Files
mercury/compiler/inlining.m
Zoltan Somogyi 8a28e40c9b Add the predicates sorry, unexpected and expect to library/error.m.
Estimated hours taken: 2
Branches: main

Add the predicates sorry, unexpected and expect to library/error.m.

compiler/compiler_util.m:
library/error.m:
	Move the predicates sorry, unexpected and expect from compiler_util
	to error.

	Put the predicates in error.m into the same order as their
	declarations.

compiler/*.m:
	Change imports as needed.

compiler/lp.m:
compiler/lp_rational.m:
	Change imports as needed, and some minor cleanups.

deep_profiler/*.m:
	Switch to using the new library predicates, instead of calling error
	directly. Some other minor cleanups.

NEWS:
	Mention the new predicates in the standard library.
2010-12-15 06:30:36 +00:00

1076 lines
42 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2010 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: inlining.m.
% Main author: conway.
%
% This module inlines
%
% * (--inline-simple and --inline-simple-threshold N)
% procedures whose size is below the given threshold,
% PLUS
% procedures that are flat (i.e. contain no branched structures)
% and are composed of inline builtins (eg arithmetic),
% and whose size is less than three times the given threshold
% (XXX shouldn't hard-code 3)
%
% * (--inline-compound-threshold N)
% procedures where the product of the number of calls to them
% and their size is below a given threshold.
%
% * (--inline-single-use)
% procedures which are called only once
%
% * procedures which have a `:- pragma inline(name/arity).'
%
% It will not inline procedures which have a `:- pragma no_inline(name/arity).'
%
% If inlining a procedure takes the total number of variables over a given
% threshold (from a command-line option), then the procedure is not inlined
% - note that this means that some calls to a procedure may inlined while
% others are not.
%
% It builds the call-graph (if necessary) works from the bottom of the
% call-graph towards the top, first performing inlining on a procedure,
% then deciding if calls to it (higher in the call-graph) should be inlined.
% SCCs get flattened and processed in the order returned by
% hlds_dependency_info_get_dependency_ordering.
%
% There are a couple of classes of procedure that we clearly want to inline
% because doing so *reduces* the size of the generated code:
%
% - access predicates that get or set one or more fields of a structure
% (Inlining these is almost always a win because the infrastructure for the
% call to the procedure is almost always larger than the code to do the
% access. In the case of `get' accessors, the call usually becomes a single
% `field' expression to get the relevant field of the structure. In the case
% of `set' accessors, it is a bit more complicated since the code to copy
% the fields can be quite big if there are lots of fields, however in the
% case where several `set' accessors get called one after the other,
% inlining them enables the code generator to avoid creating the intermediate
% structures which is often a win).
%
% - arithmetic predicates where as above, the cost of the call will often
% outweigh the cost of the arithmetic.
%
% - det or semi pragma C code, where often the C operation is very small,
% inlining avoids a call and allows the C compiler to do a better job of
% optimizing it.
%
% The threshold on the size of simple goals (which covers both of the first
% two cases above), is to prevent the inlining of large goals such as those
% that construct big terms where the duplication is usually inappropriate
% (for example in nrev).
%
% The threshold on the number of variables in a procedure is to prevent the
% problem of inlining lots of calls and having a resulting procedure with so
% many variables that the back end of the compiler gets bogged down (for
% example in the pseudoknot benchmark).
%
% Due to the way in which we generate code for model_non pragma_foreign_code,
% procedures whose body is such a pragma_foreign_code must NOT be inlined.
%
%-----------------------------------------------------------------------------%
:- module transform_hlds.inlining.
:- interface.
:- import_module hlds.hlds_clauses.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module hlds.hlds_rtti.
:- import_module parse_tree.prog_data.
:- import_module bool.
:- import_module list.
:- import_module map.
%-----------------------------------------------------------------------------%
:- pred inlining(module_info::in, module_info::out) is det.
% This heuristic is used for both local and intermodule inlining.
%
:- pred is_simple_clause_list(list(clause)::in, int::in) is semidet.
:- pred is_simple_goal(hlds_goal::in, int::in) is semidet.
% do_inline_call(UnivQVars, Args, CalledPredInfo, CalledProcInfo,
% !VarSet, !VarTypes, !TVarSet, !RttiVarMaps):
%
% Given the universally quantified type variables in the caller's type,
% the arguments to the call, the pred_info and proc_info for the called
% goal and various information about the variables and types in the
% procedure currently being analysed, rename the goal for the called
% procedure so that it can be inlined.
%
:- pred do_inline_call(list(tvar)::in, list(prog_var)::in,
pred_info::in, proc_info::in, prog_varset::in, prog_varset::out,
vartypes::in, vartypes::out, tvarset::in, tvarset::out,
rtti_varmaps::in, rtti_varmaps::out, hlds_goal::out) is det.
% get_type_substitution(CalleeArgTypes, CallerArgTypes,
% HeadTypeParams, CalleeExistQTVars, TypeSubn):
%
% Work out a type substitution to map the callee's argument types
% into the caller's.
%
:- pred get_type_substitution(list(mer_type)::in, list(mer_type)::in,
head_type_params::in, list(tvar)::in, map(tvar, mer_type)::out) is det.
% rename_goal(CalledProcHeadVars, CallArgs,
% CallerVarSet0, CalleeVarSet, CallerVarSet,
% CallerVarTypes0, CalleeVarTypes, CallerVarTypes,
% VarRenaming, CalledGoal, RenamedGoal).
%
:- pred rename_goal(list(prog_var)::in, list(prog_var)::in,
prog_varset::in, prog_varset::in, prog_varset::out,
vartypes::in, vartypes::in, vartypes::out,
map(prog_var, prog_var)::out, hlds_goal::in, hlds_goal::out) is det.
% can_inline_proc(PredId, ProcId, BuiltinState,
% InlinePromisedPure, CallingPredMarkers, ModuleInfo):
%
% Determine whether a predicate can be inlined.
%
:- pred can_inline_proc(pred_id::in, proc_id::in, builtin_state::in,
bool::in, pred_markers::in, module_info::in) is semidet.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds.det_analysis.
:- import_module check_hlds.mode_util.
:- import_module check_hlds.purity.
:- import_module hlds.goal_util.
:- import_module hlds.passes_aux.
:- import_module hlds.quantification.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module libs.trace_params.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_type.
:- import_module parse_tree.prog_type_subst.
:- import_module transform_hlds.complexity.
:- import_module transform_hlds.dead_proc_elim.
:- import_module transform_hlds.dependency_graph.
:- import_module bool.
:- import_module int.
:- import_module list.
:- import_module maybe.
:- import_module multi_map.
:- import_module pair.
:- import_module require.
:- import_module set.
:- import_module svset.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
% This structure holds option values, extracted from the globals.
%
:- type inline_params
---> params(
simple :: bool,
single_use :: bool,
call_cost :: int,
compound_size_threshold :: int,
simple_goal_threshold :: int,
var_threshold :: int,
highlevel_code :: bool,
any_tracing :: bool
% Is any procedure being traced
% in the module?
).
inlining(!ModuleInfo) :-
% Package up all the inlining options
% - whether to inline simple conj's of builtins
% - whether to inline predicates that are only called once
% - the threshold for determining whether to inline more complicated goals
% - the threshold for determining whether to inline the simple conj's
% - the upper limit on the number of variables we want in procedures;
% if inlining a procedure would cause the number of variables to exceed
% this threshold then we don't inline it.
% - whether we're in an MLDS grade
module_info_get_globals(!.ModuleInfo, Globals),
globals.lookup_bool_option(Globals, inline_simple, Simple),
globals.lookup_bool_option(Globals, inline_single_use, SingleUse),
globals.lookup_int_option(Globals, inline_call_cost, CallCost),
globals.lookup_int_option(Globals, inline_compound_threshold,
CompoundThreshold),
globals.lookup_int_option(Globals, inline_simple_threshold,
SimpleThreshold),
globals.lookup_int_option(Globals, inline_vars_threshold, VarThreshold),
globals.lookup_bool_option(Globals, highlevel_code, HighLevelCode),
globals.get_trace_level(Globals, TraceLevel),
AnyTracing = bool.not(given_trace_level_is_none(TraceLevel)),
Params = params(Simple, SingleUse, CallCost, CompoundThreshold,
SimpleThreshold, VarThreshold, HighLevelCode, AnyTracing),
% Get the usage counts for predicates (but only if needed, i.e. only if
% --inline-single-use or --inline-compound-threshold has been specified).
(
( SingleUse = yes
; CompoundThreshold > 0
)
->
dead_proc_analyze(!ModuleInfo, NeededMap)
;
map.init(NeededMap)
),
% Build the call graph and extract the topological sort.
% NOTE: the topological sort returns a list of SCCs. Clearly, we want to
% process the SCCs bottom to top (which is the order that they are
% returned), but it is not easy to guess the best way to flatten each SCC
% to achieve the best result. The current implementation just uses the
% ordering of the list returned by the topological sort. A more
% sophisticated approach would be to break the cycle so that
% the procedure(s) that are called by higher SCCs are processed last,
% but we do not implement that yet.
module_info_ensure_dependency_info(!ModuleInfo),
module_info_dependency_info(!.ModuleInfo, DepInfo),
hlds_dependency_info_get_dependency_ordering(DepInfo, SCCs),
list.condense(SCCs, PredProcs),
set.init(InlinedProcs0),
do_inlining(PredProcs, NeededMap, Params, InlinedProcs0, !ModuleInfo),
% The dependency graph is now out of date and needs to be rebuilt.
module_info_clobber_dependency_info(!ModuleInfo).
:- pred do_inlining(list(pred_proc_id)::in, needed_map::in,
inline_params::in, set(pred_proc_id)::in,
module_info::in, module_info::out) is det.
do_inlining([], _Needed, _Params, _Inlined, !Module).
do_inlining([PPId | PPIds], Needed, Params, !.Inlined, !Module) :-
inline_in_proc(PPId, !.Inlined, Params, !Module),
mark_predproc(PPId, Needed, Params, !.Module, !Inlined),
do_inlining(PPIds, Needed, Params, !.Inlined, !Module).
% This predicate effectively adds implicit `pragma inline' directives
% for procedures that match its heuristic.
%
:- pred mark_predproc(pred_proc_id::in, needed_map::in,
inline_params::in, module_info::in,
set(pred_proc_id)::in, set(pred_proc_id)::out) is det.
mark_predproc(PredProcId, NeededMap, Params, ModuleInfo, !InlinedProcs) :-
(
Simple = Params ^ simple,
SingleUse = Params ^ single_use,
CallCost = Params ^ call_cost,
CompoundThreshold = Params ^ compound_size_threshold,
SimpleThreshold = Params ^ simple_goal_threshold,
PredProcId = proc(PredId, ProcId),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_get_procedures(PredInfo, Procs),
map.lookup(Procs, ProcId, ProcInfo),
proc_info_get_goal(ProcInfo, CalledGoal),
Entity = entity_proc(PredId, ProcId),
% The heuristic represented by the following code could be improved.
(
Simple = yes,
is_simple_goal(CalledGoal, SimpleThreshold)
;
CompoundThreshold > 0,
map.search(NeededMap, Entity, Needed),
Needed = maybe_eliminable(NumUses),
goal_size(CalledGoal, Size),
% The size increase due to inlining at a call site is not Size,
% but the difference between Size and the size of the call.
% CallCost is the user-provided approximation of the size of the
% call.
(Size - CallCost) * NumUses =< CompoundThreshold
;
SingleUse = yes,
map.search(NeededMap, Entity, Needed),
Needed = maybe_eliminable(NumUses),
NumUses = 1
),
% Don't inline recursive predicates (unless explicitly requested).
\+ goal_calls(CalledGoal, PredProcId)
->
mark_proc_as_inlined(PredProcId, ModuleInfo, !InlinedProcs)
;
true
).
is_simple_clause_list(Clauses, SimpleThreshold) :-
clause_list_size(Clauses, Size),
(
Size < SimpleThreshold
;
Clauses = [clause(_, Goal, _, _)],
Size < SimpleThreshold * 3,
% For flat goals, we are more likely to be able to optimize stuff away,
% so we use a higher threshold.
% XXX This should be a separate option, we shouldn't hardcode
% the number `3' (which is just a guess).
is_flat_simple_goal(Goal)
).
is_simple_goal(CalledGoal, SimpleThreshold) :-
goal_size(CalledGoal, Size),
(
Size < SimpleThreshold
;
% For flat goals, we are more likely to be able to optimize stuff away,
% so we use a higher threshold.
% XXX this should be a separate option, we shouldn't hardcode
% the number `3' (which is just a guess).
Size < SimpleThreshold * 3,
is_flat_simple_goal(CalledGoal)
).
:- pred is_flat_simple_goal(hlds_goal::in) is semidet.
is_flat_simple_goal(hlds_goal(GoalExpr, _)) :-
(
GoalExpr = conj(plain_conj, Goals),
is_flat_simple_goal_list(Goals)
;
GoalExpr = negation(Goal),
is_flat_simple_goal(Goal)
;
GoalExpr = scope(Reason, Goal),
( Reason = from_ground_term(_, from_ground_term_construct) ->
% These scopes are flat and simple by construction.
true
;
is_flat_simple_goal(Goal)
)
;
GoalExpr = plain_call(_, _, _, inline_builtin, _, _)
;
GoalExpr = unify(_, _, _, _, _)
).
:- pred is_flat_simple_goal_list(hlds_goals::in) is semidet.
is_flat_simple_goal_list([]).
is_flat_simple_goal_list([Goal | Goals]) :-
is_flat_simple_goal(Goal),
is_flat_simple_goal_list(Goals).
:- pred mark_proc_as_inlined(pred_proc_id::in, module_info::in,
set(pred_proc_id)::in, set(pred_proc_id)::out) is det.
mark_proc_as_inlined(proc(PredId, ProcId), ModuleInfo, !InlinedProcs) :-
svset.insert(proc(PredId, ProcId), !InlinedProcs),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
( pred_info_requested_inlining(PredInfo) ->
true
;
trace [io(!IO)] (
write_proc_progress_message("% Inlining ", PredId, ProcId,
ModuleInfo, !IO)
)
).
%-----------------------------------------------------------------------------%
% inline_info contains the information that is changed as a result
% of inlining. It is threaded through the inlining process, and when
% finished, contains the updated information associated with the new
% goal.
%
% It also stores some necessary information that is not updated.
%
:- type inline_info
---> inline_info(
i_var_threshold :: int,
% variable threshold for inlining
i_highlevel_code :: bool,
% highlevel_code option
i_exec_trace :: bool,
% is executing tracing enabled
i_inlined_procs :: set(pred_proc_id),
i_module_info :: module_info,
i_univ_caller_tvars :: list(tvar),
% Universally quantified type vars
% occurring in the argument types
% for this predicate (the caller,
% not the callee). These are the
% ones that must not be bound.
i_pred_markers :: pred_markers,
% markers for the current predicate
% All the following fields are updated as a result of inlining.
i_prog_varset :: prog_varset,
i_vartypes :: vartypes,
i_tvarset :: tvarset,
i_rtti_varmaps :: rtti_varmaps,
% information about locations of
% type_infos and typeclass_infos
i_done_any_inlining :: bool,
% Did we do any inlining in the proc?
i_inlined_parallel :: bool,
% Did we inline any procs for which
% proc_info_get_has_parallel_conj returns
% `yes'?
i_need_requant :: bool,
% Does the goal need to be requantified?
i_changed_detism :: bool,
% Did we change the determinism
% of any subgoal?
i_changed_purity :: bool
% Did we change the purity of
% any subgoal.
).
:- pred inline_in_proc(pred_proc_id::in, set(pred_proc_id)::in,
inline_params::in, module_info::in, module_info::out) is det.
inline_in_proc(PredProcId, InlinedProcs, Params, !ModuleInfo) :-
VarThresh = Params ^ var_threshold,
HighLevelCode = Params ^ highlevel_code,
AnyTracing = Params ^ any_tracing,
PredProcId = proc(PredId, ProcId),
some [!PredInfo, !ProcInfo] (
module_info_get_preds(!.ModuleInfo, PredTable0),
map.lookup(PredTable0, PredId, !:PredInfo),
pred_info_get_procedures(!.PredInfo, ProcTable0),
map.lookup(ProcTable0, ProcId, !:ProcInfo),
pred_info_get_univ_quant_tvars(!.PredInfo, UnivQTVars),
pred_info_get_typevarset(!.PredInfo, TypeVarSet0),
pred_info_get_markers(!.PredInfo, Markers0),
proc_info_get_goal(!.ProcInfo, Goal0),
proc_info_get_varset(!.ProcInfo, VarSet0),
proc_info_get_vartypes(!.ProcInfo, VarTypes0),
proc_info_get_rtti_varmaps(!.ProcInfo, RttiVarMaps0),
DidInlining0 = no,
InlinedParallel0 = no,
Requantify0 = no,
DetChanged0 = no,
PurityChanged0 = no,
InlineInfo0 = inline_info(VarThresh, HighLevelCode, AnyTracing,
InlinedProcs, !.ModuleInfo, UnivQTVars, Markers0,
VarSet0, VarTypes0, TypeVarSet0, RttiVarMaps0,
DidInlining0, InlinedParallel0, Requantify0, DetChanged0,
PurityChanged0),
inlining_in_goal(Goal0, Goal, InlineInfo0, InlineInfo),
InlineInfo = inline_info(_, _, _, _, _, _, Markers, VarSet, VarTypes,
TypeVarSet, RttiVarMaps, DidInlining, InlinedParallel, Requantify,
DetChanged, PurityChanged),
pred_info_set_markers(Markers, !PredInfo),
pred_info_set_typevarset(TypeVarSet, !PredInfo),
proc_info_set_varset(VarSet, !ProcInfo),
proc_info_set_vartypes(VarTypes, !ProcInfo),
proc_info_set_rtti_varmaps(RttiVarMaps, !ProcInfo),
proc_info_set_goal(Goal, !ProcInfo),
(
InlinedParallel = yes,
proc_info_set_has_parallel_conj(yes, !ProcInfo)
;
InlinedParallel = no
),
(
Requantify = yes,
requantify_proc_general(ordinary_nonlocals_no_lambda, !ProcInfo)
;
Requantify = no
),
(
DidInlining = yes,
recompute_instmap_delta_proc(recompute_atomic_instmap_deltas,
!ProcInfo, !ModuleInfo)
;
DidInlining = no
),
map.det_update(ProcTable0, ProcId, !.ProcInfo, ProcTable),
pred_info_set_procedures(ProcTable, !PredInfo),
(
PurityChanged = yes,
repuritycheck_proc(!.ModuleInfo, PredProcId, !PredInfo)
;
PurityChanged = no
),
map.det_update(PredTable0, PredId, !.PredInfo, PredTable),
module_info_set_preds(PredTable, !ModuleInfo),
% If the determinism of some sub-goals has changed, then we re-run
% determinism analysis, because propagating the determinism information
% through the procedure may lead to more efficient code.
(
DetChanged = yes,
det_infer_proc(PredId, ProcId, !ModuleInfo, _, _, [], _)
;
DetChanged = no
)
).
%-----------------------------------------------------------------------------%
:- pred inlining_in_goal(hlds_goal::in, hlds_goal::out,
inline_info::in, inline_info::out) is det.
inlining_in_goal(Goal0, Goal, !Info) :-
Goal0 = hlds_goal(GoalExpr0, GoalInfo0),
(
GoalExpr0 = plain_call(PredId, ProcId, ArgVars, Builtin, Context, Sym),
inlining_in_call(PredId, ProcId, ArgVars, Builtin,
Context, Sym, GoalExpr, GoalInfo0, GoalInfo, !Info)
;
( GoalExpr0 = generic_call(_, _, _, _)
; GoalExpr0 = call_foreign_proc(_, _, _, _, _, _, _)
; GoalExpr0 = unify(_, _, _, _, _)
),
GoalExpr = GoalExpr0,
GoalInfo = GoalInfo0
;
GoalExpr0 = conj(ConjType, Goals0),
(
ConjType = plain_conj,
inlining_in_conj(Goals0, Goals, !Info)
;
ConjType = parallel_conj,
inlining_in_par_conj(Goals0, Goals, !Info)
),
GoalExpr = conj(ConjType, Goals),
GoalInfo = GoalInfo0
;
GoalExpr0 = disj(Goals0),
inlining_in_goals(Goals0, Goals, !Info),
GoalExpr = disj(Goals),
GoalInfo = GoalInfo0
;
GoalExpr0 = switch(Var, Det, Cases0),
inlining_in_cases(Cases0, Cases, !Info),
GoalExpr = switch(Var, Det, Cases),
GoalInfo = GoalInfo0
;
GoalExpr0 = if_then_else(Vars, Cond0, Then0, Else0),
inlining_in_goal(Cond0, Cond, !Info),
inlining_in_goal(Then0, Then, !Info),
inlining_in_goal(Else0, Else, !Info),
GoalExpr = if_then_else(Vars, Cond, Then, Else),
GoalInfo = GoalInfo0
;
GoalExpr0 = negation(SubGoal0),
inlining_in_goal(SubGoal0, SubGoal, !Info),
GoalExpr = negation(SubGoal),
GoalInfo = GoalInfo0
;
GoalExpr0 = scope(Reason, SubGoal0),
( Reason = from_ground_term(_, from_ground_term_construct) ->
% The scope has no calls to inline.
GoalExpr = GoalExpr0,
GoalInfo = GoalInfo0
;
inlining_in_goal(SubGoal0, SubGoal, !Info),
GoalExpr = scope(Reason, SubGoal),
GoalInfo = GoalInfo0
)
;
GoalExpr0 = shorthand(_),
% These should have been expanded out by now.
unexpected(this_file, "inlining_in_goal: unexpected shorthand")
),
Goal = hlds_goal(GoalExpr, GoalInfo).
:- pred inlining_in_call(pred_id::in, proc_id::in,
list(prog_var)::in, builtin_state::in, maybe(call_unify_context)::in,
sym_name::in, hlds_goal_expr::out,
hlds_goal_info::in, hlds_goal_info::out,
inline_info::in, inline_info::out) is det.
inlining_in_call(PredId, ProcId, ArgVars, Builtin,
Context, Sym, GoalExpr, GoalInfo0, GoalInfo, !Info) :-
!.Info = inline_info(VarThresh, HighLevelCode, AnyTracing,
InlinedProcs, ModuleInfo, HeadTypeParams, Markers,
VarSet0, VarTypes0, TypeVarSet0, RttiVarMaps0, _DidInlining0,
InlinedParallel0, Requantify0, DetChanged0, PurityChanged0),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, PredInfo, ProcInfo),
% Should we inline this call?
(
should_inline_proc(PredId, ProcId, Builtin, HighLevelCode,
AnyTracing, InlinedProcs, Markers, ModuleInfo, UserReq),
(
UserReq = yes
;
UserReq = no,
% Okay, but will we exceed the number-of-variables threshold?
varset.vars(VarSet0, ListOfVars),
list.length(ListOfVars, ThisMany),
% We need to find out how many variables the Callee has.
proc_info_get_varset(ProcInfo, CalleeVarSet),
varset.vars(CalleeVarSet, CalleeListOfVars),
list.length(CalleeListOfVars, CalleeThisMany),
TotalVars = ThisMany + CalleeThisMany,
TotalVars =< VarThresh
),
% XXX Work around bug #142.
not may_encounter_bug_142(ProcInfo, ArgVars)
->
do_inline_call(HeadTypeParams, ArgVars, PredInfo, ProcInfo,
VarSet0, VarSet, VarTypes0, VarTypes, TypeVarSet0, TypeVarSet,
RttiVarMaps0, RttiVarMaps, hlds_goal(GoalExpr, GoalInfo)),
% If some of the output variables are not used in the calling
% procedure, requantify the procedure.
NonLocals = goal_info_get_nonlocals(GoalInfo0),
( set.list_to_set(ArgVars) = NonLocals ->
Requantify = Requantify0
;
Requantify = yes
),
( goal_info_get_purity(GoalInfo0) = goal_info_get_purity(GoalInfo) ->
PurityChanged = PurityChanged0
;
PurityChanged = yes
),
% If the inferred determinism of the called goal differs from the
% declared determinism, flag that we should re-run determinism analysis
% on this proc.
Determinism0 = goal_info_get_determinism(GoalInfo0),
Determinism = goal_info_get_determinism(GoalInfo),
( Determinism0 = Determinism ->
DetChanged = DetChanged0
;
DetChanged = yes
),
proc_info_get_has_parallel_conj(ProcInfo, HasParallelConj),
(
HasParallelConj = yes,
InlinedParallel = yes
;
HasParallelConj = no,
InlinedParallel = InlinedParallel0
),
DidInlining = yes,
!:Info = inline_info(VarThresh, HighLevelCode, AnyTracing,
InlinedProcs, ModuleInfo, HeadTypeParams, Markers,
VarSet, VarTypes, TypeVarSet, RttiVarMaps, DidInlining,
InlinedParallel, Requantify, DetChanged, PurityChanged)
;
GoalExpr = plain_call(PredId, ProcId, ArgVars, Builtin, Context, Sym),
GoalInfo = GoalInfo0
).
:- pred may_encounter_bug_142(proc_info::in, list(prog_var)::in) is semidet.
may_encounter_bug_142(CalleeProcInfo, ArgVars) :-
proc_info_get_rtti_varmaps(CalleeProcInfo, RttiVarMaps),
proc_info_get_headvars(CalleeProcInfo, HeadVars),
multi_map.from_corresponding_lists(ArgVars, HeadVars, MultiMap),
some [ArgVar] (
list.member(ArgVar, ArgVars),
multi_map.lookup(MultiMap, ArgVar, HeadVarsForArgVar),
HeadVarsForArgVar = [_ | _],
tci_vars_different_constraints(RttiVarMaps, HeadVarsForArgVar)
).
:- pred tci_vars_different_constraints(rtti_varmaps::in, list(prog_var)::in)
is semidet.
tci_vars_different_constraints(RttiVarMaps, [VarA, VarB | Vars]) :-
(
rtti_varmaps_var_info(RttiVarMaps, VarA, VarInfoA),
rtti_varmaps_var_info(RttiVarMaps, VarB, VarInfoB),
VarInfoA = typeclass_info_var(ConstraintA),
VarInfoB = typeclass_info_var(ConstraintB),
ConstraintA \= ConstraintB
;
tci_vars_different_constraints(RttiVarMaps, [VarB | Vars])
).
%-----------------------------------------------------------------------------%
do_inline_call(HeadTypeParams, ArgVars, PredInfo, ProcInfo,
VarSet0, VarSet, VarTypes0, VarTypes, TypeVarSet0, TypeVarSet,
RttiVarMaps0, RttiVarMaps, Goal) :-
proc_info_get_goal(ProcInfo, CalledGoal),
% Look up the rest of the info for the called procedure.
pred_info_get_typevarset(PredInfo, CalleeTypeVarSet),
proc_info_get_headvars(ProcInfo, HeadVars),
proc_info_get_vartypes(ProcInfo, CalleeVarTypes0),
proc_info_get_varset(ProcInfo, CalleeVarSet),
proc_info_get_rtti_varmaps(ProcInfo, CalleeRttiVarMaps0),
% Substitute the appropriate types into the type mapping of the called
% procedure. For example, if we call `:- pred foo(T)' with an argument
% of type `int', then we need to replace all occurrences of type `T'
% with type `int' when we inline it. Conversely, in the case of
% existentially typed preds, we may need to bind type variables in the
% caller. For example, if we call `:- pred some [T] foo(T)', and the
% definition of `foo' binds `T' to `int', then we need to replace all
% occurrences of type `T' with type `int' in the caller.
% First, rename apart the type variables in the callee. (We can almost
% throw away the new typevarset, since we are about to substitute away
% any new type variables, but any unbound type variables in the callee
% will not be substituted away)
tvarset_merge_renaming(TypeVarSet0, CalleeTypeVarSet, TypeVarSet,
TypeRenaming),
apply_variable_renaming_to_vartypes(TypeRenaming,
CalleeVarTypes0, CalleeVarTypes1),
% Next, compute the type substitution and then apply it.
% Note: there's no need to update the type_info locations maps,
% either for the caller or callee, since for any type vars in the
% callee which get bound to type vars in the caller, the type_info
% location will be given by the entry in the caller's
% type_info locations map (and vice versa). It doesn't matter if the
% final type_info locations map contains some entries
% for type variables which have been substituted away,
% because those entries simply won't be used.
map.apply_to_list(HeadVars, CalleeVarTypes1, HeadTypes),
map.apply_to_list(ArgVars, VarTypes0, ArgTypes),
pred_info_get_exist_quant_tvars(PredInfo, CalleeExistQVars),
get_type_substitution(HeadTypes, ArgTypes, HeadTypeParams,
CalleeExistQVars, TypeSubn),
% Handle the common case of non-existentially typed preds specially,
% since we can do things more efficiently in that case
(
CalleeExistQVars = [],
% Update types in callee only.
apply_rec_subst_to_vartypes(TypeSubn, CalleeVarTypes1, CalleeVarTypes),
VarTypes1 = VarTypes0
;
CalleeExistQVars = [_ | _],
% Update types in callee.
apply_rec_subst_to_vartypes(TypeSubn, CalleeVarTypes1, CalleeVarTypes),
% Update types in caller.
apply_rec_subst_to_vartypes(TypeSubn, VarTypes0, VarTypes1)
),
% Now rename apart the variables in the called goal.
rename_goal(HeadVars, ArgVars, VarSet0, CalleeVarSet, VarSet, VarTypes1,
CalleeVarTypes, VarTypes, Subn, CalledGoal, Goal),
apply_substitutions_to_rtti_varmaps(TypeRenaming, TypeSubn, Subn,
CalleeRttiVarMaps0, CalleeRttiVarMaps1),
% Prefer the type_info_locn from the caller.
% The type_infos or typeclass_infos passed to the callee may
% have been produced by extracting type_infos or typeclass_infos
% from typeclass_infos in the caller, so they won't necessarily
% be the same.
rtti_varmaps_overlay(CalleeRttiVarMaps1, RttiVarMaps0, RttiVarMaps).
get_type_substitution(HeadTypes, ArgTypes,
HeadTypeParams, CalleeExistQVars, TypeSubn) :-
(
CalleeExistQVars = [],
( type_list_subsumes(HeadTypes, ArgTypes, TypeSubn0) ->
TypeSubn = TypeSubn0
;
% The head types should always be unifiable with the actual
% argument types, otherwise it is a type error that should have
% been detected by typechecking. But polymorphism.m introduces
% type-incorrect code -- e.g. compare(Res, EnumA, EnumB) gets
% converted into builtin_compare_int(Res, EnumA, EnumB), which
% is a type error since it assumes that an enumeration is an int.
% In those cases, we don't need to worry about the type
% substitution. (Perhaps it would be better if polymorphism
% introduced calls to unsafe_type_cast/2 for such cases.)
map.init(TypeSubn)
)
;
CalleeExistQVars = [_ | _],
% For calls to existentially type preds, we may need to bind
% type variables in the caller, not just those in the callee.
(
map.init(TypeSubn0),
type_unify_list(HeadTypes, ArgTypes, HeadTypeParams,
TypeSubn0, TypeSubn1)
->
TypeSubn = TypeSubn1
;
unexpected(this_file,
"get_type_substitution: type unification failed")
)
).
rename_goal(HeadVars, ArgVars, VarSet0, CalleeVarSet, VarSet, VarTypes1,
CalleeVarTypes, VarTypes, Renaming, CalledGoal, Goal) :-
map.from_corresponding_lists(HeadVars, ArgVars, Renaming0),
varset.vars(CalleeVarSet, CalleeListOfVars),
clone_variables(CalleeListOfVars, CalleeVarSet, CalleeVarTypes,
VarSet0, VarSet, VarTypes1, VarTypes, Renaming0, Renaming),
must_rename_vars_in_goal(Renaming, CalledGoal, Goal).
%-----------------------------------------------------------------------------%
% inlining_in_goals is used for both disjunctions and
% parallel conjunctions.
%
:- pred inlining_in_goals(list(hlds_goal)::in, list(hlds_goal)::out,
inline_info::in, inline_info::out) is det.
inlining_in_goals([], [], !Info).
inlining_in_goals([Goal0 | Goals0], [Goal | Goals], !Info) :-
inlining_in_goal(Goal0, Goal, !Info),
inlining_in_goals(Goals0, Goals, !Info).
%-----------------------------------------------------------------------------%
:- pred inlining_in_cases(list(case)::in, list(case)::out,
inline_info::in, inline_info::out) is det.
inlining_in_cases([], [], !Info).
inlining_in_cases([Case0 | Cases0], [Case | Cases], !Info) :-
Case0 = case(MainConsId, OtherConsIds, Goal0),
inlining_in_goal(Goal0, Goal, !Info),
Case = case(MainConsId, OtherConsIds, Goal),
inlining_in_cases(Cases0, Cases, !Info).
%-----------------------------------------------------------------------------%
:- pred inlining_in_conj(list(hlds_goal)::in, list(hlds_goal)::out,
inline_info::in, inline_info::out) is det.
inlining_in_conj([], [], !Info).
inlining_in_conj([Goal0 | Goals0], Goals, !Info) :-
% Since a single goal may become a conjunction,
% we flatten the conjunction as we go.
inlining_in_goal(Goal0, Goal1, !Info),
goal_to_conj_list(Goal1, Goal1List),
inlining_in_conj(Goals0, Goals1, !Info),
list.append(Goal1List, Goals1, Goals).
:- pred inlining_in_par_conj(list(hlds_goal)::in, list(hlds_goal)::out,
inline_info::in, inline_info::out) is det.
inlining_in_par_conj([], [], !Info).
inlining_in_par_conj([Goal0 | Goals0], Goals, !Info) :-
% Since a single goal may become a parallel conjunction,
% we flatten the conjunction as we go.
inlining_in_goal(Goal0, Goal1, !Info),
goal_to_par_conj_list(Goal1, Goal1List),
inlining_in_par_conj(Goals0, Goals1, !Info),
list.append(Goal1List, Goals1, Goals).
%-----------------------------------------------------------------------------%
% Check to see if we should inline a call.
%
% Fails if the called predicate cannot be inlined, e.g. because it is
% a builtin, we don't have code for it, it uses nondet pragma c_code, etc.
%
% It succeeds if the called procedure is inlinable, and in addition
% either there was a `pragma inline' for this procedure, or the procedure
% was marked by mark_predproc as having met its heuristic.
%
:- pred should_inline_proc(pred_id::in, proc_id::in,
builtin_state::in, bool::in, bool::in, set(pred_proc_id)::in,
pred_markers::in, module_info::in, bool::out) is semidet.
should_inline_proc(PredId, ProcId, BuiltinState, HighLevelCode,
_Tracing, InlinedProcs, CallingPredMarkers, ModuleInfo, UserReq) :-
InlinePromisedPure = yes,
can_inline_proc_2(PredId, ProcId, BuiltinState,
HighLevelCode, InlinePromisedPure, CallingPredMarkers, ModuleInfo),
% OK, we could inline it - but should we? Apply our heuristic.
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_get_markers(PredInfo, Markers),
( check_marker(Markers, marker_user_marked_inline) ->
UserReq = yes
;
( check_marker(Markers, marker_heuristic_inline)
; set.member(proc(PredId, ProcId), InlinedProcs)
)
->
UserReq = no
;
fail
).
can_inline_proc(PredId, ProcId, BuiltinState, InlinePromisedPure,
CallingPredMarkers, ModuleInfo) :-
module_info_get_globals(ModuleInfo, Globals),
globals.lookup_bool_option(Globals, highlevel_code, HighLevelCode),
can_inline_proc_2(PredId, ProcId, BuiltinState, HighLevelCode,
InlinePromisedPure, CallingPredMarkers, ModuleInfo).
:- pred can_inline_proc_2(pred_id::in, proc_id::in,
builtin_state::in, bool::in, bool::in, pred_markers::in, module_info::in)
is semidet.
can_inline_proc_2(PredId, ProcId, BuiltinState, HighLevelCode,
InlinePromisedPure, _CallingPredMarkers, ModuleInfo) :-
% Don't inline builtins, the code generator will handle them.
BuiltinState = not_builtin,
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, PredInfo, ProcInfo),
% Don't try to inline imported predicates, since we don't
% have the code for them.
\+ pred_info_is_imported(PredInfo),
% This next line catches the case of locally defined unification predicates
% for imported types.
\+ (
pred_info_is_pseudo_imported(PredInfo),
hlds_pred.in_in_unification_proc_id(ProcId)
),
% Only try to inline procedures which are evaluated using normal
% evaluation. Currently we can't inline procs evaluated using any of the
% other methods because the code generator for the methods can only handle
% whole procedures not code fragments.
proc_info_get_eval_method(ProcInfo, eval_normal),
% Don't inline anything we have been specifically requested not to inline.
\+ pred_info_requested_no_inlining(PredInfo),
% Don't inline any procedure whose complexity we are trying to determine,
% since the complexity transformation can't transform *part* of a
% procedure.
module_info_get_maybe_complexity_proc_map(ModuleInfo,
MaybeComplexityProcMap),
(
MaybeComplexityProcMap = no
;
MaybeComplexityProcMap = yes(_ - ComplexityProcMap),
IsInComplexityMap = is_in_complexity_proc_map(
ComplexityProcMap, ModuleInfo, PredId, ProcId),
IsInComplexityMap = no
),
% For the LLDS back-end, under no circumstances inline model_non
% foreign_procs. The resulting code would not work properly.
proc_info_get_goal(ProcInfo, CalledGoal),
\+ (
HighLevelCode = no,
CalledGoal = hlds_goal(call_foreign_proc(_, _, _, _, _, _, _), _),
proc_info_interface_determinism(ProcInfo, Detism),
( Detism = detism_non ; Detism = detism_multi )
),
module_info_get_globals(ModuleInfo, Globals),
globals.get_target(Globals, Target),
(
CalledGoal = hlds_goal(call_foreign_proc(ForeignAttributes,
_, _, _, _, _, _), _)
->
% Only inline a foreign_proc if it is appropriate for the target
% language.
(
ForeignLanguage = get_foreign_language(ForeignAttributes)
=>
ok_to_inline_language(ForeignLanguage, Target)
),
% Don't inline a foreign_proc if it is has been marked with the
% attribute that requests the code not be duplicated.
(
MaybeMayDuplicate = get_may_duplicate(ForeignAttributes)
=>
(
MaybeMayDuplicate = no
;
MaybeMayDuplicate = yes(proc_may_duplicate)
)
)
;
true
),
(
InlinePromisedPure = yes
;
% For some optimizations (such as deforestation) we don't want to
% inline predicates which are promised pure because the extra impurity
% propagated through the goal will defeat any attempts at optimization.
%
InlinePromisedPure = no,
pred_info_get_promised_purity(PredInfo, purity_impure)
).
% Succeed iff it is appropriate to inline `pragma foreign_proc'
% in the specified language for the given compilation_target.
% Generally that will only be the case if the target directly
% supports inline code in that language.
%
:- pred ok_to_inline_language(foreign_language::in, compilation_target::in)
is semidet.
ok_to_inline_language(lang_c, target_c).
ok_to_inline_language(lang_erlang, target_erlang).
ok_to_inline_language(lang_java, target_java).
ok_to_inline_language(lang_csharp, target_csharp).
% ok_to_inline_language(il, il). %
% XXX we need to fix the handling of parameter marshalling for inlined code
% before we can enable this -- see the comments in
% ml_gen_ordinary_pragma_il_proc in ml_code_gen.m.
%
% ok_to_inline_language(asm, asm). % foreign_language = asm not implemented
% We could define a language "C/C++" (c_slash_cplusplus) which was the
% intersection of "C" and "C++", and then we'd have
% ok_to_inline_language(c_slash_cplusplus, c).
% ok_to_inline_language(c_slash_cplusplus, cplusplus).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "inlining.m".
%-----------------------------------------------------------------------------%
:- end_module inlining.
%-----------------------------------------------------------------------------%