Files
mercury/runtime/mercury_thread.h
Mark Brown d465fa53cb Update the COPYING.LIB file and references to it.
Discussion of these changes can be found on the Mercury developers
mailing list archives from June 2018.

COPYING.LIB:
    Add a special linking exception to the LGPL.

*:
    Update references to COPYING.LIB.

    Clean up some minor errors that have accumulated in copyright
    messages.
2018-06-09 17:43:12 +10:00

407 lines
17 KiB
C

// vim: ts=4 sw=4 expandtab ft=c
// Copyright (C) 1997-1998, 2000, 2003, 2005-2007, 2009-2011 The University of Melbourne.
// Copyright (C) 2014-2018 The Mercury team.
// This file is distributed under the terms specified in COPYING.LIB.
#ifndef MERCURY_THREAD_H
#define MERCURY_THREAD_H
#include "mercury_std.h"
#ifdef MR_THREAD_SAFE
#include <signal.h> // for sigset_t on the SPARC
#include <pthread.h>
#if defined(MR_USE_LIBDISPATCH)
#include <dispatch/dispatch.h>
#else
#include <semaphore.h> // POSIX semaphores
#endif
#define MR_MUTEX_ATTR NULL
#define MR_COND_ATTR NULL
#define MR_THREAD_ATTR NULL
typedef pthread_t MercuryThread;
typedef pthread_key_t MercuryThreadKey;
typedef pthread_mutex_t MercuryLock;
typedef pthread_cond_t MercuryCond;
#if defined(MR_USE_LIBDISPATCH)
typedef dispatch_semaphore_t MercurySem;
#else
typedef sem_t MercurySem;
#endif
extern int MR_mutex_lock(MercuryLock *lock, const char *from);
extern int MR_mutex_unlock(MercuryLock *lock, const char *from);
extern int MR_cond_signal(MercuryCond *cond, const char *from);
extern int MR_cond_broadcast(MercuryCond *cond, const char *from);
extern int MR_cond_wait(MercuryCond *cond, MercuryLock *lock,
const char *from);
extern int MR_cond_timed_wait(MercuryCond *cond, MercuryLock *lock,
const struct timespec *abstime, const char *from);
extern void MR_sem_init(MercurySem *sem, unsigned int);
extern int MR_sem_wait(MercurySem *sem, const char *from);
extern int MR_sem_timed_wait(MercurySem *sem, const struct timespec *abstime,
const char *from);
extern int MR_sem_post(MercurySem *sem, const char *from);
extern void MR_sem_destroy(MercurySem *sem);
#if defined(MR_PTHREADS_WIN32)
extern MercuryThread MR_null_thread(void);
#else
#define MR_null_thread() ((MercuryThread) 0)
#endif
#define MR_thread_equal(a, b) pthread_equal((a), (b))
#if defined(MR_PTHREADS_WIN32)
#define MR_SELF_THREAD_ID ((MR_Integer) pthread_self().p)
#else
#define MR_SELF_THREAD_ID ((MR_Integer) pthread_self())
#endif
extern MR_bool MR_debug_threads;
#ifndef MR_DEBUG_THREADS
// The following macros should be used once the use of locking in the
// generated code is considered stable, since the alternative versions do
// the same thing, but with debugging support enabled.
#define MR_LOCK(lck, from) pthread_mutex_lock((lck))
#define MR_UNLOCK(lck, from) pthread_mutex_unlock((lck))
#define MR_COND_SIGNAL(cnd, from) pthread_cond_signal((cnd))
#define MR_COND_BROADCAST(cnd, from) pthread_cond_broadcast((cnd))
#define MR_COND_WAIT(cnd, mtx, from) pthread_cond_wait((cnd), (mtx))
#define MR_COND_TIMED_WAIT(cond, mtx, abstime, from) \
pthread_cond_timedwait((cond), (mtx), (abstime))
#if defined(MR_USE_LIBDISPATCH)
#define MR_SEM_WAIT(sem, from) \
dispatch_semaphore_wait(*(sem), DISPATCH_TIME_FOREVER)
#define MR_SEM_POST(sem, from) dispatch_semaphore_signal(*(sem))
#define MR_SEM_TIMED_WAIT(sem, abstime, from) \
dispatch_semaphore_wait(*(sem), dispatch_walltime((abstime), 0))
#else
#define MR_SEM_WAIT(sem, from) sem_wait((sem))
#define MR_SEM_POST(sem, from) sem_post((sem))
#define MR_SEM_TIMED_WAIT(sem, abstime, from) \
sem_timedwait((sem), (abstime))
#endif // !MR_USE_LIBDISPATCH
#else // MR_DEBUG_THREADS
#define MR_LOCK(lck, from) \
( MR_debug_threads ? \
MR_mutex_lock((lck), (from)) \
: \
pthread_mutex_lock((lck)) \
)
#define MR_UNLOCK(lck, from) \
( MR_debug_threads ? \
MR_mutex_unlock((lck), (from)) \
: \
pthread_mutex_unlock((lck)) \
)
#define MR_COND_SIGNAL(cnd, from) \
( MR_debug_threads ? \
MR_cond_signal((cnd), (from)) \
: \
pthread_cond_signal((cnd)) \
)
#define MR_COND_BROADCAST(cnd, from) \
( MR_debug_threads ? \
MR_cond_broadcast((cnd), (from)) \
: \
pthread_cond_broadcast((cnd)) \
)
#define MR_COND_WAIT(cnd, mtx, from) \
( MR_debug_threads ? \
MR_cond_wait((cnd), (mtx), (from)) \
: \
pthread_cond_wait((cnd), (mtx)) \
)
#define MR_COND_TIMED_WAIT(cond, mtx, abstime, from) \
( MR_debug_threads ? \
MR_cond_timed_wait((cond), (mtx), (abstime), (from)) \
: \
pthread_cond_timedwait((cond), (mtx), (abstime)) \
)
#if defined(MR_USE_LIBDISPATCH)
#define MR_SEM_WAIT(sem, from) \
( MR_debug_threads ? \
MR_sem_wait((sem), (from)) \
: \
dispatch_semaphore_wait(*(sem), DISPATCH_TIME_FOREVER) \
)
#define MR_SEM_TIMED_WAIT(sem, abstime, from) \
( MR_debug_threads ? \
MR_sem_timed_wait((sem), (abstime), (from)) \
: \
dispatch_semaphore_wait(*(sem), dispatch_walltime((abstime), 0)) \
)
#define MR_SEM_POST(sem, from) \
( MR_debug_threads ? \
MR_sem_post((sem), (from)) \
: \
dispatch_semaphore_signal(*(sem)) \
)
#else // !MR_USE_LIBDISPATCH
#define MR_SEM_WAIT(sem, from) \
( MR_debug_threads ? \
MR_sem_wait((sem), (from)) \
: \
sem_wait((sem)) \
)
#define MR_SEM_TIMED_WAIT(sem, abstime, from) \
( MR_debug_threads ? \
MR_sem_timed_wait((sem), (abstime), (from)) \
: \
sem_timedwait((sem), (abstime)) \
)
#define MR_SEM_POST(sem, from) \
( MR_debug_threads ? \
MR_sem_post((sem), (from)) \
: \
sem_post((sem)) \
)
#endif // !MR_USE_LIBDISPATCH
#endif // MR_DEBUG_THREADS
// MR_SEM_IS_EINTR is used to test if MR_SEM_WAIT or MR_SEM_TIMED_WAIT was
// interrupted by a signal. We do not test errno when using libdispatch as
// the manual page for dispatch_semaphore_wait does not mention errno nor
// EINTR.
#if defined(MR_USE_LIBDISPATCH)
#define MR_SEM_IS_EINTR(errno) MR_FALSE
#else
#define MR_SEM_IS_EINTR(errno) (errno == EINTR)
#endif
// The following two macros are used to protect pragma foreign_proc
// predicates which are not thread-safe.
// See the comments below.
#define MR_OBTAIN_GLOBAL_LOCK(where) MR_LOCK(&MR_global_lock, (where))
#define MR_RELEASE_GLOBAL_LOCK(where) MR_UNLOCK(&MR_global_lock, (where))
#define MR_GETSPECIFIC(key) pthread_getspecific((key))
#define MR_KEY_CREATE pthread_key_create
// create_worksteal_thread() creates a new POSIX thread, and creates and
// initializes a work-stealing Mercury engine to run in that thread.
extern MercuryThread *MR_create_worksteal_thread(void);
// The primordial thread. Currently used for debugging.
extern MercuryThread MR_primordial_thread;
// MR_global_lock is a mutex for ensuring that only one non-threadsafe
// piece of pragma c code executes at a time. If `not_threadsafe' is
// given or `threadsafe' is not given in the attributes of a pragma
// c code definition of a predicate, then the generated code will
// obtain this lock before executing the C code fragment, and then
// release it afterwards.
// XXX we should emit a warning if may_call_mercury and not_threadsafe
// (the defaults) are specified since if you obtain the lock then
// call back into Mercury deadlock could result.
extern MercuryLock MR_global_lock;
#ifndef MR_HIGHLEVEL_CODE
// This points to an array containing MR_max_engines pointers to Mercury
// engines. It is indexed by engine id. The first item in the array is the
// primordial thread. A null entry represents an unallocated engine id.
// During initialisation, the pointer may be null.
// This is exported only for leave_signal_handler.
// All other accesses require the MR_all_engine_bases_lock.
extern struct MR_mercury_engine_struct **MR_all_engine_bases;
#endif
// MR_exception_handler_key stores a key which can be used to get
// the current exception handler for the current thread.
extern MercuryThreadKey MR_exception_handler_key;
#else // not MR_THREAD_SAFE
#define MR_LOCK(nothing, from) do { } while (0)
#define MR_UNLOCK(nothing, from) do { } while (0)
#define MR_COND_SIGNAL(nothing, from) do { } while (0)
#define MR_COND_BROADCAST(nothing, from) do { } while (0)
#define MR_COND_WAIT(no, thing, from) (0)
#define MR_OBTAIN_GLOBAL_LOCK(where) do { } while (0)
#define MR_RELEASE_GLOBAL_LOCK(where) do { } while (0)
#endif
// These are used to prevent the process terminating as soon as the original
// Mercury thread terminates.
extern MR_Integer MR_thread_barrier_count;
#ifdef MR_THREAD_SAFE
extern MercuryLock MR_thread_barrier_lock;
#ifdef MR_HIGHLEVEL_CODE
extern MercuryCond MR_thread_barrier_cond;
#endif
#endif
#ifndef MR_HIGHLEVEL_CODE
extern struct MR_Context_Struct *MR_thread_barrier_context;
#endif
// The following enum is used as the argument to init_thread/init_thread_inner.
// MR_use_now should be passed to indicate that
// it has been called in a context in which it should initialize
// the current thread's environment and return.
// MR_use_later should be passed to indicate that the thread should
// be initialized, then suspend waiting for work to appear in the
// runqueue. The engine is destroyed when the execution of work from
// the runqueue returns.
typedef enum {
MR_use_now,
MR_use_later
} MR_when_to_use;
// In low-level C parallel grades, there are two types of Mercury engines.
// "Shared" engines may execute code from any Mercury thread.
// "Exclusive" engines execute code only for a single Mercury thread.
// Shared engines may steal work from other shared engines, so are also
// called work-stealing engines; we do not have shared engines that
// refrain from work-stealing.
//
// In low-level C non-parallel grades, all Mercury threads execute on
// the same unique Mercury engine. That engine is equivalent to a shared engine.
//
// In high-level C parallel grades, all Mercury threads execute in their
// own POSIX thread. All engines are exclusive engines.
//
// In high-level C non-parallel grades, only a single Mercury thread exists,
// executing in a single Mercury engine. That engine is equivalent
// to an exclusive engine, or a shared engine with no other engines present.
typedef enum {
MR_ENGINE_TYPE_SHARED = 1,
MR_ENGINE_TYPE_EXCLUSIVE = 2
} MR_EngineType;
#ifdef MR_HIGHLEVEL_CODE
#define MR_PRIMORIDAL_ENGINE_TYPE MR_ENGINE_TYPE_EXCLUSIVE
#else
#define MR_PRIMORIDAL_ENGINE_TYPE MR_ENGINE_TYPE_SHARED
#endif
// Create and initialize a new Mercury engine running in the current
// POSIX thread.
//
// See the comments above for the meaning of the argument.
// If there is already a Mercury engine running in the current POSIX thread
// then init_thread is just a no-op.
//
// Returns MR_TRUE if a Mercury engine was created as a result of this call
// *and* it is the caller's responsibility to finalize it (it is intended that
// the caller can store the return value and call finalize_thread_engine
// if it is true).
extern MR_bool MR_init_thread(MR_when_to_use);
extern MR_bool MR_init_thread_inner(MR_when_to_use, MR_EngineType);
// Finalize the thread engine running in the current POSIX thread.
// This will release the resources used by this thread -- this is very
// important because the memory used for the det stack for each thread
// can be re-used by the next init_thread.
extern void MR_finalize_thread_engine(void);
// The values of thread-local mutables are stored in an array per Mercury
// thread. This makes it easy for a newly spawned thread to inherit (copy)
// all the thread-local mutables of its parent thread.
// Accesses to the array are protected by a mutex, in case a parallel
// conjunctions tries to read a thread-local value while another parallel
// conjunction (in the same Mercury thread) is writing to it.
//
// Each thread-local mutable has an associated index into the array, which is
// allocated to it during initialisation. For ease of implementation there is
// an arbitrary limit to the number of thread-local mutables that are allowed.
typedef struct MR_ThreadLocalMuts MR_ThreadLocalMuts;
struct MR_ThreadLocalMuts {
#ifdef MR_THREAD_SAFE
MercuryLock MR_tlm_lock;
#endif
MR_Word *MR_tlm_values;
};
#define MR_MAX_THREAD_LOCAL_MUTABLES 128
extern MR_Unsigned MR_num_thread_local_mutables;
// Allocate an index into the thread-local mutable array for a mutable.
extern MR_Unsigned MR_new_thread_local_mutable_index(void);
// Allocate a thread-local mutable array.
extern MR_ThreadLocalMuts *MR_create_thread_local_mutables(
MR_Unsigned numslots);
// Make a copy of a thread-local mutable array.
extern MR_ThreadLocalMuts *MR_clone_thread_local_mutables(
const MR_ThreadLocalMuts *old_muts);
#define MR_THREAD_LOCAL_MUTABLES \
(MR_ENGINE(MR_eng_this_context)->MR_ctxt_thread_local_mutables)
#define MR_SET_THREAD_LOCAL_MUTABLES(tlm) \
do { \
MR_THREAD_LOCAL_MUTABLES = (tlm); \
} while (0)
#define MR_get_thread_local_mutable(type, var, mut_index) \
do { \
MR_ThreadLocalMuts *tlm; \
\
tlm = MR_THREAD_LOCAL_MUTABLES; \
MR_LOCK(&tlm->MR_tlm_lock, "MR_get_thread_local_mutable"); \
var = * ((type *) &tlm->MR_tlm_values[(mut_index)]); \
MR_UNLOCK(&tlm->MR_tlm_lock, "MR_get_thread_local_mutable"); \
} while (0)
#define MR_set_thread_local_mutable(type, var, mut_index) \
do { \
MR_ThreadLocalMuts *tlm; \
\
tlm = MR_THREAD_LOCAL_MUTABLES; \
MR_LOCK(&tlm->MR_tlm_lock, "MR_set_thread_local_mutable"); \
* ((type *) &tlm->MR_tlm_values[(mut_index)]) = (var); \
MR_UNLOCK(&tlm->MR_tlm_lock, "MR_set_thread_local_mutable"); \
} while (0)
// Initialise some static structures in mercury_thread.c.
extern void MR_init_thread_stuff(void);
#endif // MERCURY_THREAD_H