Files
mercury/compiler/rl_stream.m
Zoltan Somogyi 885fd4a387 Remove almost all dependencies by the modules of parse_tree.m on the modules
Estimated hours taken: 12
Branches: main

Remove almost all dependencies by the modules of parse_tree.m on the modules
of hlds.m. The only such dependencies remaining now are on type_util.m.

compiler/hlds_data.m:
compiler/prog_data.m:
	Move the cons_id type from hlds_data to prog_data, since several parts
	of the parse tree data structure depend on it (particularly insts).
	Remove the need to import HLDS modules in prog_data.m by making the
	cons_ids that refer to procedure ids refer to them via a new type
	that contains shrouded pred_ids and proc_ids. Since pred_ids and
	proc_ids are abstract types in hlds_data, add predicates to hlds_data
	to shroud and unshroud them.

	Also move some other types, e.g. mode_id and class_id, from hlds_data
	to prog_data.

compiler/hlds_data.m:
compiler/prog_util.m:
	Move predicates for manipulating cons_ids from hlds_data to prog_util.

compiler/inst.m:
compiler/prog_data.m:
	Move the contents of inst.m to prog_data.m, since that is where it
	belongs, and since doing so eliminates a circular dependency.
	The separation doesn't serve any purpose any more, since we don't
	need to import hlds_data.m anymore to get access to the cons_id type.

compiler/mode_util.m:
compiler/prog_mode.m:
compiler/parse_tree.m:
	Move the predicates in mode_util that don't depend on the HLDS to a new
	module prog_mode, which is part of parse_tree.m.

compiler/notes/compiler_design.m:
	Mention prog_mode.m, and delete the mention of inst.m.

compiler/mercury_to_mercury.m:
compiler/hlds_out.m:
	Move the predicates that depend on HLDS out of mercury_to_mercury.m
	to hlds_out.m. Export from mercury_to_mercury.m the predicates needed
	by the moved predicates.

compiler/hlds_out.m:
compiler/prog_out.m:
	Move predicates for printing parts of the parse tree out of hlds_out.m
	to prog_out.m, since mercury_to_mercury.m needs to use them.

compiler/purity.m:
compiler/prog_out.m:
	Move predicates for printing purities from purity.m, which is part
	of check_hlds.m, to prog_out.m, since mercury_to_mercury.m needs to use
	them.

compiler/passes_aux.m:
compiler/prog_out.m:
	Move some utility predicates (e.g. for printing progress messages) from
	passes_aux.m to prog_out.m, since some predicates in submodules of
	parse_tree.m need to use them.

compiler/foreign.m:
compiler/prog_data.m:
	Move some types from foreign.m to prog_data.m to allow the elimination
	of some dependencies on foreign.m from submodules of parse_tree.m.

compiler/*.m:
	Conform to the changes above, mostly by updating lists of imported
	modules and module qualifications. In some cases, also do some local
	cleanups such as converting predicate declarations to predmode syntax
	and fixing white space.
2004-06-14 04:17:03 +00:00

490 lines
18 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1998-2000, 2003-2004 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: rl_stream.m
% Main author: stayl
%
% The output of a relational operation can be used as a stream if it is
% used only once after it is produced and if indexing is not required.
% A stream is never stored in its entirety - it is produced one tuple at
% a time as needed.
%
% Some operations have both a stream output and one or more materialised
% outputs (union_diff, insert and project). If any of these materialised
% outputs are used before the stream output is traversed in its entirety,
% the stream output must be materialised.
%
% By default, a temporary relation should have status stream. This module
% finds temporary relations which cannot be used as streams and makes
% sure they are materialised.
%
% The algorithm used follows the chain of blocks in the procedure, dividing
% the procedure up into sections containing no back arcs in the flow graph.
% A relation which becomes live and then dies within that region only
% being used once can be turned into a stream.
%
% This pass should be run last, after rl_liveness.
%
%-----------------------------------------------------------------------------%
:- module aditi_backend__rl_stream.
:- interface.
:- import_module aditi_backend__rl_block.
:- pred rl_stream__detect_streams(rl_opt_info, rl_opt_info).
:- mode rl_stream__detect_streams(in, out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module aditi_backend__rl.
:- import_module assoc_list, bag, int, list, map, multi_map.
:- import_module relation, require, set, std_util.
:- type stream_info
---> stream_info(
set(relation_id), % must materialise rels
bag(relation_id), % use counts - must be one
% if the relation is to be
% streamed.
relation(relation_id)
% aliases introduced by `ref'.
).
%-----------------------------------------------------------------------------%
rl_stream__detect_streams -->
rl_opt_info_get_rev_block_order(RevOrder),
{ list__reverse(RevOrder, Order) },
rl_opt_info_get_input_relations(Inputs),
rl_opt_info_get_output_relations(Outputs),
rl_opt_info_get_memoed_relations(Memoed),
{ set__insert_list(Memoed, Inputs, Materialise0) },
{ set__insert_list(Materialise0, Outputs, Materialise1) },
rl_stream__detect_streams_2(Order, Materialise1, Materialise2),
{ set__to_sorted_list(Materialise2, Materialise) },
list__foldl(rl_stream__update_must_materialise, Materialise).
:- pred rl_stream__detect_streams_2(list(block_id)::in, set(relation_id)::in,
set(relation_id)::out, rl_opt_info::in, rl_opt_info::out) is det.
rl_stream__detect_streams_2([], Materialise, Materialise) --> [].
rl_stream__detect_streams_2([Block | Order0], Materialise0, Materialise) -->
{ bag__init(Uses) },
{ relation__init(Aliases) },
{ Info0 = stream_info(Materialise0, Uses, Aliases) },
rl_opt_info_get_flow_graph(Graph),
{ rl_stream__get_blocks_to_back_arc(Graph, [Block | Order0], Order,
[], BlockList) },
{ set__list_to_set(BlockList, BlockSet) },
rl_opt_info_get_block_map(BlockMap),
{ list__foldl(rl_stream__detect_must_materialise_rels(Graph,
BlockMap, BlockSet),
BlockList, Info0, Info1) },
{ rl_stream__detect_multiple_use_rels(Graph, BlockMap, BlockList, Info1,
Block, Info1, Info) },
{ Info = stream_info(Materialise1, _, _) },
rl_stream__detect_streams_2(Order, Materialise1, Materialise).
% Collect all blocks in the list up to the instruction which is
% the source or target of the first back arc in the graph.
:- pred rl_stream__get_blocks_to_back_arc(flow_graph::in, list(block_id)::in,
list(block_id)::out, list(block_id)::in, list(block_id)::out) is det.
rl_stream__get_blocks_to_back_arc(_, [], [], Blocks0, Blocks) :-
list__reverse(Blocks0, Blocks).
rl_stream__get_blocks_to_back_arc(Graph, [Block | Order0], Order,
Blocks0, Blocks) :-
relation__lookup_element(Graph, Block, BlockKey),
relation__lookup_to(Graph, BlockKey, CallingBlockKeys),
relation__lookup_from(Graph, BlockKey, CalledBlockKeys),
(
% Check that a calling block is not later in the sequence,
% if this is not the first block in the list to check.
Blocks0 \= [],
set__member(CallingBlockKey, CallingBlockKeys),
relation__lookup_key(Graph, CallingBlockKey, CallingBlock),
list__member(CallingBlock, Order0)
->
list__reverse(Blocks0, Blocks),
Order = [Block | Order0]
;
% Check that all called blocks are later in the sequence.
set__member(CalledBlockKey, CalledBlockKeys),
relation__lookup_key(Graph, CalledBlockKey, CalledBlock),
\+ list__member(CalledBlock, [Block | Order0])
->
list__reverse([Block | Blocks0], Blocks),
Order = Order0
;
rl_stream__get_blocks_to_back_arc(Graph, Order0, Order,
[Block | Blocks0], Blocks)
).
% Any relations which are live on entry or exit to
% this block list must be materialised.
:- pred rl_stream__detect_must_materialise_rels(flow_graph::in, block_map::in,
set(block_id)::in, block_id::in,
stream_info::in, stream_info::out) is det.
rl_stream__detect_must_materialise_rels(Graph, BlockMap,
Blocks, BlockId, Info0, Info) :-
map__lookup(BlockMap, BlockId, Block),
%
% Work out which relations are live on exit from this group of blocks.
%
relation__lookup_element(Graph, BlockId, BlockKey),
relation__lookup_to(Graph, BlockKey, CallingBlockKeys0),
set__to_sorted_list(CallingBlockKeys0, CallingBlockKeys),
relation__lookup_from(Graph, BlockKey, CalledBlockKeys0),
set__to_sorted_list(CalledBlockKeys0, CalledBlockKeys),
list__map(relation__lookup_key(Graph),
CallingBlockKeys, CallingBlocks),
set__list_to_set(CallingBlocks, CallingBlockSet),
set__difference(CallingBlockSet, Blocks, OutsideCallingBlocks0),
set__to_sorted_list(OutsideCallingBlocks0, OutsideCallingBlocks),
list__map(rl_stream__get_final_live_rels(BlockMap),
OutsideCallingBlocks, FinalLive0),
list__condense(FinalLive0, FinalLive),
rl_stream__add_must_materialise_rels(FinalLive, Info0, Info1),
%
% Work out which relations are live on entry to this group of blocks.
%
list__map(relation__lookup_key(Graph), CalledBlockKeys, CalledBlocks),
set__list_to_set(CalledBlocks, CalledBlockSet),
set__difference(CalledBlockSet, Blocks, OutsideCalledBlocks0),
set__to_sorted_list(OutsideCalledBlocks0, OutsideCalledBlocks),
list__map(rl_stream__get_initial_live_rels(BlockMap),
OutsideCalledBlocks, InitialLive0),
list__condense(InitialLive0, InitialLive),
rl_stream__add_must_materialise_rels(InitialLive, Info1, Info2),
%
% Work out which relations are required to be
% materialised by some instruction.
%
Block = block(_, Instrs, MaybeBranch, _),
AddMustMaterialiseRels =
(pred(Instr::in, StreamInfo0::in, StreamInfo::out) is det :-
rl_stream__must_materialise_rels(Instr, Rels),
rl_stream__add_must_materialise_rels(Rels,
StreamInfo0, StreamInfo)
),
list__foldl(AddMustMaterialiseRels, Instrs, Info2, Info3),
( MaybeBranch = yes(Branch) ->
AddMustMaterialiseRels(Branch, Info3, Info)
;
Info = Info3
).
:- pred rl_stream__get_initial_live_rels(block_map::in,
block_id::in, list(relation_id)::out) is det.
rl_stream__get_initial_live_rels(BlockMap, BlockId, LiveRels) :-
map__lookup(BlockMap, BlockId,
block(_, _, _, block_info(LiveRels0, _))),
set__to_sorted_list(LiveRels0, LiveRels).
:- pred rl_stream__get_final_live_rels(block_map::in,
block_id::in, list(relation_id)::out) is det.
rl_stream__get_final_live_rels(BlockMap, BlockId, LiveRels) :-
map__lookup(BlockMap, BlockId,
block(_, _, _, block_info(_, LiveRels0))),
set__to_sorted_list(LiveRels0, LiveRels).
:- pred rl_stream__detect_multiple_use_rels(flow_graph::in, block_map::in,
list(block_id)::in, stream_info::in,
block_id::in, stream_info::in, stream_info::out) is det.
rl_stream__detect_multiple_use_rels(Graph, BlockMap, BlockIds, InitialInfo,
BlockId, Info0, Info) :-
InitialInfo = stream_info(_, Uses, Aliases),
Info0 = stream_info(Materialise, _, _),
Info1 = stream_info(Materialise, Uses, Aliases),
map__lookup(BlockMap, BlockId, Block),
Block = block(_, Instrs, MaybeBranch, _),
list__foldl(rl_stream__detect_streams_instr, Instrs, Info1, Info2),
( MaybeBranch = yes(Branch) ->
rl_stream__detect_streams_instr(Branch, Info2, Info3)
;
Info3 = Info2
),
relation__lookup_element(Graph, BlockId, BlockKey),
relation__lookup_from(Graph, BlockKey, CalledBlockKeys0),
set__to_sorted_list(CalledBlockKeys0, CalledBlockKeys),
list__map(relation__lookup_key(Graph),
CalledBlockKeys, CalledBlocks),
rl_stream__inside_and_after(CalledBlocks,
BlockId, BlockIds, InsideLaterCalledBlocks),
( InsideLaterCalledBlocks = [] ->
rl_stream__end_block_list(Info3, Info)
;
list__foldl(rl_stream__detect_multiple_use_rels(Graph,
BlockMap, BlockIds, Info3),
InsideLaterCalledBlocks, Info0, Info)
).
% Find all called blocks inside the set of interest and
% after the given one -- we don't want to go back around a loop.
:- pred rl_stream__inside_and_after(list(block_id)::in, block_id::in,
list(block_id)::in, list(block_id)::out) is det.
rl_stream__inside_and_after(CalledBlocks, BlockId,
BlockIds, InsideLaterCalledBlocks) :-
(
list__nth_member_search(BlockIds, BlockId, N),
N1 = N - 1,
list__split_list(N1, BlockIds, _, AfterBlockIds0),
AfterBlockIds0 = [BlockId | AfterBlockIds]
->
list__filter((pred(CalledBlock::in) is semidet :-
list__member(CalledBlock, AfterBlockIds)
), CalledBlocks, InsideLaterCalledBlocks)
;
error("rl_stream__inside_and_after")
).
%-----------------------------------------------------------------------------%
:- pred rl_stream__detect_streams_instr(rl_instruction::in,
stream_info::in, stream_info::out) is det.
rl_stream__detect_streams_instr(Instr) -->
(
{ Instr = ref(Output, Input) - _ }
->
rl_stream__add_alias(Output, Input)
;
{ Instr = join(output_rel(Output, _), Input1, Input2,
_, _, _, Trivial) - "" },
{ Trivial = yes(
trivial_join_or_subtract_info(ReturnedTuple, no)) }
->
% For a trivial join with no projection,
% a reference may be taken to the relation
% on which the join condition depends.
(
{ ReturnedTuple = one },
rl_stream__add_alias(Output, Input1),
rl_stream__update_counts([Input2])
;
{ ReturnedTuple = two },
rl_stream__add_alias(Output, Input2),
rl_stream__update_counts([Input1])
)
;
% For a trivial semi-subtract, a reference may be
% taken to the relation being subtracted from.
{ Instr = subtract(output_rel(Output, _), Input1, Input2,
_, _, Trivial) - "" },
{ Trivial = yes(
trivial_join_or_subtract_info(UsedTuple, _)) }
->
rl_stream__add_alias(Output, Input1),
(
{ UsedTuple = one },
rl_stream__update_counts([Input1, Input2])
;
{ UsedTuple = two },
rl_stream__update_counts([Input2])
)
;
{ rl__instr_relations(Instr, Inputs, _) },
rl_stream__update_counts(Inputs)
).
%-----------------------------------------------------------------------------%
:- pred rl_stream__end_block_list(stream_info::in, stream_info::out) is det.
rl_stream__end_block_list(Info0, Info) :-
Info0 = stream_info(Materialise0, Uses, Aliases0),
relation__rtc(Aliases0, Aliases),
relation__domain(Aliases, AliasedRels0),
bag__to_assoc_list(Uses, UsesAL),
assoc_list__keys(UsesAL, UsedRels),
set__insert_list(AliasedRels0, UsedRels, RelsToCheck0),
set__to_sorted_list(RelsToCheck0, RelsToCheck),
list__foldl(rl_stream__end_block_check_relation(Uses, Aliases),
RelsToCheck, Materialise0, Materialise),
Info = stream_info(Materialise, Uses, Aliases).
% Work out which relations used in this block need to be materialised.
:- pred rl_stream__end_block_check_relation(bag(relation_id)::in,
relation(relation_id)::in, relation_id::in,
set(relation_id)::in, set(relation_id)::out) is det.
rl_stream__end_block_check_relation(Uses, Aliases, Relation,
Materialise0, Materialise) :-
( relation__search_element(Aliases, Relation, RelationKey) ->
relation__lookup_to(Aliases, RelationKey, AliasRelationKeys0),
set__to_sorted_list(AliasRelationKeys0, AliasRelationKeys),
list__map(relation__lookup_key(Aliases),
AliasRelationKeys, Relations0)
;
Relations0 = [Relation]
),
set__list_to_set(Relations0, Relations),
set__intersect(Relations, Materialise0, Intersect),
( set__empty(Intersect) ->
set__to_sorted_list(Relations, RelationsList),
list__map(bag__count_value(Uses), RelationsList, Counts),
list__foldl((pred(X::in, Y::in, Z::out) is det :- Z = X + Y),
Counts, 0, NumUses),
( NumUses = 1 ->
Materialise = Materialise0
;
set__union(Materialise0, Relations, Materialise)
)
;
set__union(Materialise0, Relations, Materialise)
).
%-----------------------------------------------------------------------------%
% Ensure that the status of a materialised temporary is correct.
:- pred rl_stream__update_must_materialise(relation_id::in,
rl_opt_info::in, rl_opt_info::out) is det.
rl_stream__update_must_materialise(RelationId) -->
rl_opt_info_get_relation_info(RelationId, RelationInfo0),
{ RelationInfo0 = relation_info(Type0, B, C, D) },
( { Type0 = temporary(stream) } ->
rl_opt_info_set_relation_info(RelationId,
relation_info(temporary(materialised), B, C, D))
;
[]
).
%-----------------------------------------------------------------------------%
% Increment the usage counts for the list of relations.
:- pred rl_stream__update_counts(list(relation_id)::in, stream_info::in,
stream_info::out) is det.
rl_stream__update_counts(RelationIds, Info0, Info) :-
Info0 = stream_info(A, Counts0, C),
bag__insert_list(Counts0, RelationIds, Counts),
Info = stream_info(A, Counts, C).
%-----------------------------------------------------------------------------%
:- pred rl_stream__add_must_materialise_rels(list(relation_id)::in,
stream_info::in, stream_info::out) is det.
rl_stream__add_must_materialise_rels(Rels, Info0, Info) :-
Info0 = stream_info(Materialise0, B, C),
set__insert_list(Materialise0, Rels, Materialise),
Info = stream_info(Materialise, B, C).
%-----------------------------------------------------------------------------%
:- pred rl_stream__add_alias(relation_id::in, relation_id::in,
stream_info::in, stream_info::out) is det.
rl_stream__add_alias(Rel1, Rel2, Info0, Info) :-
Info0 = stream_info(A, B, Aliases0),
relation__add_values(Aliases0, Rel1, Rel2, Aliases1),
relation__add_values(Aliases1, Rel2, Rel1, Aliases),
Info = stream_info(A, B, Aliases).
%-----------------------------------------------------------------------------%
% Return the list of relations which the given instruction requires
% to be materialised.
:- pred rl_stream__must_materialise_rels(rl_instruction, list(relation_id)).
:- mode rl_stream__must_materialise_rels(in, out) is det.
rl_stream__must_materialise_rels(join(Output, _, _, _, _, _, _) - _,
Materialise) :-
rl_stream__output_is_indexed(Output, Materialise).
rl_stream__must_materialise_rels(subtract(Output, _, _, _, _, _) - _,
Materialise) :-
rl_stream__output_is_indexed(Output, Materialise).
rl_stream__must_materialise_rels(difference(Output, _, _, _) - _,
Materialise) :-
rl_stream__output_is_indexed(Output, Materialise).
rl_stream__must_materialise_rels(project(Output, _, _, OtherOutputs, _) - _,
Materialise) :-
( OtherOutputs = [] ->
rl_stream__output_is_indexed(Output, Materialise)
;
% XXX The first output in this case doesn't actually have
% to be materialised, but see the comment on union_diff below
% to see why we do it anyway.
assoc_list__keys(OtherOutputs, Outputs),
list__map(rl__output_rel_relation, [Output | Outputs],
Materialise)
).
rl_stream__must_materialise_rels(union(Output, _, _) - _, Materialise) :-
rl_stream__output_is_indexed(Output, Materialise).
% XXX the difference doesn't actually have to be materialised,
% but it's a difficult case to handle because we have to be
% sure that the difference is fully looked at somewhere to
% force the update of the I/O relation, and also we need to
% be sure that this happens before the I/O relation is used.
rl_stream__must_materialise_rels(union_diff(UoOutput, DiInput, _,
output_rel(Difference, _), _, _) - _,
[UoOutput, DiInput, Difference]).
rl_stream__must_materialise_rels(insert(UoOutput, DiInput, _, _, _) - _,
[UoOutput, DiInput]).
rl_stream__must_materialise_rels(sort(Output, _, _) - _, Materialise) :-
rl_stream__output_is_indexed(Output, Materialise).
rl_stream__must_materialise_rels(unset(_) - _, []).
rl_stream__must_materialise_rels(init(output_rel(Rel, _)) - _, [Rel]).
rl_stream__must_materialise_rels(insert_tuple(Output, _, _) - _,
Materialise) :-
rl_stream__output_is_indexed(Output, Materialise).
% Indexed relations must always be materialised.
rl_stream__must_materialise_rels(add_index(output_rel(Output, _), Input) - _,
[Input, Output]).
rl_stream__must_materialise_rels(clear(Rel) - _, [Rel]).
rl_stream__must_materialise_rels(ref(_, _) - _, []).
rl_stream__must_materialise_rels(copy(output_rel(Output, _), Input) - _,
[Output, Input]).
rl_stream__must_materialise_rels(make_unique(output_rel(Output, _), Input) - _,
[Output, Input]).
rl_stream__must_materialise_rels(label(_) - _, []).
rl_stream__must_materialise_rels(conditional_goto(Cond, _) - _, Rels) :-
rl__goto_cond_relations(Cond, Rels).
rl_stream__must_materialise_rels(goto(_) - _, []).
rl_stream__must_materialise_rels(comment - _, []).
rl_stream__must_materialise_rels(aggregate(_, _, _, _) - _, []).
rl_stream__must_materialise_rels(call(_, Inputs, OutputRels, _) - _,
Materialise) :-
list__map(rl__output_rel_relation, OutputRels, Outputs),
list__append(Inputs, Outputs, Materialise).
:- pred rl_stream__outputs_are_indexed(list(output_rel)::in,
list(relation_id)::out) is det.
rl_stream__outputs_are_indexed(Outputs, Indexed) :-
list__filter_map((pred(OutputRel::in, Output::out) is semidet :-
OutputRel = output_rel(Output, Indexes),
Indexes = [_ | _]
), Outputs, Indexed).
:- pred rl_stream__output_is_indexed(output_rel::in,
list(relation_id)::out) is det.
rl_stream__output_is_indexed(output_rel(Output, Indexes), Indexed) :-
( Indexes = [] ->
Indexed = []
;
Indexed = [Output]
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%