mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-18 07:15:19 +00:00
Estimated hours taken: 6 Branches: main Add the foreign proc. attribute `will_not_throw_exception'. This allows the user to promise the exception analysis that foreign procs that do not have determinism erroneous and make calls back to Mercury will not throw an exception. The behaviour for erroneous foreign procs and those that do not make calls back to Mercury is unchanged. compiler/prog_data.m: compiler/prog_io_pragma.m: Handle the new attribute. compiler/exception_analysis.m: If the user has provided the `will_not_throw_exception' attribute on a foreign proc that makes calls back to Mercury then set then have the exception analysis take account of this information. Fix a typo. compiler/det_analysis.m: compiler/det_report.m: Emit an error if the `will_not_throw_exception' attribute is used on foreign procs. that have been declared erroneous. doc/reference_manual.texi: Mention the new foreign proc attribute. tests/term/Mmakefile: tests/term/Mercury.options: tests/term/promise_no_throw_exception.m: tests/term/promise_no_throw_exception.trans_opt_exp: tests/invalid/Mmakefile: tests/invalid/erroneous_promise_throw.m: tests/invalid/erroneous_proimse_throw.err_exp: Test cases for the above. vim/syntax/mercury.vim: Highlight the annotation appropriately.
1327 lines
47 KiB
Mathematica
1327 lines
47 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1994-2004 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% det_analysis.m - the determinism analysis pass.
|
|
|
|
% Main authors: conway, fjh, zs.
|
|
|
|
% This pass has three components:
|
|
%
|
|
% o Segregate the procedures into those that have determinism
|
|
% declarations, and those that don't
|
|
%
|
|
% o A step of performing a local inference pass on each procedure
|
|
% without a determinism declaration is iterated until
|
|
% a fixpoint is reached
|
|
%
|
|
% o A checking step is performed on all the procedures that have
|
|
% determinism declarations to ensure that they are at
|
|
% least as deterministic as their declaration. This uses
|
|
% a form of the local inference pass.
|
|
%
|
|
% If we are to avoid global inference for predicates with
|
|
% declarations, then it must be an error, not just a warning,
|
|
% if the determinism checking step detects that the determinism
|
|
% annotation was wrong. If we were to issue just a warning, then
|
|
% we would have to override the determinism annotation, and that
|
|
% would force us to re-check the inferred determinism for all
|
|
% calling predicates.
|
|
%
|
|
% Alternately, we could leave it as a warning, but then we would
|
|
% have to _make_ the predicate deterministic (or semideterministic)
|
|
% by inserting run-time checking code which calls error/1 if the
|
|
% predicate really isn't deterministic (semideterministic).
|
|
|
|
% Determinism has three components:
|
|
%
|
|
% whether a goal can fail
|
|
% whether a goal has more than one possible solution
|
|
% whether a goal occurs in a context where only the first solution
|
|
% is required
|
|
%
|
|
% The first two components are synthesized attributes: they are inferred
|
|
% bottom-up. The last component is an inherited attribute: it is
|
|
% propagated top-down.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module check_hlds__det_analysis.
|
|
|
|
:- interface.
|
|
|
|
:- import_module check_hlds__det_report.
|
|
:- import_module check_hlds__det_util.
|
|
:- import_module hlds__hlds_data.
|
|
:- import_module hlds__hlds_goal.
|
|
:- import_module hlds__hlds_module.
|
|
:- import_module hlds__hlds_pred.
|
|
:- import_module hlds__instmap.
|
|
:- import_module libs__globals.
|
|
:- import_module parse_tree__prog_data.
|
|
|
|
:- import_module list, std_util, io.
|
|
|
|
% Perform determinism inference for local predicates with no
|
|
% determinism declarations, and determinism checking for all other
|
|
% predicates.
|
|
:- pred determinism_pass(module_info::in, module_info::out,
|
|
io::di, io::uo) is det.
|
|
|
|
% Check the determinism of a single procedure
|
|
% (only works if the determinism of the procedures it calls
|
|
% has already been inferred).
|
|
:- pred determinism_check_proc(proc_id::in, pred_id::in,
|
|
module_info::in, module_info::out, io::di, io::uo) is det.
|
|
|
|
% Infer the determinism of a procedure.
|
|
|
|
:- pred det_infer_proc(pred_id::in, proc_id::in, module_info::in,
|
|
module_info::out, globals::in, determinism::out, determinism::out,
|
|
list(det_msg)::out) is det.
|
|
|
|
% Infers the determinism of `Goal0' and returns this in `Detism'.
|
|
% It annotates the goal and all its subgoals with their determinism
|
|
% and returns the annotated goal in `Goal'.
|
|
|
|
:- pred det_infer_goal(hlds_goal::in, instmap::in, soln_context::in,
|
|
det_info::in, hlds_goal::out, determinism::out, list(det_msg)::out)
|
|
is det.
|
|
|
|
% Work out how many solutions are needed for a given determinism.
|
|
:- pred det_get_soln_context(determinism::in, soln_context::out) is det.
|
|
|
|
:- type soln_context
|
|
---> all_solns
|
|
; first_soln.
|
|
|
|
% The tables for computing the determinism of compound goals
|
|
% from the determinism of their components.
|
|
|
|
:- pred det_conjunction_detism(determinism::in, determinism::in,
|
|
determinism::out) is det.
|
|
|
|
:- pred det_par_conjunction_detism(determinism::in, determinism::in,
|
|
determinism::out) is det.
|
|
|
|
:- pred det_switch_detism(determinism::in, determinism::in, determinism::out)
|
|
is det.
|
|
|
|
:- pred det_disjunction_maxsoln(soln_count::in, soln_count::in,
|
|
soln_count::out) is det.
|
|
|
|
:- pred det_disjunction_canfail(can_fail::in, can_fail::in, can_fail::out)
|
|
is det.
|
|
|
|
:- pred det_switch_maxsoln(soln_count::in, soln_count::in, soln_count::out)
|
|
is det.
|
|
|
|
:- pred det_switch_canfail(can_fail::in, can_fail::in, can_fail::out) is det.
|
|
|
|
:- pred det_negation_det(determinism::in, maybe(determinism)::out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module check_hlds__mode_util.
|
|
:- import_module check_hlds__modecheck_call.
|
|
:- import_module check_hlds__purity.
|
|
:- import_module check_hlds__type_util.
|
|
:- import_module hlds__code_model.
|
|
:- import_module hlds__hlds_out.
|
|
:- import_module hlds__passes_aux.
|
|
:- import_module libs__options.
|
|
:- import_module parse_tree__mercury_to_mercury.
|
|
:- import_module parse_tree__prog_out.
|
|
|
|
:- import_module string, assoc_list, bool, map, set, require, term.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
determinism_pass(!ModuleInfo, !IO) :-
|
|
determinism_declarations(!.ModuleInfo, DeclaredProcs,
|
|
UndeclaredProcs, NoInferProcs),
|
|
list__foldl(set_non_inferred_proc_determinism, NoInferProcs,
|
|
!ModuleInfo),
|
|
globals__io_lookup_bool_option(verbose, Verbose, !IO),
|
|
globals__io_lookup_bool_option(debug_det, Debug, !IO),
|
|
( UndeclaredProcs = [] ->
|
|
true
|
|
;
|
|
maybe_write_string(Verbose,
|
|
"% Doing determinism inference...\n", !IO),
|
|
global_inference_pass(!ModuleInfo, UndeclaredProcs, Debug,
|
|
!IO),
|
|
maybe_write_string(Verbose, "% done.\n", !IO)
|
|
),
|
|
maybe_write_string(Verbose, "% Doing determinism checking...\n", !IO),
|
|
global_final_pass(!ModuleInfo, DeclaredProcs, Debug, !IO),
|
|
maybe_write_string(Verbose, "% done.\n", !IO).
|
|
|
|
determinism_check_proc(ProcId, PredId, !ModuleInfo, !IO) :-
|
|
globals__io_lookup_bool_option(debug_det, Debug, !IO),
|
|
global_final_pass(!ModuleInfo, [proc(PredId, ProcId)], Debug, !IO).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred global_inference_pass(module_info::in, module_info::out,
|
|
pred_proc_list::in, bool::in, io::di, io::uo) is det.
|
|
|
|
% Iterate until a fixpoint is reached. This can be expensive
|
|
% if a module has many predicates with undeclared determinisms.
|
|
% If this ever becomes a problem, we should switch to doing
|
|
% iterations only on strongly connected components of the
|
|
% dependency graph.
|
|
|
|
global_inference_pass(!ModuleInfo, ProcList, Debug, !IO) :-
|
|
global_inference_single_pass(ProcList, Debug, !ModuleInfo, [], Msgs,
|
|
unchanged, Changed, !IO),
|
|
maybe_write_string(Debug, "% Inference pass complete\n", !IO),
|
|
( Changed = changed ->
|
|
global_inference_pass(!ModuleInfo, ProcList, Debug, !IO)
|
|
;
|
|
% We have arrived at a fixpoint. Therefore all the messages we
|
|
% have are based on the final determinisms of all procedures,
|
|
% which means it is safe to print them.
|
|
det_report_and_handle_msgs(Msgs, !ModuleInfo, !IO)
|
|
).
|
|
|
|
:- pred global_inference_single_pass(pred_proc_list::in, bool::in,
|
|
module_info::in, module_info::out,
|
|
list(det_msg)::in, list(det_msg)::out,
|
|
maybe_changed::in, maybe_changed::out, io::di, io::uo) is det.
|
|
|
|
global_inference_single_pass([], _, !ModuleInfo, !Msgs, !Changed, !IO).
|
|
global_inference_single_pass([proc(PredId, ProcId) | PredProcs], Debug,
|
|
!ModuleInfo, !Msgs, !Changed, !IO) :-
|
|
globals__io_get_globals(Globals, !IO),
|
|
det_infer_proc(PredId, ProcId, !ModuleInfo, Globals,
|
|
Detism0, Detism, ProcMsgs),
|
|
( Detism = Detism0 ->
|
|
ChangeStr = "old"
|
|
;
|
|
ChangeStr = "new",
|
|
!:Changed = changed
|
|
),
|
|
( Debug = yes ->
|
|
io__write_string("% Inferred " ++ ChangeStr ++ " detism ",
|
|
!IO),
|
|
mercury_output_det(Detism, !IO),
|
|
io__write_string(" for ", !IO),
|
|
hlds_out__write_pred_proc_id(!.ModuleInfo,
|
|
PredId, ProcId, !IO),
|
|
io__write_string("\n", !IO)
|
|
;
|
|
true
|
|
),
|
|
list__append(ProcMsgs, !Msgs),
|
|
global_inference_single_pass(PredProcs, Debug, !ModuleInfo, !Msgs,
|
|
!Changed, !IO).
|
|
|
|
:- pred global_final_pass(module_info::in, module_info::out,
|
|
pred_proc_list::in, bool::in, io::di, io::uo) is det.
|
|
|
|
global_final_pass(!ModuleInfo, ProcList, Debug, !IO) :-
|
|
global_inference_single_pass(ProcList, Debug, !ModuleInfo,
|
|
[], Msgs, unchanged, _, !IO),
|
|
det_report_and_handle_msgs(Msgs, !ModuleInfo, !IO),
|
|
global_checking_pass(ProcList, !ModuleInfo, !IO).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
det_infer_proc(PredId, ProcId, !ModuleInfo, Globals, Detism0, Detism,
|
|
!:Msgs) :-
|
|
|
|
% Get the proc_info structure for this procedure
|
|
module_info_preds(!.ModuleInfo, Preds0),
|
|
map__lookup(Preds0, PredId, Pred0),
|
|
pred_info_procedures(Pred0, Procs0),
|
|
map__lookup(Procs0, ProcId, Proc0),
|
|
|
|
% Remember the old inferred determinism of this procedure
|
|
proc_info_inferred_determinism(Proc0, Detism0),
|
|
|
|
% Work out whether the procedure occurs in a single-solution
|
|
% context or not. Currently we only assume so if
|
|
% the predicate has an explicit determinism declaration
|
|
% that says so.
|
|
det_get_soln_context(Detism0, OldInferredSolnContext),
|
|
proc_info_declared_determinism(Proc0, MaybeDeclaredDetism),
|
|
(
|
|
MaybeDeclaredDetism = yes(DeclaredDetism),
|
|
det_get_soln_context(DeclaredDetism, DeclaredSolnContext)
|
|
;
|
|
MaybeDeclaredDetism = no,
|
|
DeclaredSolnContext = all_solns
|
|
),
|
|
(
|
|
( DeclaredSolnContext = first_soln
|
|
; OldInferredSolnContext = first_soln
|
|
)
|
|
->
|
|
SolnContext = first_soln
|
|
;
|
|
SolnContext = all_solns
|
|
),
|
|
|
|
% Infer the determinism of the goal
|
|
proc_info_goal(Proc0, Goal0),
|
|
proc_info_get_initial_instmap(Proc0, !.ModuleInfo, InstMap0),
|
|
proc_info_vartypes(Proc0, VarTypes),
|
|
det_info_init(!.ModuleInfo, VarTypes, PredId, ProcId, Globals,
|
|
DetInfo),
|
|
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
|
|
Goal, Detism1, !:Msgs),
|
|
|
|
% Take the worst of the old and new detisms.
|
|
% This is needed to prevent loops on p :- not(p)
|
|
% at least if the initial assumed detism is det.
|
|
% This may also be needed to ensure that we don't change
|
|
% the interface determinism of procedures, if we are
|
|
% re-running determinism analysis.
|
|
|
|
determinism_components(Detism0, CanFail0, MaxSoln0),
|
|
determinism_components(Detism1, CanFail1, MaxSoln1),
|
|
det_switch_canfail(CanFail0, CanFail1, CanFail),
|
|
det_switch_maxsoln(MaxSoln0, MaxSoln1, MaxSoln),
|
|
determinism_components(Detism2, CanFail, MaxSoln),
|
|
|
|
% Now see if the evaluation model can change the detism
|
|
proc_info_eval_method(Proc0, EvalMethod),
|
|
Detism = eval_method_change_determinism(EvalMethod, Detism2),
|
|
|
|
(
|
|
proc_info_has_io_state_pair(!.ModuleInfo, Proc,
|
|
_InArgNum, _OutArgNum),
|
|
(
|
|
MaybeDeclaredDetism = yes(CheckDetism)
|
|
;
|
|
MaybeDeclaredDetism = no,
|
|
CheckDetism = Detism
|
|
),
|
|
determinism_to_code_model(CheckDetism, CheckCodeModel),
|
|
CheckCodeModel \= model_det
|
|
->
|
|
!:Msgs = [has_io_state_but_not_det(PredId, ProcId) | !.Msgs]
|
|
;
|
|
true
|
|
),
|
|
|
|
% Save the newly inferred information
|
|
proc_info_set_goal(Goal, Proc0, Proc1),
|
|
proc_info_set_inferred_determinism(Detism, Proc1, Proc),
|
|
|
|
% Put back the new proc_info structure.
|
|
map__det_update(Procs0, ProcId, Proc, Procs),
|
|
pred_info_set_procedures(Procs, Pred0, Pred),
|
|
map__det_update(Preds0, PredId, Pred, Preds),
|
|
module_info_set_preds(Preds, !ModuleInfo).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
det_infer_goal(Goal0 - GoalInfo0, InstMap0, SolnContext0, DetInfo,
|
|
Goal - GoalInfo, Detism, Msgs) :-
|
|
goal_info_get_nonlocals(GoalInfo0, NonLocalVars),
|
|
goal_info_get_instmap_delta(GoalInfo0, DeltaInstMap),
|
|
|
|
% If a pure or semipure goal has no output variables,
|
|
% then the goal is in a single-solution context.
|
|
|
|
(
|
|
det_no_output_vars(NonLocalVars, InstMap0, DeltaInstMap,
|
|
DetInfo),
|
|
(
|
|
goal_info_is_impure(GoalInfo0)
|
|
=>
|
|
goal_info_has_feature(GoalInfo0,
|
|
not_impure_for_determinism)
|
|
)
|
|
->
|
|
AddPruning = yes,
|
|
SolnContext = first_soln
|
|
;
|
|
AddPruning = no,
|
|
SolnContext = SolnContext0
|
|
),
|
|
|
|
% Some other part of the compiler has determined that we need to keep
|
|
% the cut represented by this quantification. This can happen e.g.
|
|
% when deep profiling adds impure code to the goal inside the some;
|
|
% it doesn't want to change the behavior of the some, even though
|
|
% the addition of impurity would make the if-then-else treat it
|
|
% differently.
|
|
|
|
(
|
|
Goal0 = some(_, _, _),
|
|
goal_info_has_feature(GoalInfo0, keep_this_commit)
|
|
->
|
|
Prune = yes
|
|
;
|
|
Prune = AddPruning
|
|
),
|
|
|
|
det_infer_goal_2(Goal0, GoalInfo0, InstMap0, SolnContext, DetInfo,
|
|
NonLocalVars, DeltaInstMap, Goal1, InternalDetism0, Msgs1),
|
|
|
|
determinism_components(InternalDetism0, InternalCanFail,
|
|
InternalSolns0),
|
|
(
|
|
% If mode analysis notices that a goal cannot succeed,
|
|
% then determinism analysis should notice this too.
|
|
|
|
instmap_delta_is_unreachable(DeltaInstMap)
|
|
->
|
|
InternalSolns = at_most_zero
|
|
;
|
|
InternalSolns = InternalSolns0
|
|
),
|
|
|
|
(
|
|
( InternalSolns = at_most_many
|
|
; InternalSolns = at_most_many_cc
|
|
),
|
|
Prune = yes
|
|
->
|
|
Solns = at_most_one
|
|
;
|
|
% If a goal with multiple solutions occurs in a
|
|
% single-solution context, then we will need to do pruning.
|
|
|
|
InternalSolns = at_most_many,
|
|
SolnContext = first_soln
|
|
->
|
|
Solns = at_most_many_cc
|
|
;
|
|
Solns = InternalSolns
|
|
),
|
|
determinism_components(Detism, InternalCanFail, Solns),
|
|
goal_info_set_determinism(GoalInfo0, Detism, GoalInfo),
|
|
|
|
%
|
|
% The code generators assume that conjunctions containing
|
|
% multi or nondet goals and if-then-elses containing
|
|
% multi or nondet conditions can only occur inside other
|
|
% multi or nondet goals. simplify.m modifies the code to make
|
|
% these invariants hold. Determinism analysis can be rerun
|
|
% after simplification, and without this code here the
|
|
% invariants would not hold after determinism analysis
|
|
% (the number of solutions of the inner goal would be changed
|
|
% back from at_most_many to at_most_one or at_most_zero).
|
|
%
|
|
(
|
|
%
|
|
% If-then-elses that are det or semidet may
|
|
% nevertheless contain nondet or multidet
|
|
% conditions. If this happens, the if-then-else
|
|
% must be put inside a `some' to appease the
|
|
% code generator. (Both the MLDS and LLDS
|
|
% back-ends rely on this.)
|
|
%
|
|
Goal1 = if_then_else(_, _ - CondInfo, _, _),
|
|
goal_info_get_determinism(CondInfo, CondDetism),
|
|
determinism_components(CondDetism, _, at_most_many),
|
|
Solns \= at_most_many
|
|
->
|
|
FinalInternalSolns = at_most_many
|
|
;
|
|
%
|
|
% Conjunctions that cannot produce solutions may nevertheless
|
|
% contain nondet and multidet goals. If this happens, the
|
|
% conjunction is put inside a `some' to appease the code
|
|
% generator.
|
|
%
|
|
Goal1 = conj(ConjGoals),
|
|
Solns = at_most_zero,
|
|
some [ConjGoalInfo] (
|
|
list__member(_ - ConjGoalInfo, ConjGoals),
|
|
goal_info_get_determinism(ConjGoalInfo,
|
|
ConjGoalDetism),
|
|
determinism_components(ConjGoalDetism, _, at_most_many)
|
|
)
|
|
->
|
|
FinalInternalSolns = at_most_many
|
|
;
|
|
FinalInternalSolns = InternalSolns
|
|
),
|
|
determinism_components(FinalInternalDetism, InternalCanFail,
|
|
FinalInternalSolns),
|
|
|
|
% See how we should introduce the commit operator, if one is needed.
|
|
|
|
(
|
|
% do we need a commit?
|
|
Detism \= FinalInternalDetism,
|
|
|
|
% for disjunctions, we want to use a semidet
|
|
% or cc_nondet disjunction which avoids creating a
|
|
% choice point at all, rather than wrapping a
|
|
% some [] around a nondet disj, which would
|
|
% create a choice point and then prune it.
|
|
Goal1 \= disj(_),
|
|
|
|
% do we already have a commit?
|
|
Goal1 \= some(_, _, _)
|
|
->
|
|
% a commit needed - we must introduce an explicit `some'
|
|
% so that the code generator knows to insert the appropriate
|
|
% code for pruning
|
|
goal_info_set_determinism(GoalInfo0,
|
|
FinalInternalDetism, InnerInfo),
|
|
Goal = some([], can_remove, Goal1 - InnerInfo),
|
|
Msgs = Msgs1
|
|
;
|
|
% either no commit needed, or a `some' already present
|
|
Goal = Goal1,
|
|
Msgs = Msgs1
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred det_infer_goal_2(hlds_goal_expr::in, hlds_goal_info::in, instmap::in,
|
|
soln_context::in, det_info::in, set(prog_var)::in, instmap_delta::in,
|
|
hlds_goal_expr::out, determinism::out, list(det_msg)::out) is det.
|
|
% The determinism of a conjunction is the worst case of the elements
|
|
% of that conjuction.
|
|
|
|
det_infer_goal_2(conj(Goals0), _, InstMap0, SolnContext, DetInfo, _, _,
|
|
conj(Goals), Detism, Msgs) :-
|
|
det_infer_conj(Goals0, InstMap0, SolnContext, DetInfo,
|
|
Goals, Detism, Msgs).
|
|
|
|
det_infer_goal_2(par_conj(Goals0), GoalInfo, InstMap0, SolnContext,
|
|
DetInfo, _, _, par_conj(Goals), Detism, Msgs) :-
|
|
det_infer_par_conj(Goals0, InstMap0, SolnContext, DetInfo,
|
|
Goals, Detism, Msgs0),
|
|
(
|
|
determinism_components(Detism, CanFail, Solns),
|
|
CanFail = cannot_fail,
|
|
Solns \= at_most_many
|
|
->
|
|
Msgs = Msgs0
|
|
;
|
|
det_info_get_pred_id(DetInfo, PredId),
|
|
det_info_get_proc_id(DetInfo, ProcId),
|
|
Msg = par_conj_not_det(Detism, PredId, ProcId, GoalInfo, Goals),
|
|
Msgs = [Msg|Msgs0]
|
|
).
|
|
|
|
det_infer_goal_2(disj(Goals0), _, InstMap0, SolnContext, DetInfo, _, _,
|
|
disj(Goals), Detism, Msgs) :-
|
|
det_infer_disj(Goals0, InstMap0, SolnContext, DetInfo,
|
|
can_fail, at_most_zero, Goals, Detism, Msgs).
|
|
|
|
% The determinism of a switch is the worst of the determinism of each
|
|
% of the cases. Also, if only a subset of the constructors are handled,
|
|
% then it is semideterministic or worse - this is determined
|
|
% in switch_detection.m and handled via the SwitchCanFail field.
|
|
|
|
det_infer_goal_2(switch(Var, SwitchCanFail, Cases0), GoalInfo,
|
|
InstMap0, SolnContext, DetInfo, _, _,
|
|
switch(Var, SwitchCanFail, Cases), Detism, Msgs) :-
|
|
det_infer_switch(Cases0, InstMap0, SolnContext, DetInfo,
|
|
cannot_fail, at_most_zero, Cases, CasesDetism, Msgs0),
|
|
determinism_components(CasesDetism, CasesCanFail, CasesSolns),
|
|
% The switch variable tests are in a first_soln context if and only
|
|
% if the switch goal as a whole was in a first_soln context and the
|
|
% cases cannot fail.
|
|
(
|
|
CasesCanFail = cannot_fail,
|
|
SolnContext = first_soln
|
|
->
|
|
SwitchSolnContext = first_soln
|
|
;
|
|
SwitchSolnContext = all_solns
|
|
),
|
|
ExaminesRep = yes,
|
|
det_check_for_noncanonical_type(Var, ExaminesRep, SwitchCanFail,
|
|
SwitchSolnContext, GoalInfo, switch, DetInfo, SwitchSolns,
|
|
Msgs0, Msgs),
|
|
det_conjunction_canfail(SwitchCanFail, CasesCanFail, CanFail),
|
|
det_conjunction_maxsoln(SwitchSolns, CasesSolns, NumSolns),
|
|
determinism_components(Detism, CanFail, NumSolns).
|
|
|
|
% For calls, just look up the determinism entry associated with
|
|
% the called predicate.
|
|
% This is the point at which annotations start changing
|
|
% when we iterate to fixpoint for global determinism inference.
|
|
|
|
det_infer_goal_2(call(PredId, ModeId0, A, B, C, N), GoalInfo, _,
|
|
SolnContext, DetInfo, _, _,
|
|
call(PredId, ModeId, A, B, C, N), Detism, Msgs) :-
|
|
det_lookup_detism(DetInfo, PredId, ModeId0, Detism0),
|
|
%
|
|
% Make sure we don't try to call a committed-choice pred
|
|
% from a non-committed-choice context.
|
|
%
|
|
determinism_components(Detism0, CanFail, NumSolns),
|
|
(
|
|
NumSolns = at_most_many_cc,
|
|
SolnContext \= first_soln
|
|
->
|
|
(
|
|
det_find_matching_non_cc_mode(DetInfo, PredId, ModeId0,
|
|
ModeId1)
|
|
->
|
|
ModeId = ModeId1,
|
|
Msgs = [],
|
|
determinism_components(Detism, CanFail, at_most_many)
|
|
;
|
|
Msgs = [cc_pred_in_wrong_context(GoalInfo, Detism0,
|
|
PredId, ModeId0)],
|
|
ModeId = ModeId0,
|
|
% Code elsewhere relies on the assumption that
|
|
% SolnContext \= first_soln =>
|
|
% NumSolns \= at_most_many_cc,
|
|
% so we need to enforce that here.
|
|
determinism_components(Detism, CanFail, at_most_many)
|
|
)
|
|
;
|
|
Msgs = [],
|
|
ModeId = ModeId0,
|
|
Detism = Detism0
|
|
).
|
|
|
|
det_infer_goal_2(generic_call(GenericCall, ArgVars, Modes, Det0),
|
|
GoalInfo, _InstMap0, SolnContext,
|
|
_MiscInfo, _NonLocalVars, _DeltaInstMap,
|
|
generic_call(GenericCall, ArgVars, Modes, Det0),
|
|
Det, Msgs) :-
|
|
determinism_components(Det0, CanFail, NumSolns),
|
|
(
|
|
NumSolns = at_most_many_cc,
|
|
SolnContext \= first_soln
|
|
->
|
|
% This error can only occur for higher-order calls.
|
|
% class_method calls are only introduced by polymorphism,
|
|
% and the aditi_builtins are all det (for the updates)
|
|
% or introduced later (for calls).
|
|
Msgs = [higher_order_cc_pred_in_wrong_context(GoalInfo, Det0)],
|
|
% Code elsewhere relies on the assumption that
|
|
% SolnContext \= first_soln => NumSolns \= at_most_many_cc,
|
|
% so we need to enforce that here.
|
|
determinism_components(Det, CanFail, at_most_many)
|
|
;
|
|
Msgs = [],
|
|
Det = Det0
|
|
).
|
|
|
|
% unifications are either deterministic or semideterministic.
|
|
% (see det_infer_unify).
|
|
det_infer_goal_2(unify(LT, RT0, M, U, C), GoalInfo, InstMap0, SolnContext,
|
|
DetInfo, _, _, unify(LT, RT, M, U, C), UnifyDet, Msgs) :-
|
|
(
|
|
RT0 = lambda_goal(Purity, PredOrFunc, EvalMethod, FixModes,
|
|
NonLocalVars, Vars, Modes, LambdaDeclaredDet, Goal0)
|
|
->
|
|
(
|
|
determinism_components(LambdaDeclaredDet, _,
|
|
at_most_many_cc)
|
|
->
|
|
LambdaSolnContext = first_soln
|
|
;
|
|
LambdaSolnContext = all_solns
|
|
),
|
|
det_info_get_module_info(DetInfo, ModuleInfo),
|
|
instmap__pre_lambda_update(ModuleInfo, Vars, Modes,
|
|
InstMap0, InstMap1),
|
|
det_infer_goal(Goal0, InstMap1, LambdaSolnContext, DetInfo,
|
|
Goal, LambdaInferredDet, Msgs1),
|
|
det_check_lambda(LambdaDeclaredDet, LambdaInferredDet,
|
|
Goal, GoalInfo, DetInfo, Msgs2),
|
|
list__append(Msgs1, Msgs2, Msgs3),
|
|
RT = lambda_goal(Purity, PredOrFunc, EvalMethod, FixModes,
|
|
NonLocalVars, Vars, Modes, LambdaDeclaredDet, Goal)
|
|
;
|
|
RT = RT0,
|
|
Msgs3 = []
|
|
),
|
|
det_infer_unify_canfail(U, UnifyCanFail),
|
|
det_infer_unify_examines_rep(U, ExaminesRepresentation),
|
|
det_check_for_noncanonical_type(LT, ExaminesRepresentation,
|
|
UnifyCanFail, SolnContext, GoalInfo, unify(C), DetInfo,
|
|
UnifyNumSolns, Msgs3, Msgs),
|
|
determinism_components(UnifyDet, UnifyCanFail, UnifyNumSolns).
|
|
|
|
det_infer_goal_2(if_then_else(Vars, Cond0, Then0, Else0), _GoalInfo0,
|
|
InstMap0, SolnContext, DetInfo, _NonLocalVars, _DeltaInstMap,
|
|
if_then_else(Vars, Cond, Then, Else), Detism, Msgs) :-
|
|
|
|
% We process the goal right-to-left, doing the `then' before
|
|
% the condition of the if-then-else, so that we can propagate
|
|
% the SolnContext correctly.
|
|
|
|
% First process the `then' part
|
|
update_instmap(Cond0, InstMap0, InstMap1),
|
|
det_infer_goal(Then0, InstMap1, SolnContext, DetInfo,
|
|
Then, ThenDetism, ThenMsgs),
|
|
determinism_components(ThenDetism, ThenCanFail, ThenMaxSoln),
|
|
|
|
% Next, work out the right soln_context to use for the condition.
|
|
% The condition is in a first_soln context if and only if the goal
|
|
% as a whole was in a first_soln context and the `then' part
|
|
% cannot fail.
|
|
(
|
|
ThenCanFail = cannot_fail,
|
|
SolnContext = first_soln
|
|
->
|
|
CondSolnContext = first_soln
|
|
;
|
|
CondSolnContext = all_solns
|
|
),
|
|
|
|
% Process the `condition' part
|
|
det_infer_goal(Cond0, InstMap0, CondSolnContext, DetInfo,
|
|
Cond, CondDetism, CondMsgs),
|
|
determinism_components(CondDetism, CondCanFail, CondMaxSoln),
|
|
|
|
% Process the `else' part
|
|
det_infer_goal(Else0, InstMap0, SolnContext, DetInfo,
|
|
Else, ElseDetism, ElseMsgs),
|
|
determinism_components(ElseDetism, ElseCanFail, ElseMaxSoln),
|
|
|
|
% Finally combine the results from the three parts
|
|
( CondCanFail = cannot_fail ->
|
|
% A -> B ; C is equivalent to A, B if A cannot fail
|
|
det_conjunction_detism(CondDetism, ThenDetism, Detism)
|
|
; CondMaxSoln = at_most_zero ->
|
|
% A -> B ; C is equivalent to ~A, C if A cannot succeed
|
|
det_negation_det(CondDetism, MaybeNegDetism),
|
|
(
|
|
MaybeNegDetism = no,
|
|
error("cannot find determinism of negated condition")
|
|
;
|
|
MaybeNegDetism = yes(NegDetism)
|
|
),
|
|
det_conjunction_detism(NegDetism, ElseDetism, Detism)
|
|
;
|
|
det_conjunction_maxsoln(CondMaxSoln, ThenMaxSoln, CTMaxSoln),
|
|
det_switch_maxsoln(CTMaxSoln, ElseMaxSoln, MaxSoln),
|
|
det_switch_canfail(ThenCanFail, ElseCanFail, CanFail),
|
|
determinism_components(Detism, CanFail, MaxSoln)
|
|
),
|
|
|
|
list__append(ThenMsgs, ElseMsgs, AfterMsgs),
|
|
list__append(CondMsgs, AfterMsgs, Msgs).
|
|
|
|
% Negations are almost always semideterministic. It is an error for
|
|
% a negation to further instantiate any non-local variable. Such
|
|
% errors will be reported by the mode analysis.
|
|
%
|
|
% Question: should we warn about the negation of goals that either
|
|
% cannot succeed or cannot fail?
|
|
% Answer: yes, probably, but it's not a high priority.
|
|
|
|
det_infer_goal_2(not(Goal0), _, InstMap0, _SolnContext, DetInfo, _, _,
|
|
not(Goal), Det, Msgs) :-
|
|
det_infer_goal(Goal0, InstMap0, first_soln, DetInfo,
|
|
Goal, NegDet, Msgs),
|
|
det_negation_det(NegDet, MaybeDet),
|
|
(
|
|
MaybeDet = no,
|
|
error("inappropriate determinism inside a negation")
|
|
;
|
|
MaybeDet = yes(Det)
|
|
).
|
|
|
|
% Existential quantification may require a cut to throw away solutions,
|
|
% but we cannot rely on explicit quantification to detect this.
|
|
% Therefore cuts are handled in det_infer_goal.
|
|
|
|
det_infer_goal_2(some(Vars, CanRemove, Goal0), _, InstMap0, SolnContext,
|
|
DetInfo, _, _, some(Vars, CanRemove, Goal), Det, Msgs) :-
|
|
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
|
|
Goal, Det, Msgs).
|
|
|
|
% pragma foregin_codes are handled in the same way as predicate calls
|
|
det_infer_goal_2(foreign_proc(Attributes, PredId, ProcId, Args, ExtraArgs,
|
|
PragmaCode),
|
|
GoalInfo, _, SolnContext, DetInfo, _, _,
|
|
foreign_proc(Attributes, PredId, ProcId, Args, ExtraArgs,
|
|
PragmaCode),
|
|
Detism, Msgs) :-
|
|
det_info_get_module_info(DetInfo, ModuleInfo),
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
|
|
proc_info_declared_determinism(ProcInfo, MaybeDetism),
|
|
( MaybeDetism = yes(Detism0) ->
|
|
determinism_components(Detism0, CanFail, NumSolns0),
|
|
(
|
|
may_throw_exception(Attributes) = will_not_throw_exception,
|
|
Detism0 = erroneous
|
|
->
|
|
Msgs0 = [will_not_throw_with_erroneous(PredId, ProcId)]
|
|
;
|
|
Msgs0 = []
|
|
),
|
|
( PragmaCode = nondet(_, _, _, _, _, _, _, _, _) ->
|
|
% pragma C codes of this form
|
|
% can have more than one solution
|
|
NumSolns1 = at_most_many
|
|
;
|
|
NumSolns1 = NumSolns0
|
|
),
|
|
(
|
|
NumSolns1 = at_most_many_cc,
|
|
SolnContext \= first_soln
|
|
->
|
|
Msgs = [cc_pred_in_wrong_context(GoalInfo, Detism0,
|
|
PredId, ProcId) | Msgs0 ],
|
|
NumSolns = at_most_many
|
|
;
|
|
Msgs = Msgs0,
|
|
NumSolns = NumSolns1
|
|
),
|
|
determinism_components(Detism, CanFail, NumSolns)
|
|
;
|
|
Msgs = [pragma_c_code_without_det_decl(PredId, ProcId)],
|
|
Detism = erroneous
|
|
).
|
|
|
|
det_infer_goal_2(shorthand(_), _, _, _, _, _, _, _, _, _) :-
|
|
% these should have been expanded out by now
|
|
error("det_infer_goal_2: unexpected shorthand").
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred det_infer_conj(list(hlds_goal)::in, instmap::in, soln_context::in,
|
|
det_info::in, list(hlds_goal)::out, determinism::out,
|
|
list(det_msg)::out) is det.
|
|
|
|
det_infer_conj([], _InstMap0, _SolnContext, _DetInfo, [], det, []).
|
|
det_infer_conj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo,
|
|
[Goal | Goals], Detism, Msgs) :-
|
|
|
|
% We should look to see when we get to a not_reached point
|
|
% and optimize away the remaining elements of the conjunction.
|
|
% But that optimization is done in the code generation anyway.
|
|
|
|
% We infer the determinisms right-to-left, so that we can propagate
|
|
% the SolnContext properly.
|
|
|
|
%
|
|
% First, process the second and subsequent conjuncts.
|
|
%
|
|
update_instmap(Goal0, InstMap0, InstMap1),
|
|
det_infer_conj(Goals0, InstMap1, SolnContext, DetInfo,
|
|
Goals, DetismB, MsgsB),
|
|
determinism_components(DetismB, CanFailB, _MaxSolnsB),
|
|
|
|
%
|
|
% Next, work out whether the first conjunct is in a first_soln context
|
|
% or not. We obviously need all its solutions if we need all the
|
|
% solutions of the conjunction. However, even if we need only the
|
|
% first solution of the conjunction, we may need to generate more
|
|
% than one solution of the first conjunct if the later conjuncts
|
|
% may possibly fail.
|
|
%
|
|
(
|
|
CanFailB = cannot_fail,
|
|
SolnContext = first_soln
|
|
->
|
|
SolnContextA = first_soln
|
|
;
|
|
SolnContextA = all_solns
|
|
),
|
|
%
|
|
% Process the first conjunct.
|
|
%
|
|
det_infer_goal(Goal0, InstMap0, SolnContextA, DetInfo,
|
|
Goal, DetismA, MsgsA),
|
|
|
|
%
|
|
% Finally combine the results computed above.
|
|
%
|
|
det_conjunction_detism(DetismA, DetismB, Detism),
|
|
list__append(MsgsA, MsgsB, Msgs).
|
|
|
|
:- pred det_infer_par_conj(list(hlds_goal)::in, instmap::in, soln_context::in,
|
|
det_info::in, list(hlds_goal)::out, determinism::out,
|
|
list(det_msg)::out) is det.
|
|
|
|
det_infer_par_conj([], _InstMap0, _SolnContext, _DetInfo, [], det, []).
|
|
det_infer_par_conj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo,
|
|
[Goal | Goals], Detism, Msgs) :-
|
|
|
|
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
|
|
Goal, DetismA, MsgsA),
|
|
determinism_components(DetismA, CanFailA, MaxSolnsA),
|
|
|
|
det_infer_par_conj(Goals0, InstMap0, SolnContext, DetInfo,
|
|
Goals, DetismB, MsgsB),
|
|
determinism_components(DetismB, CanFailB, MaxSolnsB),
|
|
|
|
det_conjunction_maxsoln(MaxSolnsA, MaxSolnsB, MaxSolns),
|
|
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
|
|
determinism_components(Detism, CanFail, MaxSolns),
|
|
list__append(MsgsA, MsgsB, Msgs).
|
|
|
|
:- pred det_infer_disj(list(hlds_goal)::in, instmap::in, soln_context::in,
|
|
det_info::in, can_fail::in, soln_count::in, list(hlds_goal)::out,
|
|
determinism::out, list(det_msg)::out) is det.
|
|
|
|
det_infer_disj([], _InstMap0, _SolnContext, _DetInfo, CanFail, MaxSolns,
|
|
[], Detism, []) :-
|
|
determinism_components(Detism, CanFail, MaxSolns).
|
|
det_infer_disj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo, CanFail0,
|
|
MaxSolns0, [Goal | Goals1], Detism, Msgs) :-
|
|
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo, Goal, Detism1,
|
|
Msgs1),
|
|
determinism_components(Detism1, CanFail1, MaxSolns1),
|
|
Goal = _ - GoalInfo,
|
|
% If a disjunct cannot succeed but is marked with the
|
|
% preserve_backtrack_into feature, treat it as being able to succeed
|
|
% when computing the max number of solutions of the disjunction as a
|
|
% whole, *provided* that some earlier disjuct could succeed. The idea
|
|
% is that ( marked failure ; det ) should be treated as det, since all
|
|
% backtracking is local within it, while disjunctions of the form
|
|
% ( det ; marked failure ) should be treated as multi, since we want
|
|
% to be able to backtrack to the second disjunct from *outside*
|
|
% the disjunction. This is useful for program transformation that want
|
|
% to get control on exits to and redos into model_non procedures.
|
|
% Deep profiling is one such transformation.
|
|
(
|
|
MaxSolns0 \= at_most_zero,
|
|
MaxSolns1 = at_most_zero,
|
|
goal_info_has_feature(GoalInfo, preserve_backtrack_into)
|
|
->
|
|
AdjMaxSolns1 = at_most_one
|
|
;
|
|
AdjMaxSolns1 = MaxSolns1
|
|
),
|
|
det_disjunction_canfail(CanFail0, CanFail1, CanFail2),
|
|
det_disjunction_maxsoln(MaxSolns0, AdjMaxSolns1, MaxSolns2),
|
|
% if we're in a single-solution context,
|
|
% convert `at_most_many' to `at_most_many_cc'
|
|
( SolnContext = first_soln, MaxSolns2 = at_most_many ->
|
|
MaxSolns3 = at_most_many_cc
|
|
;
|
|
MaxSolns3 = MaxSolns2
|
|
),
|
|
det_infer_disj(Goals0, InstMap0, SolnContext, DetInfo, CanFail2,
|
|
MaxSolns3, Goals1, Detism, Msgs2),
|
|
list__append(Msgs1, Msgs2, Msgs).
|
|
|
|
:- pred det_infer_switch(list(case)::in, instmap::in, soln_context::in,
|
|
det_info::in, can_fail::in, soln_count::in, list(case)::out,
|
|
determinism::out, list(det_msg)::out) is det.
|
|
|
|
det_infer_switch([], _InstMap0, _SolnContext, _DetInfo, CanFail, MaxSolns,
|
|
[], Detism, []) :-
|
|
determinism_components(Detism, CanFail, MaxSolns).
|
|
det_infer_switch([Case0 | Cases0], InstMap0, SolnContext, DetInfo, CanFail0,
|
|
MaxSolns0, [Case | Cases], Detism, Msgs) :-
|
|
% Technically, we should update the instmap to reflect the
|
|
% knowledge that the var is bound to this particular
|
|
% constructor, but we wouldn't use that information here anyway,
|
|
% so we don't bother.
|
|
Case0 = case(ConsId, Goal0),
|
|
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
|
|
Goal, Detism1, Msgs1),
|
|
Case = case(ConsId, Goal),
|
|
determinism_components(Detism1, CanFail1, MaxSolns1),
|
|
det_switch_canfail(CanFail0, CanFail1, CanFail2),
|
|
det_switch_maxsoln(MaxSolns0, MaxSolns1, MaxSolns2),
|
|
det_infer_switch(Cases0, InstMap0, SolnContext, DetInfo, CanFail2,
|
|
MaxSolns2, Cases, Detism, Msgs2),
|
|
list__append(Msgs1, Msgs2, Msgs).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% det_find_matching_non_cc_mode(DetInfo, PredId, ProcId0, ProcId):
|
|
% Search for a mode of the given predicate that
|
|
% is identical to the mode ProcId0, except that its
|
|
% determinism is non-cc whereas ProcId0's detism is cc.
|
|
% Let ProcId be the first such mode.
|
|
|
|
:- pred det_find_matching_non_cc_mode(det_info::in, pred_id::in, proc_id::in,
|
|
proc_id::out) is semidet.
|
|
|
|
det_find_matching_non_cc_mode(DetInfo, PredId, !ProcId) :-
|
|
det_info_get_module_info(DetInfo, ModuleInfo),
|
|
module_info_preds(ModuleInfo, PredTable),
|
|
map__lookup(PredTable, PredId, PredInfo),
|
|
pred_info_procedures(PredInfo, ProcTable),
|
|
map__to_assoc_list(ProcTable, ProcList),
|
|
det_find_matching_non_cc_mode_2(ProcList, ModuleInfo, PredInfo,
|
|
!ProcId).
|
|
|
|
:- pred det_find_matching_non_cc_mode_2(assoc_list(proc_id, proc_info)::in,
|
|
module_info::in, pred_info::in, proc_id::in, proc_id::out) is semidet.
|
|
|
|
det_find_matching_non_cc_mode_2([TestProcId - ProcInfo | Rest],
|
|
ModuleInfo, PredInfo, !ProcId) :-
|
|
(
|
|
TestProcId \= !.ProcId,
|
|
proc_info_interface_determinism(ProcInfo, Detism),
|
|
determinism_components(Detism, _CanFail, MaxSoln),
|
|
MaxSoln = at_most_many,
|
|
modes_are_identical_bar_cc(!.ProcId, TestProcId, PredInfo,
|
|
ModuleInfo)
|
|
->
|
|
!:ProcId = TestProcId
|
|
;
|
|
det_find_matching_non_cc_mode_2(Rest, ModuleInfo, PredInfo,
|
|
!ProcId)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred det_check_for_noncanonical_type(prog_var::in, bool::in, can_fail::in,
|
|
soln_context::in, hlds_goal_info::in, cc_unify_context::in,
|
|
det_info::in, soln_count::out, list(det_msg)::in, list(det_msg)::out)
|
|
is det.
|
|
|
|
det_check_for_noncanonical_type(Var, ExaminesRepresentation, CanFail,
|
|
SolnContext, GoalInfo, GoalContext, DetInfo, NumSolns,
|
|
!Msgs) :-
|
|
(
|
|
%
|
|
% check for unifications that attempt to examine
|
|
% the representation of a type that does not have
|
|
% a single representation for each abstract value
|
|
%
|
|
ExaminesRepresentation = yes,
|
|
det_get_proc_info(DetInfo, ProcInfo),
|
|
proc_info_vartypes(ProcInfo, VarTypes),
|
|
map__lookup(VarTypes, Var, Type),
|
|
det_type_has_user_defined_equality_pred(DetInfo, Type)
|
|
->
|
|
( CanFail = can_fail ->
|
|
proc_info_varset(ProcInfo, VarSet),
|
|
!:Msgs = [cc_unify_can_fail(GoalInfo, Var, Type,
|
|
VarSet, GoalContext) | !.Msgs]
|
|
; SolnContext \= first_soln ->
|
|
proc_info_varset(ProcInfo, VarSet),
|
|
!:Msgs = [cc_unify_in_wrong_context(GoalInfo, Var,
|
|
Type, VarSet, GoalContext) | !.Msgs]
|
|
;
|
|
true
|
|
),
|
|
( SolnContext = first_soln ->
|
|
NumSolns = at_most_many_cc
|
|
;
|
|
NumSolns = at_most_many
|
|
)
|
|
;
|
|
NumSolns = at_most_one
|
|
).
|
|
|
|
% Return true iff the principal type constructor of the given type
|
|
% has user-defined equality.
|
|
|
|
:- pred det_type_has_user_defined_equality_pred(det_info::in,
|
|
(type)::in) is semidet.
|
|
|
|
det_type_has_user_defined_equality_pred(DetInfo, Type) :-
|
|
det_info_get_module_info(DetInfo, ModuleInfo),
|
|
type_has_user_defined_equality_pred(ModuleInfo, Type, _).
|
|
|
|
% Return yes iff the results of the specified unification might depend on
|
|
% the concrete representation of the abstract values involved.
|
|
|
|
:- pred det_infer_unify_examines_rep(unification::in, bool::out) is det.
|
|
|
|
det_infer_unify_examines_rep(assign(_, _), no).
|
|
det_infer_unify_examines_rep(construct(_, _, _, _, _, _, _), no).
|
|
det_infer_unify_examines_rep(deconstruct(_, _, _, _, _, _), yes).
|
|
det_infer_unify_examines_rep(simple_test(_, _), yes).
|
|
det_infer_unify_examines_rep(complicated_unify(_, _, _), no).
|
|
% Some complicated modes of complicated unifications _do_
|
|
% examine the representation...
|
|
% but we will catch those by reporting errors in the
|
|
% compiler-generated code for the complicated unification.
|
|
|
|
% Deconstruction unifications cannot fail if the type
|
|
% only has one constructor, or if the variable is known to be
|
|
% already bound to the appropriate functor.
|
|
%
|
|
% This is handled (modulo bugs) by modes.m, which sets
|
|
% the appropriate field in the deconstruct(...) to can_fail for
|
|
% those deconstruction unifications which might fail.
|
|
% But switch_detection.m may set it back to cannot_fail again,
|
|
% if it moves the functor test into a switch instead.
|
|
|
|
:- pred det_infer_unify_canfail(unification::in, can_fail::out) is det.
|
|
|
|
det_infer_unify_canfail(deconstruct(_, _, _, _, CanFail, _), CanFail).
|
|
det_infer_unify_canfail(assign(_, _), cannot_fail).
|
|
det_infer_unify_canfail(construct(_, _, _, _, _, _, _), cannot_fail).
|
|
det_infer_unify_canfail(simple_test(_, _), can_fail).
|
|
det_infer_unify_canfail(complicated_unify(_, CanFail, _), CanFail).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
det_get_soln_context(DeclaredDetism, SolnContext) :-
|
|
(
|
|
determinism_components(DeclaredDetism, _, at_most_many_cc)
|
|
->
|
|
SolnContext = first_soln
|
|
;
|
|
SolnContext = all_solns
|
|
).
|
|
|
|
% When figuring out the determinism of a conjunction,
|
|
% if the second goal is unreachable, then then the
|
|
% determinism of the conjunction is just the determinism
|
|
% of the first goal.
|
|
|
|
det_conjunction_detism(DetismA, DetismB, Detism) :-
|
|
determinism_components(DetismA, CanFailA, MaxSolnA),
|
|
( MaxSolnA = at_most_zero ->
|
|
Detism = DetismA
|
|
;
|
|
determinism_components(DetismB, CanFailB, MaxSolnB),
|
|
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
|
|
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
|
|
determinism_components(Detism, CanFail, MaxSoln)
|
|
).
|
|
|
|
% Figuring out the determinism of a parallel conjunction is much
|
|
% easier than for a sequential conjunction, since you simply
|
|
% ignore the case where the second goal is unreachable. Just do
|
|
% a normal solution count.
|
|
|
|
det_par_conjunction_detism(DetismA, DetismB, Detism) :-
|
|
determinism_components(DetismA, CanFailA, MaxSolnA),
|
|
determinism_components(DetismB, CanFailB, MaxSolnB),
|
|
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
|
|
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
|
|
determinism_components(Detism, CanFail, MaxSoln).
|
|
|
|
det_switch_detism(DetismA, DetismB, Detism) :-
|
|
determinism_components(DetismA, CanFailA, MaxSolnA),
|
|
determinism_components(DetismB, CanFailB, MaxSolnB),
|
|
det_switch_canfail(CanFailA, CanFailB, CanFail),
|
|
det_switch_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
|
|
determinism_components(Detism, CanFail, MaxSoln).
|
|
|
|
% For the at_most_zero, at_most_one, at_most_many,
|
|
% we're just doing abstract interpretation to count
|
|
% the number of solutions. Similarly, for the can_fail
|
|
% and cannot_fail components, we're doing abstract
|
|
% interpretation to count the possible number of failures.
|
|
% If the num_solns is at_most_many_cc, this means that
|
|
% the goal might have many logical solutions if there were no
|
|
% pruning, but that the goal occurs in a single-solution
|
|
% context, so only the first solution will be returned.
|
|
%
|
|
% The reason why we don't throw an exception in det_switch_maxsoln and
|
|
% det_disjunction_maxsoln is given in the documentation of the test case
|
|
% invalid/magicbox.m.
|
|
|
|
:- pred det_conjunction_maxsoln(soln_count::in, soln_count::in,
|
|
soln_count::out) is det.
|
|
|
|
det_conjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_zero, at_most_one, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_zero, at_most_many, at_most_zero).
|
|
|
|
det_conjunction_maxsoln(at_most_one, at_most_zero, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_one, at_most_one, at_most_one).
|
|
det_conjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
|
|
det_conjunction_maxsoln(at_most_one, at_most_many, at_most_many).
|
|
|
|
det_conjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
|
|
det_conjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
|
|
det_conjunction_maxsoln(at_most_many_cc, at_most_many, _) :-
|
|
% if the first conjunct could be cc pruned,
|
|
% the second conj ought to have been cc pruned too
|
|
error("det_conjunction_maxsoln: many_cc , many").
|
|
|
|
det_conjunction_maxsoln(at_most_many, at_most_zero, at_most_zero).
|
|
det_conjunction_maxsoln(at_most_many, at_most_one, at_most_many).
|
|
det_conjunction_maxsoln(at_most_many, at_most_many_cc, at_most_many).
|
|
det_conjunction_maxsoln(at_most_many, at_most_many, at_most_many).
|
|
|
|
:- pred det_conjunction_canfail(can_fail::in, can_fail::in, can_fail::out)
|
|
is det.
|
|
|
|
det_conjunction_canfail(can_fail, can_fail, can_fail).
|
|
det_conjunction_canfail(can_fail, cannot_fail, can_fail).
|
|
det_conjunction_canfail(cannot_fail, can_fail, can_fail).
|
|
det_conjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
|
|
|
|
det_disjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
|
|
det_disjunction_maxsoln(at_most_zero, at_most_one, at_most_one).
|
|
det_disjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_zero, at_most_many, at_most_many).
|
|
|
|
det_disjunction_maxsoln(at_most_one, at_most_zero, at_most_one).
|
|
det_disjunction_maxsoln(at_most_one, at_most_one, at_most_many).
|
|
det_disjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_one, at_most_many, at_most_many).
|
|
|
|
det_disjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_many_cc, at_most_many, at_most_many_cc).
|
|
|
|
det_disjunction_maxsoln(at_most_many, at_most_zero, at_most_many).
|
|
det_disjunction_maxsoln(at_most_many, at_most_one, at_most_many).
|
|
det_disjunction_maxsoln(at_most_many, at_most_many_cc, at_most_many_cc).
|
|
det_disjunction_maxsoln(at_most_many, at_most_many, at_most_many).
|
|
|
|
det_disjunction_canfail(can_fail, can_fail, can_fail).
|
|
det_disjunction_canfail(can_fail, cannot_fail, cannot_fail).
|
|
det_disjunction_canfail(cannot_fail, can_fail, cannot_fail).
|
|
det_disjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
|
|
|
|
det_switch_maxsoln(at_most_zero, at_most_zero, at_most_zero).
|
|
det_switch_maxsoln(at_most_zero, at_most_one, at_most_one).
|
|
det_switch_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_zero, at_most_many, at_most_many).
|
|
|
|
det_switch_maxsoln(at_most_one, at_most_zero, at_most_one).
|
|
det_switch_maxsoln(at_most_one, at_most_one, at_most_one).
|
|
det_switch_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_one, at_most_many, at_most_many).
|
|
|
|
det_switch_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_many_cc, at_most_many, at_most_many_cc).
|
|
|
|
det_switch_maxsoln(at_most_many, at_most_zero, at_most_many).
|
|
det_switch_maxsoln(at_most_many, at_most_one, at_most_many).
|
|
det_switch_maxsoln(at_most_many, at_most_many_cc, at_most_many_cc).
|
|
det_switch_maxsoln(at_most_many, at_most_many, at_most_many).
|
|
|
|
det_switch_canfail(can_fail, can_fail, can_fail).
|
|
det_switch_canfail(can_fail, cannot_fail, can_fail).
|
|
det_switch_canfail(cannot_fail, can_fail, can_fail).
|
|
det_switch_canfail(cannot_fail, cannot_fail, cannot_fail).
|
|
|
|
det_negation_det(det, yes(failure)).
|
|
det_negation_det(semidet, yes(semidet)).
|
|
det_negation_det(multidet, no).
|
|
det_negation_det(nondet, no).
|
|
det_negation_det(cc_multidet, no).
|
|
det_negation_det(cc_nondet, no).
|
|
det_negation_det(erroneous, yes(erroneous)).
|
|
det_negation_det(failure, yes(det)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% determinism_declarations takes a module_info as input and
|
|
% returns two lists of procedure ids, the first being those
|
|
% with determinism declarations, and the second being those without.
|
|
|
|
:- pred determinism_declarations(module_info::in, pred_proc_list::out,
|
|
pred_proc_list::out, pred_proc_list::out) is det.
|
|
|
|
determinism_declarations(ModuleInfo, DeclaredProcs,
|
|
UndeclaredProcs, NoInferProcs) :-
|
|
get_all_pred_procs(ModuleInfo, PredProcs),
|
|
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs,
|
|
UndeclaredProcs, NoInferProcs).
|
|
|
|
% get_all_pred_procs takes a module_info and returns a list
|
|
% of all the procedures ids for that module (except class methods,
|
|
% which do not need to be checked since we generate the code ourselves).
|
|
|
|
:- pred get_all_pred_procs(module_info::in, pred_proc_list::out) is det.
|
|
|
|
get_all_pred_procs(ModuleInfo, PredProcs) :-
|
|
module_info_predids(ModuleInfo, PredIds),
|
|
module_info_preds(ModuleInfo, Preds),
|
|
get_all_pred_procs_2(Preds, PredIds, [], PredProcs).
|
|
|
|
:- pred get_all_pred_procs_2(pred_table::in, list(pred_id)::in,
|
|
pred_proc_list::in, pred_proc_list::out) is det.
|
|
|
|
get_all_pred_procs_2(_Preds, [], PredProcs, PredProcs).
|
|
get_all_pred_procs_2(Preds, [PredId|PredIds], PredProcs0, PredProcs) :-
|
|
map__lookup(Preds, PredId, Pred),
|
|
ProcIds = pred_info_procids(Pred),
|
|
fold_pred_modes(PredId, ProcIds, PredProcs0, PredProcs1),
|
|
get_all_pred_procs_2(Preds, PredIds, PredProcs1, PredProcs).
|
|
|
|
:- pred fold_pred_modes(pred_id::in, list(proc_id)::in, pred_proc_list::in,
|
|
pred_proc_list::out) is det.
|
|
|
|
fold_pred_modes(_PredId, [], PredProcs, PredProcs).
|
|
fold_pred_modes(PredId, [ProcId|ProcIds], PredProcs0, PredProcs) :-
|
|
fold_pred_modes(PredId, ProcIds, [proc(PredId, ProcId) | PredProcs0],
|
|
PredProcs).
|
|
|
|
% segregate_procs(ModuleInfo, PredProcs, DeclaredProcs, UndeclaredProcs)
|
|
% splits the list of procedures PredProcs into DeclaredProcs and
|
|
% UndeclaredProcs.
|
|
|
|
:- pred segregate_procs(module_info::in, pred_proc_list::in,
|
|
pred_proc_list::out, pred_proc_list::out, pred_proc_list::out) is det.
|
|
|
|
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs,
|
|
UndeclaredProcs, NoInferProcs) :-
|
|
segregate_procs_2(ModuleInfo, PredProcs, [], DeclaredProcs,
|
|
[], UndeclaredProcs, [], NoInferProcs).
|
|
|
|
:- pred segregate_procs_2(module_info::in, pred_proc_list::in,
|
|
pred_proc_list::in, pred_proc_list::out,
|
|
pred_proc_list::in, pred_proc_list::out,
|
|
pred_proc_list::in, pred_proc_list::out) is det.
|
|
|
|
segregate_procs_2(_ModuleInfo, [], !DeclaredProcs,
|
|
!UndeclaredProcs, !NoInferProcs).
|
|
segregate_procs_2(ModuleInfo, [proc(PredId, ProcId) | PredProcs],
|
|
!DeclaredProcs, !UndeclaredProcs, !NoInferProcs) :-
|
|
module_info_preds(ModuleInfo, Preds),
|
|
map__lookup(Preds, PredId, Pred),
|
|
(
|
|
(
|
|
pred_info_is_imported(Pred)
|
|
;
|
|
pred_info_is_pseudo_imported(Pred),
|
|
hlds_pred__in_in_unification_proc_id(ProcId)
|
|
;
|
|
pred_info_get_markers(Pred, Markers),
|
|
check_marker(Markers, class_method)
|
|
)
|
|
->
|
|
!:NoInferProcs = [proc(PredId, ProcId) | !.NoInferProcs]
|
|
;
|
|
pred_info_procedures(Pred, Procs),
|
|
map__lookup(Procs, ProcId, Proc),
|
|
proc_info_declared_determinism(Proc, MaybeDetism),
|
|
(
|
|
MaybeDetism = no,
|
|
!:UndeclaredProcs =
|
|
[proc(PredId, ProcId) | !.UndeclaredProcs]
|
|
;
|
|
MaybeDetism = yes(_),
|
|
!:DeclaredProcs =
|
|
[proc(PredId, ProcId) | !.DeclaredProcs]
|
|
)
|
|
),
|
|
segregate_procs_2(ModuleInfo, PredProcs, !DeclaredProcs,
|
|
!UndeclaredProcs, !NoInferProcs).
|
|
|
|
% We can't infer a tighter determinism for imported procedures or
|
|
% for class methods, so set the inferred determinism to be the
|
|
% same as the declared determinism. This can't be done easily in
|
|
% make_hlds.m since inter-module optimization means that the
|
|
% import_status of procedures isn't determined until after all
|
|
% items are processed.
|
|
:- pred set_non_inferred_proc_determinism(pred_proc_id::in,
|
|
module_info::in, module_info::out) is det.
|
|
|
|
set_non_inferred_proc_determinism(proc(PredId, ProcId), !ModuleInfo) :-
|
|
module_info_pred_info(!.ModuleInfo, PredId, PredInfo0),
|
|
pred_info_procedures(PredInfo0, Procs0),
|
|
map__lookup(Procs0, ProcId, ProcInfo0),
|
|
proc_info_declared_determinism(ProcInfo0, MaybeDet),
|
|
( MaybeDet = yes(Det) ->
|
|
proc_info_set_inferred_determinism(Det, ProcInfo0, ProcInfo),
|
|
map__det_update(Procs0, ProcId, ProcInfo, Procs),
|
|
pred_info_set_procedures(Procs, PredInfo0, PredInfo),
|
|
module_info_set_pred_info(PredId, PredInfo, !ModuleInfo)
|
|
;
|
|
true
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|