Files
mercury/compiler/prog_io_goal.m
Simon Taylor 2725b1a331 Aditi update syntax, type and mode checking.
Estimated hours taken: 220

Aditi update syntax, type and mode checking.

Change the hlds_goal for constructions in preparation for
structure reuse to avoid making multiple conflicting changes.

compiler/hlds_goal.m:
	Merge `higher_order_call' and `class_method_call' into a single
	`generic_call' goal type. This also has alternatives for the
	various Aditi builtins for which type declarations can't
	be written.

	Remove the argument types field from higher-order/class method calls.
	It wasn't used often, and wasn't updated by optimizations
	such as inlining. The types can be obtained from the vartypes
	field of the proc_info.

	Add a `lambda_eval_method' field to lambda_goals.

	Add a field to constructions to identify which RL code fragment should
	be used for an top-down Aditi closure.

	Add fields to constructions to hold structure reuse information.
	This is currently ignored -- the changes to implement structure
	reuse will be committed to the alias branch.
	This is included here to avoid lots of CVS conflicts caused by
	changing the definition of `hlds_goal' twice.

	Add a field to `some' goals to specify whether the quantification
	can be removed. This is used to make it easier to ensure that
	indexes are used for updates.

	Add a field to lambda_goals to describe whether the modes were
	guessed by the compiler and may need fixing up after typechecking
	works out the argument types.

	Add predicate `hlds_goal__generic_call_id' to work out a call_id
	for a generic call for use in error messages.

compiler/purity.m:
compiler/post_typecheck.m:
	Fill in the modes of Aditi builtin calls and closure constructions.
	This needs to know which are the `aditi__state' arguments, so
	it must be done after typechecking.

compiler/prog_data.m:
	Added `:- type sym_name_and_arity ---> sym_name/arity'.

	Add a type `lambda_eval_method', which describes how a closure
	is to be executed. The alternatives are normal Mercury execution,
	bottom-up execution by Aditi and top-down execution by Aditi.

compiler/prog_out.m:
	Add predicate `prog_out__write_sym_name_and_arity', which
	replaces duplicated inline code in a few places.

compiler/hlds_data.m:
	Add a `lambda_eval_method' field to `pred_const' cons_ids and
	`pred_closure_tag' cons_tags.

compiler/hlds_pred.m:
	Remove type `pred_call_id', replace it with type `simple_call_id',
	which combines a `pred_or_func' and a `sym_name_and_arity'.

	Add a type `call_id' which describes all the different types of call,
	including normal calls, higher-order and class-method calls
	and Aditi builtins.

	Add `aditi_top_down' to the type `marker'.

	Remove `aditi_interface' from type `marker'. Interfacing to
	Aditi predicates is now handled by `generic_call' hlds_goals.

	Add a type `rl_exprn_id' which identifies a predicate to
	be executed top-down by Aditi.
	Add a `maybe(rl_exprn_id)'  field to type `proc_info'.

	Add predicate `adjust_func_arity' to convert between the arity
	of a function to its arity as a predicate.

	Add predicates `get_state_args' and `get_state_args_det' to
	extract the DCG state arguments from an argument list.

	Add predicate `pred_info_get_call_id' to get a `simple_call_id'
	for a predicate for use in error messages.

compiler/hlds_out.m:
	Write the new representation for call_ids.

	Add a predicate `hlds_out__write_call_arg_id' which
	replaces similar code in mode_errors.m and typecheck.m.

compiler/prog_io_goal.m:
	Add support for `aditi_bottom_up' and `aditi_top_down' annotations
	on pred expressions.

compiler/prog_io_util.m:
compiler/prog_io_pragma.m:
	Add predicates
	- `prog_io_util:parse_name_and_arity' to parse `SymName/Arity'
		(moved from prog_io_pragma.m).
	- `prog_io_util:parse_pred_or_func_name_and_arity to parse
		`pred SymName/Arity' or `func SymName/Arity'.
	- `prog_io_util:parse_pred_or_func_and_args' to parse terms resembling
		a clause head (moved from prog_io_pragma.m).

compiler/type_util.m:
	Add support for `aditi_bottom_up' and `aditi_top_down' annotations
	on higher-order types.

	Add predicates `construct_higher_order_type',
	`construct_higher_order_pred_type' and
	`construct_higher_order_func_type' to avoid some code duplication.

compiler/mode_util.m:
	Add predicate `unused_mode/1', which returns `builtin:unused'.
	Add functions `aditi_di_mode/0', `aditi_ui_mode/0' and
	`aditi_uo_mode/0' which return `in', `in', and `out', but will
	be changed to return `di', `ui' and `uo' when alias tracking
	is implemented.

compiler/goal_util.m:
	Add predicate `goal_util__generic_call_vars' which returns
	any arguments to a generic_call which are not in the argument list,
	for example the closure passed to a higher-order call or
	the typeclass_info for a class method call.

compiler/llds.m:
compiler/exprn_aux.m:
compiler/dupelim.m:
compiler/llds_out.m:
compiler/opt_debug.m:
	Add builtin labels for the Aditi update operations.

compiler/hlds_module.m:
	Add predicate predicate_table_search_pf_sym, used for finding
	possible matches for a call with the wrong number of arguments.

compiler/intermod.m:
	Don't write predicates which build `aditi_top_down' goals,
	because there is currently no way to tell importing modules
	which RL code fragment to use.

compiler/simplify.m:
	Obey the `cannot_remove' field of explicit quantification goals.

compiler/make_hlds.m:
	Parse Aditi updates.

	Don't typecheck clauses for which syntax errors in Aditi updates
	are found - this avoids spurious "undefined predicate `aditi_insert/3'"
	errors.

	Factor out some common code to handle terms of the form `Head :- Body'.
	Factor out common code in the handling of pred and func expressions.

compiler/typecheck.m:
	Typecheck Aditi builtins.

	Allow the argument types of matching predicates to be adjusted
	when typechecking the higher-order arguments of Aditi builtins.

	Change `typecheck__resolve_pred_overloading' to take a list of
	argument types rather than a `map(var, type)' and a list of
	arguments to allow a transformation to be performed on the
	argument types before passing them.

compiler/error_util.m:
	Move the part of `report_error_num_args' which writes
	"wrong number of arguments (<x>; expected <y>)" from
	typecheck.m for use by make_hlds.m when reporting errors
	for Aditi builtins.

compiler/modes.m:
compiler/unique_modes.m:
compiler/modecheck_call.m:
	Modecheck Aditi builtins.

compiler/lambda.m:
	Handle the markers for predicates introduced for
	`aditi_top_down' and `aditi_bottom_up' lambda expressions.

compiler/polymorphism.m:
	Add extra type_infos to `aditi_insert' calls
	describing the tuple to insert.

compiler/call_gen.m:
	Generate code for Aditi builtins.

compiler/unify_gen.m:
compiler/bytecode_gen.m:
	Abort on `aditi_top_down' and `aditi_bottom_up' lambda
	expressions - code generation for them is not yet implemented.

compiler/magic.m:
	Use the `aditi_call' generic_call rather than create
	a new procedure for each Aditi predicate called from C.

compiler/rl_out.pp:
compiler/rl_gen.m:
compiler/rl.m:
	Move some utility code used by magic.m and call_gen.m into rl.m.

	Remove an XXX comment about reference counting being not yet
	implemented - Evan has fixed that.

library/ops.m:
compiler/mercury_to_mercury.m:
doc/transition_guide.texi:
	Add unary prefix operators `aditi_bottom_up' and `aditi_top_down',
	used as qualifiers on lambda expressions.
	Add infix operator `==>' to separate the tuples in an
	`aditi_modify' call.

compiler/follow_vars.m:
	Thread a `map(prog_var, type)' through, needed because
	type information is no longer held in higher-order call goals.

compiler/table_gen.m:
	Use the `make_*_construction' predicates in hlds_goal.m
	to construct constants.

compiler/*.m:
	Trivial changes to add extra fields to hlds_goal structures.

doc/reference_manual.texi:
	Document Aditi updates.

	Use @samp{pragma base_relation} instead of
	@samp{:- pragma base_relation} throughout the Aditi documentation
	to be consistent with other parts of the reference manual.

tests/valid/Mmakefile:
tests/valid/aditi_update.m:
tests/valid/aditi.m:
	Test case.

tests/valid/Mmakefile:
	Remove some hard-coded --intermodule-optimization rules which are
	no longer needed because `mmake depend' is now run in this directory.

tests/invalid/*.err_exp:
	Fix expected output for changes in reporting of call_ids
	in typecheck.m.

tests/invalid/Mmakefile
tests/invalid/aditi_update_errors.{m,err_exp}:
tests/invalid/aditi_update_mode_errors.{m,err_exp}:
	Test error messages for Aditi updates.

tests/valid/aditi.m:
tests/invalid/aditi.m:
	Cut down version of extras/aditi/aditi.m to provide basic declarations
	for Aditi compilation such as `aditi__state' and the modes
	`aditi_di', `aditi_uo' and `aditi_ui'. Installing extras/aditi/aditi.m
	somewhere would remove the need for these.
1999-07-13 08:55:28 +00:00

396 lines
13 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1996-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io_goal.m.
% Main author: fjh.
%
% This module defines the predicates that parse goals.
:- module prog_io_goal.
:- interface.
:- import_module prog_data.
:- import_module list, term.
% Convert a single term into a goal.
%
:- pred parse_goal(term, prog_varset, goal, prog_varset).
:- mode parse_goal(in, in, out, out) is det.
% Convert a term, possibly starting with `some [Vars]', into
% a list of variables and a goal. (If the term doesn't start
% with `some [Vars]', we return an empty list of variables.)
%
:- pred parse_some_vars_goal(term, prog_varset, list(prog_var),
goal, prog_varset).
:- mode parse_some_vars_goal(in, in, out, out, out) is det.
% parse_lambda_expression/3 converts the first argument to a lambda/2
% expression into a list of arguments, a list of their corresponding
% modes, and a determinism.
% The syntax of a lambda expression is
% `lambda([Var1::Mode1, ..., VarN::ModeN] is Det, Goal)'
% but this predicate just parses the first argument, i.e. the
% `[Var1::Mode1, ..., VarN::ModeN] is Det'
% part.
%
:- pred parse_lambda_expression(term, list(prog_term),
list(mode), determinism).
:- mode parse_lambda_expression(in, out, out, out) is semidet.
% parse_pred_expression/3 converts the first argument to a :-/2
% higher-order pred expression into a list of variables, a list
% of their corresponding modes, and a determinism. This is just
% a variant on parse_lambda_expression with a different syntax:
% `(pred(Var1::Mode1, ..., VarN::ModeN) is Det :- Goal)'.
%
:- pred parse_pred_expression(term, lambda_eval_method, list(prog_term),
list(mode), determinism).
:- mode parse_pred_expression(in, out, out, out, out) is semidet.
% parse_dcg_pred_expression/3 converts the first argument to a -->/2
% higher-order dcg pred expression into a list of arguments, a list
% of their corresponding modes and the two dcg argument modes, and a
% determinism.
% This is a variant of the higher-order pred syntax:
% `(pred(Var1::Mode1, ..., VarN::ModeN, DCG0Mode, DCGMode)
% is Det --> Goal)'.
%
:- pred parse_dcg_pred_expression(term, lambda_eval_method, list(prog_term),
list(mode), determinism).
:- mode parse_dcg_pred_expression(in, out, out, out, out) is semidet.
% parse_func_expression/3 converts the first argument to a :-/2
% higher-order func expression into a list of arguments, a list
% of their corresponding modes, and a determinism. The syntax
% of a higher-order func expression is
% `(func(Var1::Mode1, ..., VarN::ModeN) = (VarN1::ModeN1) is Det
% :- Goal)'.
%
:- pred parse_func_expression(term, lambda_eval_method, list(prog_term),
list(mode), determinism).
:- mode parse_func_expression(in, out, out, out, out) is semidet.
% parse_lambda_eval_method/3 extracts the `aditi' or `aditi_top_down'
% annotation (if any) from a pred expression and returns the rest
% of the term.
:- pred parse_lambda_eval_method(term(T), lambda_eval_method, term(T)).
:- mode parse_lambda_eval_method(in, out, out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module mode_util, purity, prog_io, prog_io_util, term_util.
:- import_module term.
:- import_module int, map, string, std_util.
% Parse a goal.
%
% We could do some error-checking here, but all errors are picked up
% in either the type-checker or parser anyway.
parse_goal(Term, VarSet0, Goal, VarSet) :-
% first, get the goal context
(
Term = term__functor(_, _, Context)
;
Term = term__variable(_),
term__context_init(Context)
),
% We just check if it matches the appropriate pattern
% for one of the builtins. If it doesn't match any of the
% builtins, then it's just a predicate call.
(
% check for builtins...
Term = term__functor(term__atom(Name), Args, Context),
parse_goal_2(Name, Args, VarSet0, GoalExpr, VarSet1)
->
Goal = GoalExpr - Context,
VarSet = VarSet1
;
% it's not a builtin
term__coerce(Term, ArgsTerm),
(
% check for predicate calls
sym_name_and_args(ArgsTerm, SymName, Args)
->
VarSet = VarSet0,
Goal = call(SymName, Args, pure) - Context
;
% A call to a free variable, or to a number or string.
% Just translate it into a call to call/1 - the typechecker
% will catch calls to numbers and strings.
Goal = call(unqualified("call"), [ArgsTerm], pure)
- Context,
VarSet = VarSet0
)
).
%-----------------------------------------------------------------------------%
:- pred parse_goal_2(string, list(term), prog_varset, goal_expr, prog_varset).
:- mode parse_goal_2(in, in, in, out, out) is semidet.
parse_goal_2("true", [], V, true, V).
parse_goal_2("fail", [], V, fail, V).
parse_goal_2("=", [A0, B0], V, unify(A, B), V) :-
term__coerce(A0, A),
term__coerce(B0, B).
/******
Since (A -> B) has different semantics in standard Prolog
(A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true),
for the moment we'll just disallow it.
parse_goal_2("->", [A0, B0], V0, if_then(Vars, A, B), V) :-
parse_some_vars_goal(A0, V0, Vars, A, V1),
parse_goal(B0, V1, B, V).
******/
parse_goal_2(",", [A0, B0], V0, (A, B), V) :-
parse_goal(A0, V0, A, V1),
parse_goal(B0, V1, B, V).
parse_goal_2("&", [A0, B0], V0, (A & B), V) :-
parse_goal(A0, V0, A, V1),
parse_goal(B0, V1, B, V).
parse_goal_2(";", [A0, B0], V0, R, V) :-
(
A0 = term__functor(term__atom("->"), [X0, Y0], _Context)
->
parse_some_vars_goal(X0, V0, Vars, X, V1),
parse_goal(Y0, V1, Y, V2),
parse_goal(B0, V2, B, V),
R = if_then_else(Vars, X, Y, B)
;
parse_goal(A0, V0, A, V1),
parse_goal(B0, V1, B, V),
R = (A;B)
).
/****
For consistency we also disallow if-then
parse_goal_2("if",
[term__functor(term__atom("then"), [A0, B0], _)], V0,
if_then(Vars, A, B), V) :-
parse_some_vars_goal(A0, V0, Vars, A, V1),
parse_goal(B0, V1, B, V).
****/
parse_goal_2("else", [
term__functor(term__atom("if"), [
term__functor(term__atom("then"), [A0, B0], _)
], _),
C0
], V0,
if_then_else(Vars, A, B, C), V) :-
parse_some_vars_goal(A0, V0, Vars, A, V1),
parse_goal(B0, V1, B, V2),
parse_goal(C0, V2, C, V).
parse_goal_2("not", [A0], V0, not(A), V) :-
parse_goal(A0, V0, A, V).
parse_goal_2("\\+", [A0], V0, not(A), V) :-
parse_goal(A0, V0, A, V).
parse_goal_2("all", [Vars0, A0], V0, all(Vars, A), V):-
term__coerce(Vars0, Vars1),
term__vars(Vars1, Vars),
parse_goal(A0, V0, A, V).
% handle implication
parse_goal_2("<=", [A0, B0], V0, implies(B, A), V):-
parse_goal(A0, V0, A, V1),
parse_goal(B0, V1, B, V).
parse_goal_2("=>", [A0, B0], V0, implies(A, B), V):-
parse_goal(A0, V0, A, V1),
parse_goal(B0, V1, B, V).
% handle equivalence
parse_goal_2("<=>", [A0, B0], V0, equivalent(A, B), V):-
parse_goal(A0, V0, A, V1),
parse_goal(B0, V1, B, V).
parse_goal_2("some", [Vars0, A0], V0, some(Vars, A), V):-
parse_list_of_vars(Vars0, Vars1),
list__map(term__coerce_var, Vars1, Vars),
parse_goal(A0, V0, A, V).
% The following is a temporary hack to handle `is' in
% the parser - we ought to handle it in the code generation -
% but then `is/2' itself is a bit of a hack
%
parse_goal_2("is", [A0, B0], V, unify(A, B), V) :-
term__coerce(A0, A),
term__coerce(B0, B).
parse_goal_2("impure", [A0], V0, A, V) :-
parse_goal_with_purity(A0, V0, (impure), A, V).
parse_goal_2("semipure", [A0], V0, A, V) :-
parse_goal_with_purity(A0, V0, (semipure), A, V).
:- pred parse_goal_with_purity(term, prog_varset, purity, goal_expr,
prog_varset).
:- mode parse_goal_with_purity(in, in, in, out, out) is det.
parse_goal_with_purity(A0, V0, Purity, A, V) :-
parse_goal(A0, V0, A1, V),
( A1 = call(Pred, Args, pure) - _ ->
A = call(Pred, Args, Purity)
;
% Inappropriate placement of an impurity marker, so we treat
% it like a predicate call. typecheck.m prints out something
% descriptive for these errors.
purity_name(Purity, PurityString),
term__coerce(A0, A2),
A = call(unqualified(PurityString), [A2], pure)
).
%-----------------------------------------------------------------------------%
parse_some_vars_goal(A0, VarSet0, Vars, A, VarSet) :-
(
A0 = term__functor(term__atom("some"), [Vars0, A1], _Context),
parse_list_of_vars(Vars0, Vars1)
->
list__map(term__coerce_var, Vars1, Vars),
parse_goal(A1, VarSet0, A, VarSet)
;
Vars = [],
parse_goal(A0, VarSet0, A, VarSet)
).
%-----------------------------------------------------------------------------%
parse_lambda_expression(LambdaExpressionTerm, Args, Modes, Det) :-
LambdaExpressionTerm = term__functor(term__atom("is"),
[LambdaArgsTerm, DetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
parse_lambda_args(LambdaArgsTerm, Args, Modes).
:- pred parse_lambda_args(term, list(prog_term), list(mode)).
:- mode parse_lambda_args(in, out, out) is semidet.
parse_lambda_args(Term, Args, Modes) :-
( Term = term__functor(term__atom("."), [Head, Tail], _Context) ->
parse_lambda_arg(Head, Arg, Mode),
Args = [Arg | Args1],
Modes = [Mode | Modes1],
parse_lambda_args(Tail, Args1, Modes1)
; Term = term__functor(term__atom("[]"), [], _) ->
Args = [],
Modes = []
;
Args = [Arg],
Modes = [Mode],
parse_lambda_arg(Term, Arg, Mode)
).
:- pred parse_lambda_arg(term, prog_term, mode).
:- mode parse_lambda_arg(in, out, out) is semidet.
parse_lambda_arg(Term, ArgTerm, Mode) :-
Term = term__functor(term__atom("::"), [ArgTerm0, ModeTerm], _),
term__coerce(ArgTerm0, ArgTerm),
convert_mode(ModeTerm, Mode).
%-----------------------------------------------------------------------------%
parse_pred_expression(PredTerm, EvalMethod, Args, Modes, Det) :-
PredTerm = term__functor(term__atom("is"),
[PredEvalArgsTerm, DetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
parse_lambda_eval_method(PredEvalArgsTerm, EvalMethod, PredArgsTerm),
PredArgsTerm = term__functor(term__atom("pred"), PredArgsList, _),
parse_pred_expr_args(PredArgsList, Args, Modes).
parse_dcg_pred_expression(PredTerm, EvalMethod, Args, Modes, Det) :-
PredTerm = term__functor(term__atom("is"),
[PredEvalArgsTerm, DetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
parse_lambda_eval_method(PredEvalArgsTerm, EvalMethod, PredArgsTerm),
PredArgsTerm = term__functor(term__atom("pred"), PredArgsList, _),
parse_dcg_pred_expr_args(PredArgsList, Args, Modes).
parse_func_expression(FuncTerm, EvalMethod, Args, Modes, Det) :-
%
% parse a func expression with specified modes and determinism
%
FuncTerm = term__functor(term__atom("is"), [EqTerm, DetTerm], _),
EqTerm = term__functor(term__atom("="),
[FuncEvalArgsTerm, RetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
parse_lambda_eval_method(FuncEvalArgsTerm, EvalMethod, FuncArgsTerm),
FuncArgsTerm = term__functor(term__atom("func"), FuncArgsList, _),
parse_pred_expr_args(FuncArgsList, Args0, Modes0),
parse_lambda_arg(RetTerm, RetArg, RetMode),
list__append(Args0, [RetArg], Args),
list__append(Modes0, [RetMode], Modes).
parse_func_expression(FuncTerm, EvalMethod, Args, Modes, Det) :-
%
% parse a func expression with unspecified modes and determinism
%
FuncTerm = term__functor(term__atom("="),
[FuncEvalArgsTerm, RetArg], _),
parse_lambda_eval_method(FuncEvalArgsTerm, EvalMethod, FuncArgsTerm),
FuncArgsTerm = term__functor(term__atom("func"), Args0, _),
%
% the argument modes default to `in',
% the return mode defaults to `out',
% and the determinism defaults to `det'.
%
in_mode(InMode),
out_mode(OutMode),
list__length(Args0, NumArgs),
list__duplicate(NumArgs, InMode, Modes0),
RetMode = OutMode,
Det = det,
list__append(Modes0, [RetMode], Modes),
list__append(Args0, [RetArg], Args1),
list__map(term__coerce, Args1, Args).
parse_lambda_eval_method(Term0, EvalMethod, Term) :-
( Term0 = term__functor(term__atom(MethodStr), [Term1], _) ->
( MethodStr = "aditi_bottom_up" ->
EvalMethod = (aditi_bottom_up),
Term = Term1
; MethodStr = "aditi_top_down" ->
EvalMethod = (aditi_top_down),
Term = Term1
;
EvalMethod = normal,
Term = Term0
)
;
EvalMethod = normal,
Term = Term0
).
:- pred parse_pred_expr_args(list(term), list(prog_term), list(mode)).
:- mode parse_pred_expr_args(in, out, out) is semidet.
parse_pred_expr_args([], [], []).
parse_pred_expr_args([Term|Terms], [Arg|Args], [Mode|Modes]) :-
parse_lambda_arg(Term, Arg, Mode),
parse_pred_expr_args(Terms, Args, Modes).
% parse_dcg_pred_expr_args is like parse_pred_expr_args except
% that the last two elements of the list are the modes of the
% two dcg arguments.
:- pred parse_dcg_pred_expr_args(list(term), list(prog_term),
list(mode)).
:- mode parse_dcg_pred_expr_args(in, out, out) is semidet.
parse_dcg_pred_expr_args([DCGModeTerm0, DCGModeTerm1], [],
[DCGMode0, DCGMode1]) :-
convert_mode(DCGModeTerm0, DCGMode0),
convert_mode(DCGModeTerm1, DCGMode1).
parse_dcg_pred_expr_args([Term|Terms], [Arg|Args], [Mode|Modes]) :-
Terms = [_, _|_],
parse_lambda_arg(Term, Arg, Mode),
parse_dcg_pred_expr_args(Terms, Args, Modes).
%-----------------------------------------------------------------------------%