_numbers).
:- type backend
---> high_level_backend
; low_level_backend.
:- type section
---> implementation
; interface.
% An import_locn is used to describe the place where an item was
% imported from.
:- type import_locn
--->
% The item is from a module imported in the implementation.
implementation
% The item is from a module imported in the interface.
; interface
% The item is from a module imported by an ancestor.
; ancestor
% The item is from the private interface of an ancestor module.
; ancestor_private_interface.
:- type sym_list
---> sym(list(sym_specifier))
; pred(list(pred_specifier))
; func(list(func_specifier))
; cons(list(cons_specifier))
; op(list(op_specifier))
; adt(list(adt_specifier))
; type(list(type_specifier))
; module(list(module_specifier)).
:- type sym_specifier
---> sym(sym_name_specifier)
; typed_sym(typed_cons_specifier)
; pred(pred_specifier)
; func(func_specifier)
; cons(cons_specifier)
; op(op_specifier)
; adt(adt_specifier)
; type(type_specifier)
; module(module_specifier).
:- type pred_specifier
---> sym(sym_name_specifier)
; name_args(sym_name, list(type)).
:- type func_specifier == cons_specifier.
:- type cons_specifier
---> sym(sym_name_specifier)
; typed(typed_cons_specifier).
:- type typed_cons_specifier
---> name_args(sym_name, list(type))
; name_res(sym_name_specifier, type)
; name_args_res(sym_name, list(type), type).
:- type adt_specifier == sym_name_specifier.
:- type type_specifier == sym_name_specifier.
:- type op_specifier
---> sym(sym_name_specifier)
% operator fixity specifiers not yet implemented
; fixity(sym_name_specifier, fixity).
:- type fixity
---> infix
; prefix
; postfix
; binary_prefix
; binary_postfix.
:- type sym_name_specifier
---> name(sym_name)
; name_arity(sym_name, arity).
:- type sym_name_and_arity
---> sym_name / arity.
:- type simple_call_id == pair(pred_or_func, sym_name_and_arity).
:- type module_specifier == sym_name.
:- type arity == int.
% Describes whether an item can be used without an
% explicit module qualifier.
:- type need_qualifier
---> must_be_qualified
; may_be_unqualified.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module parse_tree.error_util.
:- import_module string.
%-----------------------------------------------------------------------------%
%
% Some more stuff for the foreign language interface
%
:- type pragma_foreign_proc_attributes
---> attributes(
foreign_language :: foreign_language,
may_call_mercury :: may_call_mercury,
thread_safe :: thread_safe,
tabled_for_io :: tabled_for_io,
purity :: purity,
terminates :: terminates,
% there is some special case behaviour for
% pragma c_code and pragma import purity
% if legacy_purity_behaviour is `yes'
may_throw_exception :: may_throw_exception,
legacy_purity_behaviour :: bool,
ordinary_despite_detism :: bool,
extra_attributes ::
list(pragma_foreign_proc_extra_attribute)
).
default_attributes(Language) =
attributes(Language, may_call_mercury, not_thread_safe,
not_tabled_for_io, impure, depends_on_mercury_calls,
default_exception_behaviour, no, no, []).
set_may_call_mercury(MayCallMercury, Attrs0, Attrs) :-
Attrs = Attrs0 ^ may_call_mercury := MayCallMercury.
set_thread_safe(ThreadSafe, Attrs0, Attrs) :-
Attrs = Attrs0 ^ thread_safe := ThreadSafe.
set_foreign_language(ForeignLanguage, Attrs0, Attrs) :-
Attrs = Attrs0 ^ foreign_language := ForeignLanguage.
set_tabled_for_io(TabledForIo, Attrs0, Attrs) :-
Attrs = Attrs0 ^ tabled_for_io := TabledForIo.
set_purity(Purity, Attrs0, Attrs) :-
Attrs = Attrs0 ^ purity := Purity.
set_terminates(Terminates, Attrs0, Attrs) :-
Attrs = Attrs0 ^ terminates := Terminates.
set_may_throw_exception(MayThrowException, Attrs0, Attrs) :-
Attrs = Attrs0 ^ may_throw_exception := MayThrowException.
set_legacy_purity_behaviour(Legacy, Attrs0, Attrs) :-
Attrs = Attrs0 ^ legacy_purity_behaviour := Legacy.
set_ordinary_despite_detism(OrdinaryDespiteDetism, Attrs0, Attrs) :-
Attrs = Attrs0 ^ ordinary_despite_detism := OrdinaryDespiteDetism.
attributes_to_strings(Attrs) = StringList :-
% We ignore Lang because it isn't an attribute that you can put
% in the attribute list -- the foreign language specifier string
% is at the start of the pragma.
Attrs = attributes(_Lang, MayCallMercury, ThreadSafe, TabledForIO,
Purity, Terminates, Exceptions, _LegacyBehaviour,
OrdinaryDespiteDetism, ExtraAttributes),
(
MayCallMercury = may_call_mercury,
MayCallMercuryStr = "may_call_mercury"
;
MayCallMercury = will_not_call_mercury,
MayCallMercuryStr = "will_not_call_mercury"
),
(
ThreadSafe = not_thread_safe,
ThreadSafeStr = "not_thread_safe"
;
ThreadSafe = thread_safe,
ThreadSafeStr = "thread_safe"
;
ThreadSafe = maybe_thread_safe,
ThreadSafeStr = "maybe_thread_safe"
),
(
TabledForIO = tabled_for_io,
TabledForIOStr = "tabled_for_io"
;
TabledForIO = tabled_for_io_unitize,
TabledForIOStr = "tabled_for_io_unitize"
;
TabledForIO = tabled_for_descendant_io,
TabledForIOStr = "tabled_for_descendant_io"
;
TabledForIO = not_tabled_for_io,
TabledForIOStr = "not_tabled_for_io"
),
(
Purity = pure,
PurityStrList = ["promise_pure"]
;
Purity = (semipure),
PurityStrList = ["promise_semipure"]
;
Purity = (impure),
PurityStrList = []
),
(
Terminates = terminates,
TerminatesStrList = ["terminates"]
;
Terminates = does_not_terminate,
TerminatesStrList = ["does_not_terminate"]
;
Terminates = depends_on_mercury_calls,
TerminatesStrList = []
),
(
Exceptions = will_not_throw_exception,
ExceptionsStrList = ["will_not_throw_exception"]
;
Exceptions = default_exception_behaviour,
ExceptionsStrList = []
),
(
OrdinaryDespiteDetism = yes,
OrdinaryDespiteDetismStrList = ["ordinary_despite_detism"]
;
OrdinaryDespiteDetism = no,
OrdinaryDespiteDetismStrList = []
),
StringList = [MayCallMercuryStr, ThreadSafeStr, TabledForIOStr |
PurityStrList] ++ TerminatesStrList ++
ExceptionsStrList ++
OrdinaryDespiteDetismStrList ++
list__map(extra_attribute_to_string, ExtraAttributes).
add_extra_attribute(NewAttribute, Attributes0,
Attributes0 ^ extra_attributes :=
[NewAttribute | Attributes0 ^ extra_attributes]).
:- func extra_attribute_to_string(pragma_foreign_proc_extra_attribute)
= string.
extra_attribute_to_string(backend(low_level_backend)) = "low_level_backend".
extra_attribute_to_string(backend(high_level_backend)) = "high_level_backend".
extra_attribute_to_string(max_stack_size(Size)) =
"max_stack_size(" ++ string__int_to_string(Size) ++ ")".
%-----------------------------------------------------------------------------%
%
% Mutable variables
%
% Attributes for mutable variables.
%
:- type mutable_var_attributes
---> mutable_var_attributes(
mutable_trailed :: trailed,
mutable_thread_safe :: thread_safe,
mutable_foreign_names :: maybe(list(foreign_name))
).
default_mutable_attributes =
mutable_var_attributes(trailed, not_thread_safe, no).
mutable_var_thread_safe(MVarAttrs) = MVarAttrs ^ mutable_thread_safe.
mutable_var_trailed(MVarAttrs) = MVarAttrs ^ mutable_trailed.
mutable_var_maybe_foreign_names(MVarAttrs) = MVarAttrs ^ mutable_foreign_names.
set_mutable_var_thread_safe(ThreadSafe, !Attributes) :-
!:Attributes = !.Attributes ^ mutable_thread_safe := ThreadSafe.
set_mutable_var_trailed(Trailed, !Attributes) :-
!:Attributes = !.Attributes ^ mutable_trailed := Trailed.
set_mutable_add_foreign_name(ForeignName, !Attributes) :-
MaybeForeignNames0 = !.Attributes ^ mutable_foreign_names,
(
MaybeForeignNames0 = no,
MaybeForeignNames = yes([ForeignName])
;
MaybeForeignNames0 = yes(ForeignNames0),
ForeignNames = [ ForeignName | ForeignNames0],
MaybeForeignNames = yes(ForeignNames)
),
!:Attributes =
!.Attributes ^ mutable_foreign_names := MaybeForeignNames.
%-----------------------------------------------------------------------------%
tvarset_merge_renaming(TVarSetA, TVarSetB, TVarSet, Renaming) :-
varset__merge_subst(TVarSetA, TVarSetB, TVarSet, Subst),
map__map_values(convert_subst_term_to_tvar, Subst, Renaming).
tvarset_merge_renaming_without_names(TVarSetA, TVarSetB, TVarSet, Renaming) :-
varset__merge_subst_without_names(TVarSetA, TVarSetB, TVarSet, Subst),
map__map_values(convert_subst_term_to_tvar, Subst, Renaming).
:- pred convert_subst_term_to_tvar(tvar::in, term(tvar_type)::in, tvar::out)
is det.
convert_subst_term_to_tvar(_, variable(TVar), TVar).
convert_subst_term_to_tvar(_, functor(_, _, _), _) :-
unexpected(this_file, "non-variable found in renaming").
%-----------------------------------------------------------------------------%
get_tvar_kind(Map, TVar, Kind) :-
( map__search(Map, TVar, Kind0) ->
Kind = Kind0
;
Kind = star
).
get_type_kind(variable(_, Kind)) = Kind.
get_type_kind(defined(_, _, Kind)) = Kind.
get_type_kind(builtin(_)) = star.
get_type_kind(higher_order(_, _, _, _)) = star.
get_type_kind(tuple(_, Kind)) = Kind.
get_type_kind(apply_n(_, _, Kind)) = Kind.
get_type_kind(kinded(_, Kind)) = Kind.
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "prog_data.m".
%-----------------------------------------------------------------------------%
:- end_module prog_data.
%-----------------------------------------------------------------------------%