Files
mercury/compiler/inlining.m
Simon Taylor 3e244090d7 Rework the handling of types in higher_order.m.
Estimated hours taken: 50

Rework the handling of types in higher_order.m.
- Fix bugs in higher_order.m that stopped it working with --typeinfo-liveness.
- Perform type and typeclass specialisation.

compiler/polymorphism.m:
	Previously the type of typeclass_infos variables did not contain
	any information about the constraint about which the variable contains
	information. Now the type of a typeclass_info is
	`private_builtin:typeclass_info(
		private_builtin:constraint([ClassName, ConstrainedTypes]))'.
	This allows predicates such as type_list_subsumes to check that
	the class constraints match.
	Note that `private_builtin:constraint' has no declaration, so
	a lookup in the type definition map will fail. That's OK, because
	type_to_type_id will fail on it, so it will be treated as a type
	variable by any code which doesn't manipulate types directly.
	Added polymorphism__typeclass_info_class_constraint to get the
	class_constraint from a typeclass_info's type. This isn't used yet.

	Also, fix a bug in extract_type_info: an entry in the typeinfo_var_map
	was being overwritten using an entry from a dummy typevarset. Actually
	the optimization to overwrite the location of the type_info after
	extracting it from a typeclass_info was wrong because the type_info
	won't be in that location in other branches.

compiler/higher_order.m:
	Rework the handling of type substitutions. Now the types of the
	called procedure are `inlined' into the calling procedure, rather
	than building up the types of the specialised version using the
	higher-order arguments. The advantage of this is that the code is
	a bit simpler and handles extra type_infos properly. The disadvantage
	is that the argument types for specialised versions may be more
	specific than they need to be, so in some cases more specialised
	versions will be created than before.
	Also, don't actually rebuild the higher-order terms in the specialised
	versions - just pass the terms through in case they are needed.
	Handle the extra typeinfos required for --typeinfo-liveness.
	Specialize calls to unify/2, index/2 and compare/3.
	Specialize class_method_calls.
	Specialize calls to the predicates in private_builtin.m which
	manipulate typeclass_infos.

compiler/type_util.m:
	type_to_type_id now fails on the dummy `constraint' type.
	Remove typeinfos for non-variable types from the typeinfo_varmap
	after inlining and higher-order specialisation.

compiler/inlining.m:
	Factor out some common code to handle type substitutions
	for use by higher_order.m.

compiler/hlds_pred.m:
	Return the list of extra type_info variables added to the
	argument list.

compiler/goal_util.m:
	Take a set of non-locals as an argument to
	goal_util__extra_nonlocal_typeinfos rather than extracting
	them from a goal.

compiler/special_pred.m:
	Handle unmangled unify/compare/index in special_pred_get_type.

compiler/base_type_layout.m:
	Don't generate references to the typeinfo for
	`private_builtin:constraint' - it doesn't exist.

compiler/unused_args.m:
	Don't barf on specialised unification predicate names.

compiler/options.m:
	Added options:
	`--type-specialization' (default off).
	`--higher-order-size-limit' - restrict the size of specialized
		versions produced by higher_order.m.
	`--disable-opt-for-trace' (default on) - where possible don't
		change the options to make the trace match the source code.

compiler/handle_options.m:
	Don't disable higher_order.m when --typeinfo-liveness is set.
	Handle `--disable-opt-for-trace'.

compiler/hlds_data.m:
compiler/*.m:
	Add the instance number to `base_typeclass_info_const' cons_ids,
	so that higher_order.m can easily index into the list of instances
	for a class to find the methods.

compiler/hlds_out.m:
	Use the correct varset when printing out the constraint proofs.
	Write the typeclass_info_varmap for each procedure.

compiler/mercury_to_mercury.m:
	Print type variables with variable numbers.

library/private_builtin.m:
	Add the argument to the typeclass_info type to hold the representation
	of the constraint.

runtime/mercury_ho_call.c:
	Semidet and nondet class_method_calls where
	(0 < num_arg_typeclass_infos < 4) were aborting at runtime
	because arguments were being placed starting at r1 rather
	than at r(1 + num_arg_typeclass_infos).

doc/user_guide.texi
	Document the new options.

compiler/notes/compiler_design.html:
	Update the role of higher_order.m.

tests/hard_coded/typeclasses/extra_typeinfo.m:
	Test case for the mercury_ho_call.c bug and the polymorphism.m
	extract_typeinfo bug and for updating the typeclass_info_varmap
	for specialised versions.
1998-09-10 06:56:14 +00:00

729 lines
27 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% Main author: conway.
:- module inlining.
% This module inlines
%
% * (--inline-simple and --inline-simple-threshold N)
% procedures whose size is below the given threshold,
% PLUS
% procedures that are flat (ie contain no branched structures)
% and are composed of inline builtins (eg arithmetic),
% and whose size is less than three times the given threshold
% (XXX shouldn't hard-code 3)
%
% * (--inline-compound-threshold N)
% procedures where the product of the number of calls to them
% and their size is below a given threshold.
%
% * (--inline-single-use)
% procedures which are called only once
%
% * procedures which have a `:- pragma inline(name/arity).'
%
% It will not inline procedures which have a
% `:- pragma no_inline(name/arity).'
%
% If inlining a procedure takes the total number of variables over
% a given threshold (from a command-line option), then the procedure
% is not inlined - note that this means that some calls to a
% procedure may inlined while others are not.
%
% It builds the call-graph (if necessary) works from the bottom of
% the call-graph towards the top, first perfoming inlining on a
% procedure then deciding if calls to it (higher in the call-graph)
% should be inlined. SCCs get flattend and processed in the order
% returned by hlds_dependency_info_get_dependency_ordering.
%
% There are a couple of classes of procedure that we clearly want
% to inline because doing so *reduces* the size of the generated
% code:
%
% - access predicates that get or set one or more fields
% of a structure (Inlining these is almost always a win
% because the infrastructure for the call to the procedure
% is almost always larger than the code to do the access.
% In the case of `get' accessors, the call usually becomes
% a single `field' expression to get the relevant field of
% the structure. In the case of `set' accessors, it is a bit
% more complicated since the code to copy the fields can be
% quite big if there are lots of fields, however in the case
% where several `set' accessors get called one after the other,
% inlining them enables the code generator to avoid creating
% the intermediate structures which is often a win).
%
% - arithmetic predicates where the as above, the cost of the
% call will often outweigh the cost of the arithmetic.
%
% - det or semi pragma C code, where often the C operation is
% very small, inlining avoids a call and allows the C compiler
% to do a better job of optimizing it.
%
% The threshold on the size of simple goals (which covers both of the
% first two cases above), is to prevent the inlining of large goals
% such as those that construct big terms where the duplication is
% usually inappropriate (for example in nrev).
%
% The threshold on the number of variables in a procedure is to prevent
% the problem of inlining lots of calls and having a resulting
% procedure with so many variables that the back end of the compiler
% gets bogged down (for example in the pseudoknot benchmark).
%
% Due to the way in which we generate code for model_non pragma_c_code,
% procedures whose body is such a pragma_c_code must NOT be inlined.
%-----------------------------------------------------------------------------%
:- interface.
:- import_module hlds_goal, hlds_module, hlds_pred, prog_data.
:- import_module io, list, map, term, varset.
:- pred inlining(module_info, module_info, io__state, io__state).
:- mode inlining(in, out, di, uo) is det.
:- pred inlining__is_simple_goal(hlds_goal, int).
:- mode inlining__is_simple_goal(in, in) is semidet.
% inlining__do_inline_call(UnivQVars, Args,
% CalledPredInfo, CalledProcInfo,
% VarSet0, VarSet, VarTypes0, VarTypes, TVarSet0, TVarSet,
% TypeInfoMap0, TypeInfoMap).
%
% Given the universally quantified type variables in the caller's
% type, the arguments to the call, the pred_info and proc_info
% for the called goal and various information about the variables
% and types in the procedure currently being analysed, rename the
% goal for the called procedure so that it can be inlined.
:- pred inlining__do_inline_call(list(tvar), list(var), pred_info, proc_info,
varset, varset, map(var, type), map(var, type),
tvarset, tvarset, map(tvar, type_info_locn),
map(tvar, type_info_locn), hlds_goal).
:- mode inlining__do_inline_call(in, in, in, in, in, out, in, out,
in, out, in, out, out) is det.
% inlining__get_type_substitution(CalleeArgTypes, CallerArgTypes,
% HeadTypeParams, CalleeExistQTVars, TypeSubn).
%
% Work out a type substitution to map the callee's argument
% types into the caller's.
:- pred inlining__get_type_substitution(list(type), list(type),
head_type_params, list(tvar), map(tvar, type)).
:- mode inlining__get_type_substitution(in, in, in, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module globals, options, llds.
:- import_module dead_proc_elim, type_util, mode_util, goal_util.
:- import_module passes_aux, code_aux, quantification, det_analysis, prog_data.
:- import_module bool, int, list, assoc_list, set, std_util.
:- import_module require, hlds_data, dependency_graph.
%-----------------------------------------------------------------------------%
:- type inline_params ---> params(bool, bool, int, int, int).
% simple, single_use,
% size-threshold, simple-goal-threshold
% var-threshold
inlining(ModuleInfo0, ModuleInfo) -->
%
% Package up all the inlining options
% - whether to inline simple conj's of builtins
% - whether to inline predicates that are
% only called once
% - the threshold for determining whether to
% inline more complicated goals
% - the threshold for determining whether to
% inline the simple conj's
% - the upper limit on the number of variables
% we want in procedures - if inlining a procedure
% would cause the number of variables to exceed
% this threshold then we don't inline it.
%
globals__io_lookup_bool_option(inline_simple, Simple),
globals__io_lookup_bool_option(inline_single_use, SingleUse),
globals__io_lookup_int_option(inline_compound_threshold,
CompoundThreshold),
globals__io_lookup_int_option(inline_simple_threshold, SimpleThreshold),
globals__io_lookup_int_option(inline_vars_threshold, VarThreshold),
{ Params = params(Simple, SingleUse, CompoundThreshold,
SimpleThreshold, VarThreshold) },
%
% Get the usage counts for predicates
% (but only if needed, i.e. only if --inline-single-use
% or --inline-compound-threshold has been specified)
%
(
( { SingleUse = yes }
; { CompoundThreshold > 0 }
)
->
{ dead_proc_elim__analyze(ModuleInfo0, NeededMap) }
;
{ map__init(NeededMap) }
),
% build the call graph and extract the topological sort
% Note: the topological sort returns a list of SCCs.
% Clearly, we want to process the SCCs bottom to top
% (which is the order that they are returned), but it
% is not easy to guess the best way to flatten each SCC
% to achieve the best result. The current implementation
% just uses the ordering of the list returned by the
% topological sort. A more sophisticated approach would be
% to break the cycle so that the procedure(s) that are called
% by higher SCCs are processed last, but we do not implement
% that yet.
{ module_info_ensure_dependency_info(ModuleInfo0, ModuleInfo1) },
{ module_info_dependency_info(ModuleInfo1, DepInfo) },
{ hlds_dependency_info_get_dependency_ordering(DepInfo, SCCs) },
{ list__condense(SCCs, PredProcs) },
{ set__init(InlinedProcs0) },
inlining__do_inlining(PredProcs, NeededMap, Params, InlinedProcs0,
ModuleInfo1, ModuleInfo).
:- pred inlining__do_inlining(list(pred_proc_id), needed_map, inline_params,
set(pred_proc_id), module_info, module_info,
io__state, io__state).
:- mode inlining__do_inlining(in, in, in, in, in, out, di, uo) is det.
inlining__do_inlining([], _Needed, _Params, _Inlined, Module, Module) --> [].
inlining__do_inlining([PPId|PPIds], Needed, Params, Inlined0,
Module0, Module) -->
inlining__in_predproc(PPId, Inlined0, Params, Module0, Module1),
inlining__mark_predproc(PPId, Needed, Params, Module1,
Inlined0, Inlined1),
inlining__do_inlining(PPIds, Needed, Params, Inlined1, Module1, Module).
:- pred inlining__mark_predproc(pred_proc_id, needed_map, inline_params,
module_info, set(pred_proc_id), set(pred_proc_id),
io__state, io__state).
:- mode inlining__mark_predproc(in, in, in, in, in, out, di, uo) is det.
inlining__mark_predproc(PredProcId, NeededMap, Params, ModuleInfo,
InlinedProcs0, InlinedProcs) -->
(
{ Params = params(Simple, SingleUse, CompoundThreshold,
SimpleThreshold, _VarThreshold) },
{ PredProcId = proc(PredId, ProcId) },
{ module_info_pred_info(ModuleInfo, PredId, PredInfo) },
{ pred_info_procedures(PredInfo, Procs) },
{ map__lookup(Procs, ProcId, ProcInfo) },
{ proc_info_goal(ProcInfo, CalledGoal) },
{ Entity = proc(PredId, ProcId) },
%
% the heuristic represented by the following code
% could be improved
%
(
{ Simple = yes },
{ inlining__is_simple_goal(CalledGoal,
SimpleThreshold) }
;
{ CompoundThreshold > 0 },
{ map__search(NeededMap, Entity, Needed) },
{ Needed = yes(NumUses) },
{ goal_size(CalledGoal, Size) },
{ Size * NumUses =< CompoundThreshold }
;
{ SingleUse = yes },
{ map__search(NeededMap, Entity, Needed) },
{ Needed = yes(NumUses) },
{ NumUses = 1 }
),
% Don't inline recursive predicates
{ \+ goal_calls(CalledGoal, PredProcId) },
% Under no circumstances inline model_non pragma c codes.
% The resulting code would not work properly.
\+ {
CalledGoal = pragma_c_code(_,_,_,_,_,_,_) - _,
proc_info_interface_code_model(ProcInfo, model_non)
}
->
inlining__mark_proc_as_inlined(PredProcId, ModuleInfo,
InlinedProcs0, InlinedProcs)
;
{ InlinedProcs = InlinedProcs0 }
).
% this heuristic is used for both local and intermodule inlining
inlining__is_simple_goal(CalledGoal, SimpleThreshold) :-
goal_size(CalledGoal, Size),
(
Size < SimpleThreshold
;
%
% For flat goals, we are more likely to be able to
% optimize stuff away, so we use a higher threshold.
% XXX this should be a separate option, we shouldn't
% hardcode the number `3' (which is just a guess).
%
Size < SimpleThreshold * 3,
inlining__is_flat_simple_goal(CalledGoal)
).
:- pred inlining__is_flat_simple_goal(hlds_goal::in) is semidet.
inlining__is_flat_simple_goal(conj(Goals) - _) :-
inlining__is_flat_simple_goal_list(Goals).
inlining__is_flat_simple_goal(not(Goal) - _) :-
inlining__is_flat_simple_goal(Goal).
inlining__is_flat_simple_goal(some(_, Goal) - _) :-
inlining__is_flat_simple_goal(Goal).
inlining__is_flat_simple_goal(call(_, _, _, BuiltinState, _, _) - _) :-
BuiltinState = inline_builtin.
inlining__is_flat_simple_goal(unify(_, _, _, _, _) - _).
:- pred inlining__is_flat_simple_goal_list(hlds_goals::in) is semidet.
inlining__is_flat_simple_goal_list([]).
inlining__is_flat_simple_goal_list([Goal | Goals]) :-
inlining__is_flat_simple_goal(Goal),
inlining__is_flat_simple_goal_list(Goals).
:- pred inlining__mark_proc_as_inlined(pred_proc_id, module_info,
set(pred_proc_id), set(pred_proc_id), io__state, io__state).
:- mode inlining__mark_proc_as_inlined(in, in, in, out, di, uo) is det.
inlining__mark_proc_as_inlined(proc(PredId, ProcId), ModuleInfo,
InlinedProcs0, InlinedProcs) -->
{ set__insert(InlinedProcs0, proc(PredId, ProcId), InlinedProcs) },
{ module_info_pred_info(ModuleInfo, PredId, PredInfo) },
( { pred_info_requested_inlining(PredInfo) } ->
[]
;
write_proc_progress_message("% Inlining ", PredId, ProcId,
ModuleInfo)
).
%-----------------------------------------------------------------------------%
% inline_info contains the information that is changed
% as a result of inlining. It is threaded through the
% inlining process, and when finished, contains the
% updated information associated with the new goal.
%
% It also stores some necessary information that is not
% updated.
:- type inline_info --->
inline_info(
int, % variable threshold for inlining
set(pred_proc_id), % inlined procs
module_info, % module_info
list(tvar), % universally quantified type vars
% occurring in the argument types
% for this predicate (the caller,
% not the callee). These are the
% ones that must not be bound.
% the following fields are updated as a result
% of inlining
varset, % varset
map(var, type), % variable types
tvarset, % type variables
map(tvar, type_info_locn),% type_info varset, a mapping from
% type variables to variables
% where their type_info is
% stored.
bool % Did we change the determinism
% of any subgoal?
).
:- pred inlining__in_predproc(pred_proc_id, set(pred_proc_id), inline_params,
module_info, module_info, io__state, io__state).
:- mode inlining__in_predproc(in, in, in, in, out, di, uo) is det.
inlining__in_predproc(PredProcId, InlinedProcs, Params,
ModuleInfo0, ModuleInfo, IoState0, IoState) :-
Params = params(_Simple, _SingleUse, _CompoundThreshold,
_SimpleThreshold, VarThresh),
PredProcId = proc(PredId, ProcId),
module_info_preds(ModuleInfo0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
pred_info_get_univ_quant_tvars(PredInfo0, UnivQTVars),
pred_info_typevarset(PredInfo0, TypeVarSet0),
proc_info_goal(ProcInfo0, Goal0),
proc_info_varset(ProcInfo0, VarSet0),
proc_info_vartypes(ProcInfo0, VarTypes0),
proc_info_typeinfo_varmap(ProcInfo0, TypeInfoVarMap0),
DetChanged0 = no,
InlineInfo0 = inline_info(
VarThresh, InlinedProcs, ModuleInfo0, UnivQTVars,
VarSet0, VarTypes0, TypeVarSet0, TypeInfoVarMap0, DetChanged0),
inlining__inlining_in_goal(Goal0, Goal, InlineInfo0, InlineInfo),
InlineInfo = inline_info(_, _, _, _, VarSet, VarTypes, TypeVarSet,
TypeInfoVarMap, DetChanged),
pred_info_set_typevarset(PredInfo0, TypeVarSet, PredInfo1),
proc_info_set_varset(ProcInfo0, VarSet, ProcInfo1),
proc_info_set_vartypes(ProcInfo1, VarTypes, ProcInfo2),
proc_info_set_typeinfo_varmap(ProcInfo2, TypeInfoVarMap, ProcInfo3),
proc_info_set_goal(ProcInfo3, Goal, ProcInfo),
map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(PredInfo1, ProcTable, PredInfo),
map__det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(ModuleInfo0, PredTable, ModuleInfo1),
% If the determinism of some sub-goals has changed,
% then we re-run determinism analysis, because
% propagating the determinism information through
% the procedure may lead to more efficient code.
( DetChanged = yes,
globals__io_get_globals(Globals, IoState0, IoState),
det_infer_proc(PredId, ProcId, ModuleInfo1, ModuleInfo,
Globals, _, _, _)
; DetChanged = no,
ModuleInfo = ModuleInfo1,
IoState = IoState0
).
%-----------------------------------------------------------------------------%
:- pred inlining__inlining_in_goal(hlds_goal, hlds_goal, inline_info,
inline_info).
:- mode inlining__inlining_in_goal(in, out, in, out) is det.
inlining__inlining_in_goal(conj(Goals0) - GoalInfo, conj(Goals) - GoalInfo) -->
inlining__inlining_in_conj(Goals0, Goals).
inlining__inlining_in_goal(par_conj(Goals0, SM) - GoalInfo,
par_conj(Goals, SM) - GoalInfo) -->
inlining__inlining_in_disj(Goals0, Goals).
inlining__inlining_in_goal(disj(Goals0, SM) - GoalInfo,
disj(Goals, SM) - GoalInfo) -->
inlining__inlining_in_disj(Goals0, Goals).
inlining__inlining_in_goal(switch(Var, Det, Cases0, SM) - GoalInfo,
switch(Var, Det, Cases, SM) - GoalInfo) -->
inlining__inlining_in_cases(Cases0, Cases).
inlining__inlining_in_goal(
if_then_else(Vars, Cond0, Then0, Else0, SM) - GoalInfo,
if_then_else(Vars, Cond, Then, Else, SM) - GoalInfo) -->
inlining__inlining_in_goal(Cond0, Cond),
inlining__inlining_in_goal(Then0, Then),
inlining__inlining_in_goal(Else0, Else).
inlining__inlining_in_goal(not(Goal0) - GoalInfo, not(Goal) - GoalInfo) -->
inlining__inlining_in_goal(Goal0, Goal).
inlining__inlining_in_goal(some(Vars, Goal0) - GoalInfo,
some(Vars, Goal) - GoalInfo) -->
inlining__inlining_in_goal(Goal0, Goal).
inlining__inlining_in_goal(call(PredId, ProcId, ArgVars, Builtin, Context,
Sym) - GoalInfo0, Goal - GoalInfo, InlineInfo0, InlineInfo) :-
InlineInfo0 = inline_info(VarThresh, InlinedProcs, ModuleInfo,
HeadTypeParams,
VarSet0, VarTypes0, TypeVarSet0, TypeInfoVarMap0,
DetChanged0),
% should we inline this call?
(
inlining__should_inline_proc(PredId, ProcId, Builtin,
InlinedProcs, ModuleInfo),
% okay, but will we exceed the number-of-variables
% threshold?
varset__vars(VarSet0, ListOfVars),
list__length(ListOfVars, ThisMany),
% We need to find out how many variables the
% Callee has
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
PredInfo, ProcInfo),
proc_info_varset(ProcInfo, CalleeVarSet),
varset__vars(CalleeVarSet, CalleeListOfVars),
list__length(CalleeListOfVars, CalleeThisMany),
TotalVars is ThisMany + CalleeThisMany,
TotalVars =< VarThresh
->
inlining__do_inline_call(HeadTypeParams, ArgVars, PredInfo,
ProcInfo, VarSet0, VarSet, VarTypes0, VarTypes,
TypeVarSet0, TypeVarSet, TypeInfoVarMap0,
TypeInfoVarMap, Goal - GoalInfo),
% If the inferred determinism of the called
% goal differs from the declared determinism,
% flag that we should re-run determinism analysis
% on this proc.
goal_info_get_determinism(GoalInfo0, Determinism0),
goal_info_get_determinism(GoalInfo, Determinism),
( Determinism0 = Determinism ->
DetChanged = DetChanged0
;
DetChanged = yes
)
;
Goal = call(PredId, ProcId, ArgVars, Builtin, Context, Sym),
GoalInfo = GoalInfo0,
VarSet = VarSet0,
VarTypes = VarTypes0,
TypeVarSet = TypeVarSet0,
TypeInfoVarMap = TypeInfoVarMap0,
DetChanged = DetChanged0
),
InlineInfo = inline_info(
VarThresh, InlinedProcs, ModuleInfo, HeadTypeParams,
VarSet, VarTypes, TypeVarSet, TypeInfoVarMap, DetChanged).
inlining__inlining_in_goal(higher_order_call(A, B, C, D, E, F) - GoalInfo,
higher_order_call(A, B, C, D, E, F) - GoalInfo) --> [].
inlining__inlining_in_goal(class_method_call(A, B, C, D, E, F) - GoalInfo,
class_method_call(A, B, C, D, E, F) - GoalInfo) --> [].
inlining__inlining_in_goal(unify(A, B, C, D, E) - GoalInfo,
unify(A, B, C, D, E) - GoalInfo) --> [].
inlining__inlining_in_goal(pragma_c_code(A, B, C, D, E, F, G) - GoalInfo,
pragma_c_code(A, B, C, D, E, F, G) - GoalInfo) --> [].
%-----------------------------------------------------------------------------%
inlining__do_inline_call(HeadTypeParams, ArgVars, PredInfo, ProcInfo,
VarSet0, VarSet, VarTypes0, VarTypes, TypeVarSet0, TypeVarSet,
TypeInfoVarMap0, TypeInfoVarMap, Goal) :-
proc_info_goal(ProcInfo, CalledGoal),
% look up the rest of the info for the called procedure.
pred_info_typevarset(PredInfo, CalleeTypeVarSet),
proc_info_headvars(ProcInfo, HeadVars),
proc_info_vartypes(ProcInfo, CalleeVarTypes0),
proc_info_varset(ProcInfo, CalleeVarSet),
varset__vars(CalleeVarSet, CalleeListOfVars),
proc_info_typeinfo_varmap(ProcInfo, CalleeTypeInfoVarMap0),
% Substitute the appropriate types into the type
% mapping of the called procedure. For example, if we
% call `:- pred foo(T)' with an argument of type
% `int', then we need to replace all occurrences of
% type `T' with type `int' when we inline it.
% Conversely, in the case of existentially typed preds,
% we may need to bind type variables in the caller.
% For example, if we call `:- pred some [T] foo(T)',
% and the definition of `foo' binds `T' to `int',
% then we need to replace all occurrences of type `T'
% with type `int' in the caller.
% first, rename apart the type variables in the callee.
% (we can almost throw away the new typevarset, since we
% are about to substitute away any new type variables,
% but any unbound type variables in the callee will not
% be substituted away)
varset__merge_subst(TypeVarSet0, CalleeTypeVarSet,
TypeVarSet, TypeRenaming),
apply_substitution_to_type_map(CalleeVarTypes0, TypeRenaming,
CalleeVarTypes1),
% next, compute the type substitution and then apply it
% Note: there's no need to update the type_info locations maps,
% either for the caller or callee, since for any type vars in the
% callee which get bound to type vars in the caller, the type_info
% location will be given by the entry in the caller's
% type_info locations map (and vice versa). It doesn't matter if the
% final type_info locations map contains some entries
% for type variables which have been substituted away,
% because those entries simply won't be used.
map__apply_to_list(HeadVars, CalleeVarTypes1, HeadTypes),
map__apply_to_list(ArgVars, VarTypes0, ArgTypes),
pred_info_get_exist_quant_tvars(PredInfo, CalleeExistQVars),
inlining__get_type_substitution(HeadTypes, ArgTypes, HeadTypeParams,
CalleeExistQVars, TypeSubn),
% handle the common case of non-existentially typed preds specially,
% since we can do things more efficiently in that case
( CalleeExistQVars = [] ->
% update types in callee only
apply_rec_substitution_to_type_map(CalleeVarTypes1,
TypeSubn, CalleeVarTypes),
VarTypes1 = VarTypes0
;
% update types in callee
apply_rec_substitution_to_type_map(CalleeVarTypes1,
TypeSubn, CalleeVarTypes),
% update types in caller
apply_rec_substitution_to_type_map(VarTypes0,
TypeSubn, VarTypes1)
),
% Now rename apart the variables in the called goal.
map__from_corresponding_lists(HeadVars, ArgVars, Subn0),
goal_util__create_variables(CalleeListOfVars, VarSet0,
VarTypes1, Subn0, CalleeVarTypes, CalleeVarSet,
VarSet, VarTypes, Subn),
goal_util__must_rename_vars_in_goal(CalledGoal, Subn, Goal),
apply_substitutions_to_var_map(CalleeTypeInfoVarMap0,
TypeRenaming, TypeSubn, Subn, CalleeTypeInfoVarMap1),
map__merge(TypeInfoVarMap0, CalleeTypeInfoVarMap1,
TypeInfoVarMap).
inlining__get_type_substitution(HeadTypes, ArgTypes,
HeadTypeParams, CalleeExistQVars, TypeSubn) :-
( CalleeExistQVars = [] ->
( type_list_subsumes(HeadTypes, ArgTypes, TypeSubn0) ->
TypeSubn = TypeSubn0
;
% The head types should always be unifiable with the
% actual argument types, otherwise it is a type error
% that should have been detected by typechecking.
% But polymorphism.m introduces type-incorrect code --
% e.g. compare(Res, EnumA, EnumB) gets converted
% into builtin_compare_int(Res, EnumA, EnumB), which
% is a type error since it assumes that an enumeration
% is an int. In those cases, we don't need to
% worry about the type substitution.
% (Perhaps it would be better if polymorphism introduced
% calls to unsafe_type_cast/2 for such cases.)
map__init(TypeSubn)
)
;
% for calls to existentially type preds, we may need to
% bind type variables in the caller, not just those in
% the callee
(
map__init(TypeSubn0),
type_unify_list(HeadTypes, ArgTypes, HeadTypeParams,
TypeSubn0, TypeSubn1)
->
TypeSubn = TypeSubn1
;
error("inlining.m: type unification failed")
)
).
%-----------------------------------------------------------------------------%
% inlining__inlining_in_disj is used for both disjunctions and
% parallel conjunctions.
:- pred inlining__inlining_in_disj(list(hlds_goal), list(hlds_goal),
inline_info, inline_info).
:- mode inlining__inlining_in_disj(in, out, in, out) is det.
inlining__inlining_in_disj([], []) --> [].
inlining__inlining_in_disj([Goal0 | Goals0], [Goal | Goals]) -->
inlining__inlining_in_goal(Goal0, Goal),
inlining__inlining_in_disj(Goals0, Goals).
%-----------------------------------------------------------------------------%
:- pred inlining__inlining_in_cases(list(case), list(case), inline_info,
inline_info).
:- mode inlining__inlining_in_cases(in, out, in, out) is det.
inlining__inlining_in_cases([], []) --> [].
inlining__inlining_in_cases([case(Cons, Goal0) | Goals0],
[case(Cons, Goal) | Goals]) -->
inlining__inlining_in_goal(Goal0, Goal),
inlining__inlining_in_cases(Goals0, Goals).
%-----------------------------------------------------------------------------%
:- pred inlining__inlining_in_conj(list(hlds_goal), list(hlds_goal),
inline_info, inline_info).
:- mode inlining__inlining_in_conj(in, out, in, out) is det.
% Since a single goal may become a conjunction,
% we flatten the conjunction as we go.
inlining__inlining_in_conj([], []) --> [].
inlining__inlining_in_conj([Goal0 | Goals0], Goals) -->
inlining__inlining_in_goal(Goal0, Goal1),
{ goal_to_conj_list(Goal1, Goal1List) },
inlining__inlining_in_conj(Goals0, Goals1),
{ list__append(Goal1List, Goals1, Goals) }.
%-----------------------------------------------------------------------------%
% Check to see if we should inline a call.
%
% Fails if the called predicate is a builtin or is imported.
%
% Succeeds if the called predicate has an annotation
% indicating that it should be inlined, or if the goal
% is a conjunction of builtins.
:- pred inlining__should_inline_proc(pred_id, proc_id, builtin_state,
set(pred_proc_id), module_info).
:- mode inlining__should_inline_proc(in, in, in, in, in) is semidet.
inlining__should_inline_proc(PredId, ProcId, BuiltinState, InlinedProcs,
ModuleInfo) :-
% don't inline builtins, the code generator will handle them
BuiltinState = not_builtin,
% don't try to inline imported predicates, since we don't
% have the code for them.
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, PredInfo,
ProcInfo),
\+ pred_info_is_imported(PredInfo),
% this next line catches the case of locally defined
% unification predicates for imported types.
\+ (
pred_info_is_pseudo_imported(PredInfo),
hlds_pred__in_in_unification_proc_id(ProcId)
),
% Only try to inline procedures which are evaluated using
% normal evaluation. Currently we can't inline procs evaluated
% using any of the other methods because the code generator for
% the methods can only handle whole procedures not code
% fragments.
proc_info_eval_method(ProcInfo, eval_normal),
% don't inlining anything we have been specifically requested
% not to inline.
\+ pred_info_requested_no_inlining(PredInfo),
% OK, we could inline it - but should we? Apply our heuristic.
(
pred_info_requested_inlining(PredInfo)
;
set__member(proc(PredId, ProcId), InlinedProcs)
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%