Files
mercury/compiler/code_gen.m
Zoltan Somogyi 13f0e7610a A large step towards declarative debugging of goals that do I/O.
Estimated hours taken: 40
Branches: main

A large step towards declarative debugging of goals that do I/O. This step
does everything needed for that except modify the declarative debugger itself;
that is for Mark to do.

If you give the new option --trace-table-io-decl, the transformation performed
by the compiler on I/O primitives will preserve not just the output arguments
of the primitive, so that the primitive can be "reexecuted" without performing
any side-effects, but also the input arguments and the identity of the I/O
primitive itself. The I/O table therefore will contain a list of the I/O
primitives executed by the program after I/O tabling is started.

You can test this via the new debugger commands "print action <action-number>"
and "browse action <action-number>".

The new option is currently not documented, because the declarative debugger
does not yet use the information it provides. The new debugger commands are
not documented because they are meant only for implementors, at least for
now.

Since this change adds a field to proc_layout structures, any workspaces
compiled with debugging enabled will need to do a cvs update when this change
is installed.

compiler/options.m:
	Add the option --trace-table-io-decl. When set, this causes the
	compiler to transform I/O action primitives to allow declarative
	debugging of I/O actions.

compiler/handle_options.m:
	Make --trace-table-io-decl imply --trace-table-io.

compiler/table_gen.m:
	Perform the transformation, which is similar to the existing
	--trace-table-io transformation, but preserves the identity of all
	non-io-state arguments (not just the outputs) and the identity
	of the I/O primitive itself.

	Provide better names for variables generated by tabling
	transformations.

compiler/hlds_goal.m:
	Add extra parameters to procedures whose job it is to create new
	goals to name the variables in those goals.

compiler/layout.m:
	Add a new layout structure to contain the information the runtime
	system needs to interpret the information saved by the new
	transformation.

compiler/layout_out.m:
	Output the new layout structure.

compiler/continuation_info.m:
	Add a field to proc_layouts to point to the declarative I/O tabling
	structure, and another to identify the proc_layout without using LLDS
	types.

compiler/code_gen.m:
	Provide the definition of this field when appropriate.

compiler/hlds_pred.m:
	Add a field to proc_infos to store the information from the tabling
	transformation until code generation.

compiler/stack_layout.m:
	Add a mechanism for transforming the high level description of I/O
	action tabling data in proc_infos to the low level description we need
	to generate C data structures.

compiler/hlds_data.m:
	Add a new cons_id and a new cons_tag; they are used to refer to I/O
	tabling structures in code generated by the new transformation.

compiler/*.m:
	Handle the updates to global data types above.

library/table_builtin.m:
	Modernize some old code.

	Fix an old off-by-one error: make I/O tabling use the first slot
	in the I/O action table.

library/varset.m:
	Add a mechanism for creating a variable that is named iff the caller
	has a name for it.

runtime/mercury_layout_util.[ch]:
	Add a function for materializing type parameters from an answer block,
	not from registers or a closure.

runtime/mercury_stack_layout.h:
	Declare a C type for the data structure holding information about
	I/O primitives transformed by --trace-table-io-decl, and add a field
	to proc_layout structures to point to these new structures.

	Add a new evaluation method for --trace-table-io-decl.

runtime/mercury_tabling_macros.h:
	Add some conditionally-compiled debugging code to the primitive for
	saving answers.

trace/mercury_trace_vars.[ch]:
	Add functions for printing I/O action goals.

trace/mercury_trace_internal.c:
	Add code for recognizing and implementing commands to print I/O
	action goals.

trace/mercury_trace.c:
	Add code for handling the new eval method.

tests/debugger/tabled_read.{m,inp,exp*}:
	Add a polymorphic I/O action primitive, add calls to it, and test
	the printing of both monomorphic and polymorphic action goals.

tests/debugger/tabled_read_decl.{m,inp,exp*,data}:
	A new test case. It does the same things as the new version of
	tabled_read, but it is compiled with --trace-table-io-decl, not
	just --trace-table-io. It therefore can (and does) test the printing
	of tabled I/O actions.

tests/debugger/Mmakefile:
	Add the new test case.
2002-02-20 03:14:51 +00:00

1309 lines
43 KiB
Mathematica

%---------------------------------------------------------------------------%
% Copyright (C) 1994-2002 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% Code generation - convert from HLDS to LLDS.
%
% Main authors: conway, zs.
%
% The two main tasks of this module are
%
% 1 to look after the aspects of generating code for a procedure
% that do not involve generating code for a specific goal, and
%
% 2 to provide a generic predicate that can be called from anywhere in
% the code generator to generate code for a goal.
%
% Code_gen forwards most of the actual construction of code for particular
% goals to other modules. The generation of code for unifications is done
% by unify_gen, for calls, higher-order calls and method calls by call_gen,
% for commits by commit_gen, for if-then-elses and negations by ite_gen,
% for switches by switch_gen and its subsidiary modules, for disjunctions
% by disj_gen, and for pragma_c_codes by pragma_c_gen. The only kind of goal
% handled directly by code_gen is the conjunction.
%
%---------------------------------------------------------------------------%
:- module code_gen.
:- interface.
:- import_module hlds_module, hlds_pred, hlds_goal.
:- import_module code_model.
:- import_module llds, code_info.
:- import_module list, io, counter.
% Translate a HLDS module to LLDS.
:- pred generate_code(module_info::in, module_info::out,
global_data::in, global_data::out, list(c_procedure)::out,
io__state::di, io__state::uo) is det.
% Translate a HLDS procedure to LLDS, threading through
% the data structure that records information about layout
% structures and the counter for ensuring the uniqueness
% of cell numbers.
:- pred generate_proc_code(pred_info::in, proc_info::in,
proc_id::in, pred_id::in, module_info::in,
global_data::in, global_data::out, counter::in, counter::out,
c_procedure::out) is det.
% Translate a HLDS goal to LLDS.
:- pred code_gen__generate_goal(code_model::in, hlds_goal::in, code_tree::out,
code_info::in, code_info::out) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
% Parse tree modules
:- import_module prog_data, prog_out, prog_util.
% HLDS modules
:- import_module hlds_out, instmap, type_util, mode_util, goal_util.
% LLDS code generator modules.
:- import_module call_gen, unify_gen, ite_gen, switch_gen, disj_gen.
:- import_module par_conj_gen, pragma_c_gen, commit_gen.
:- import_module continuation_info, trace, trace_params.
:- import_module code_aux, code_util, middle_rec, llds_out.
% Misc compiler modules
:- import_module builtin_ops, passes_aux, rtti.
:- import_module globals, options.
% Standard library modules
:- import_module bool, char, int, string.
:- import_module map, assoc_list, set, term, tree, std_util, require, varset.
%---------------------------------------------------------------------------%
generate_code(ModuleInfo0, ModuleInfo, GlobalData0, GlobalData, Procedures) -->
% get a list of all the predicate ids
% for which we are going to generate code.
{ module_info_predids(ModuleInfo0, PredIds) },
% now generate the code for each predicate
generate_pred_list_code(ModuleInfo0, ModuleInfo,
GlobalData0, GlobalData, PredIds, Procedures).
% Translate a list of HLDS predicates to LLDS.
:- pred generate_pred_list_code(module_info::in, module_info::out,
global_data::in, global_data::out,
list(pred_id)::in, list(c_procedure)::out,
io__state::di, io__state::uo) is det.
:- pred generate_maybe_pred_code(module_info::in, module_info::out,
global_data::in, global_data::out, pred_id::in, list(c_procedure)::out,
io__state::di, io__state::uo) is det.
generate_pred_list_code(ModuleInfo, ModuleInfo, GlobalData, GlobalData,
[], []) --> [].
generate_pred_list_code(ModuleInfo0, ModuleInfo, GlobalData0, GlobalData,
[PredId | PredIds], Predicates) -->
generate_maybe_pred_code(ModuleInfo0, ModuleInfo1,
GlobalData0, GlobalData1, PredId, Predicates0),
generate_pred_list_code(ModuleInfo1, ModuleInfo,
GlobalData1, GlobalData, PredIds, Predicates1),
{ list__append(Predicates0, Predicates1, Predicates) }.
% Note that some of the logic of generate_maybe_pred_code is duplicated
% by mercury_compile__backend_pass_by_preds, so modifications here may
% also need to be repeated there.
generate_maybe_pred_code(ModuleInfo0, ModuleInfo, GlobalData0, GlobalData,
PredId, Predicates) -->
{ module_info_preds(ModuleInfo0, PredInfos) },
% get the pred_info structure for this predicate
{ map__lookup(PredInfos, PredId, PredInfo) },
% extract a list of all the procedure ids for this
% predicate and generate code for them
{ pred_info_non_imported_procids(PredInfo, ProcIds) },
(
{ ProcIds = []
; hlds_pred__pred_info_is_aditi_relation(PredInfo)
}
->
{ Predicates = [] },
{ ModuleInfo = ModuleInfo0 },
{ GlobalData = GlobalData0 }
;
{ module_info_globals(ModuleInfo0, Globals0) },
{ globals__lookup_bool_option(Globals0, very_verbose,
VeryVerbose) },
( { VeryVerbose = yes } ->
io__write_string("% Generating code for "),
hlds_out__write_pred_id(ModuleInfo0, PredId),
io__write_string("\n"),
{ globals__lookup_bool_option(Globals0,
statistics, Statistics) },
maybe_report_stats(Statistics)
;
[]
),
{
pred_info_module(PredInfo, PredModule),
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, PredArity),
no_type_info_builtin(PredModule, PredName, PredArity)
->
% These predicates should never be traced,
% since they do not obey typeinfo_liveness.
% Since they may be opt_imported into other
% modules, we must switch off the tracing
% of such preds on a pred-by-pred basis.
globals__get_trace_level(Globals0, TraceLevel),
globals__set_trace_level_none(Globals0, Globals1),
module_info_set_globals(ModuleInfo0, Globals1,
ModuleInfo1),
generate_pred_code(ModuleInfo1, ModuleInfo2,
GlobalData0, GlobalData,
PredId, PredInfo, ProcIds, Predicates),
module_info_globals(ModuleInfo2, Globals2),
globals__set_trace_level(Globals2, TraceLevel,
Globals),
module_info_set_globals(ModuleInfo2, Globals,
ModuleInfo)
;
generate_pred_code(ModuleInfo0, ModuleInfo,
GlobalData0, GlobalData,
PredId, PredInfo, ProcIds, Predicates)
}
).
% Translate a HLDS predicate to LLDS.
:- pred generate_pred_code(module_info::in, module_info::out,
global_data::in, global_data::out, pred_id::in, pred_info::in,
list(proc_id)::in, list(c_procedure)::out) is det.
generate_pred_code(ModuleInfo0, ModuleInfo, GlobalData0, GlobalData,
PredId, PredInfo, ProcIds, Code) :-
module_info_get_cell_counter(ModuleInfo0, CellCounter0),
generate_proc_list_code(ProcIds, PredId, PredInfo, ModuleInfo0,
GlobalData0, GlobalData, CellCounter0, CellCounter,
[], Code),
module_info_set_cell_counter(ModuleInfo0, CellCounter, ModuleInfo).
% Translate all the procedures of a HLDS predicate to LLDS.
:- pred generate_proc_list_code(list(proc_id)::in, pred_id::in, pred_info::in,
module_info::in, global_data::in, global_data::out,
counter::in, counter::out,
list(c_procedure)::in, list(c_procedure)::out) is det.
generate_proc_list_code([], _PredId, _PredInfo, _ModuleInfo,
GlobalData, GlobalData, CellCounter, CellCounter,
Procs, Procs).
generate_proc_list_code([ProcId | ProcIds], PredId, PredInfo, ModuleInfo0,
GlobalData0, GlobalData, CellCounter0, CellCounter,
Procs0, Procs) :-
pred_info_procedures(PredInfo, ProcInfos),
map__lookup(ProcInfos, ProcId, ProcInfo),
generate_proc_code(PredInfo, ProcInfo, ProcId, PredId, ModuleInfo0,
GlobalData0, GlobalData1, CellCounter0, CellCounter1, Proc),
generate_proc_list_code(ProcIds, PredId, PredInfo, ModuleInfo0,
GlobalData1, GlobalData, CellCounter1, CellCounter,
[Proc | Procs0], Procs).
%---------------------------------------------------------------------------%
% Values of this type hold information about stack frames that is
% generated when generating prologs and is used in generating epilogs
% and when massaging the code generated for the procedure.
:- type frame_info
---> frame(
int, % Number of slots in frame.
maybe(int), % Slot number of succip if succip is
% present in a general slot.
bool % Is this the frame of a model_non
% proc defined via pragma C code?
).
%---------------------------------------------------------------------------%
generate_proc_code(PredInfo, ProcInfo, ProcId, PredId, ModuleInfo,
GlobalData0, GlobalData, CellCounter0, CellCounter, Proc) :-
proc_info_interface_determinism(ProcInfo, Detism),
proc_info_interface_code_model(ProcInfo, CodeModel),
proc_info_goal(ProcInfo, Goal),
Goal = _ - GoalInfo,
goal_info_get_follow_vars(GoalInfo, MaybeFollowVars),
(
MaybeFollowVars = yes(FollowVars)
;
MaybeFollowVars = no,
map__init(FollowVarsMap),
FollowVars = follow_vars(FollowVarsMap, 1)
),
module_info_globals(ModuleInfo, Globals),
continuation_info__basic_stack_layout_for_proc(PredInfo, Globals,
BasicStackLayout, ForceProcId),
( BasicStackLayout = yes ->
SaveSuccip = yes
;
SaveSuccip = no
),
% Initialise the code_info structure. Generate_category_code
% below will use the returned OutsideResumePoint as the
% entry to the code that handles the failure of the procedure,
% if such code is needed. It is never needed for model_det
% procedures, always needed for model_semi procedures, and
% needed for model_non procedures only if we are doing
% execution tracing.
code_info__init(SaveSuccip, Globals, PredId, ProcId, ProcInfo,
FollowVars, ModuleInfo, CellCounter0, OutsideResumePoint,
TraceSlotInfo, CodeInfo0),
% Generate code for the procedure.
generate_category_code(CodeModel, Goal, OutsideResumePoint,
TraceSlotInfo, CodeTree, MaybeTraceCallLabel, FrameInfo,
CodeInfo0, CodeInfo),
code_info__get_max_reg_in_use_at_trace(MaxTraceReg, CodeInfo, _),
code_info__get_cell_counter(CellCounter, CodeInfo, _),
globals__get_trace_level(Globals, TraceLevel),
code_info__get_created_temp_frame(CreatedTempFrame, CodeInfo, _),
(
trace_level_is_none(TraceLevel) = no,
CreatedTempFrame = yes,
CodeModel \= model_non
->
% If tracing is enabled, the procedure lives on
% the det stack and the code created any temporary
% nondet stack frames, then we must have reserved a
% stack slot for storing the value of maxfr; if we
% didn't, a retry command in the debugger from a point
% in the middle of this procedure will do the wrong
% thing.
proc_info_get_need_maxfr_slot(ProcInfo, HaveMaxfrSlot),
require(unify(HaveMaxfrSlot, yes),
"should have reserved a slot for maxfr, but didn't")
;
true
),
% Turn the code tree into a list.
tree__flatten(CodeTree, FragmentList),
% Now the code is a list of code fragments (== list(instr)),
% so we need to do a level of unwinding to get a flat list.
list__condense(FragmentList, Instructions0),
FrameInfo = frame(TotalSlots, MaybeSuccipSlot, _),
(
MaybeSuccipSlot = yes(SuccipSlot)
->
% The set of recorded live values at calls (for value
% numbering) and returns (for accurate gc and execution
% tracing) do not yet record the stack slot holding the
% succip, so add it to those sets.
code_gen__add_saved_succip(Instructions0,
SuccipSlot, Instructions)
;
Instructions = Instructions0
),
proc_info_get_table_io_decl(ProcInfo, MaybeTableIoDecl),
(
( BasicStackLayout = yes
; MaybeTableIoDecl = yes(_TableIoDecl)
)
->
% Create the procedure layout structure.
RttiProcLabel = rtti__make_proc_label(ModuleInfo,
PredId, ProcId),
code_info__get_layout_info(InternalMap, CodeInfo, _),
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId,
no, EntryLabel),
proc_info_eval_method(ProcInfo, EvalMethod),
proc_info_get_initial_instmap(ProcInfo, ModuleInfo, InstMap0),
proc_info_varset(ProcInfo, VarSet),
proc_info_vartypes(ProcInfo, VarTypes),
ProcLayout = proc_layout_info(RttiProcLabel, EntryLabel,
Detism, TotalSlots, MaybeSuccipSlot, EvalMethod,
MaybeTraceCallLabel, MaxTraceReg, Goal, InstMap0,
TraceSlotInfo, ForceProcId, VarSet, VarTypes,
InternalMap, MaybeTableIoDecl),
global_data_add_new_proc_layout(GlobalData0,
proc(PredId, ProcId), ProcLayout, GlobalData1)
;
GlobalData1 = GlobalData0
),
code_info__get_closure_layouts(ClosureLayouts, CodeInfo, _),
global_data_add_new_closure_layouts(GlobalData1, ClosureLayouts,
GlobalData2),
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
maybe_add_tabling_pointer_var(ModuleInfo, PredId, ProcId, ProcInfo,
ProcLabel, GlobalData2, GlobalData),
pred_info_name(PredInfo, Name),
pred_info_arity(PredInfo, Arity),
( goal_contains_reconstruction(Goal) ->
ContainsReconstruction = contains_reconstruction
;
ContainsReconstruction = does_not_contain_reconstruction
),
code_info__get_label_counter(LabelCounter, CodeInfo, _),
globals__lookup_bool_option(Globals, generate_bytecode, GenBytecode),
(
% XXX: There is a mass of calls above that the bytecode
% doesn't need; work out which is and isn't needed and put
% inside the else case below
GenBytecode = yes,
% We don't generate bytecode for __Unify__, __Compare__ etc
% Since we will assume this code is already correct
\+ code_util__compiler_generated(PredInfo),
% Don't generate bytecode for procs with foreign code
goal_has_foreign(Goal) = no
->
EmptyLabelCounter = counter__init(0),
code_gen__bytecode_stub(ModuleInfo, PredId, ProcId,
BytecodeInstructions),
Proc = c_procedure(Name, Arity, proc(PredId, ProcId),
BytecodeInstructions, ProcLabel, EmptyLabelCounter,
ContainsReconstruction)
;
Proc = c_procedure(Name, Arity, proc(PredId, ProcId),
Instructions, ProcLabel, LabelCounter,
ContainsReconstruction)
).
:- pred maybe_add_tabling_pointer_var(module_info::in,
pred_id::in, proc_id::in, proc_info::in, proc_label::in,
global_data::in, global_data::out) is det.
maybe_add_tabling_pointer_var(ModuleInfo, PredId, ProcId, ProcInfo, ProcLabel,
GlobalData0, GlobalData) :-
proc_info_eval_method(ProcInfo, EvalMethod),
( eval_method_has_per_proc_tabling_pointer(EvalMethod) = yes ->
module_info_name(ModuleInfo, ModuleName),
Var = tabling_pointer_var(ModuleName, ProcLabel),
global_data_add_new_proc_var(GlobalData0,
proc(PredId, ProcId), Var, GlobalData)
;
GlobalData = GlobalData0
).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Generate_category_code generates code for an entire procedure.
% Its algorithm has three or four main stages:
%
% - generate code for the body goal
% - generate code for the procedure entry
% - generate code for the procedure exit
% - generate code for the procedure fail (if needed)
%
% The first three tasks are forwarded to other procedures.
% The fourth task, if needed, is done by generate_category_code.
%
% The only caller of generate_category_code, generate_proc_code,
% has set up the code generator state to reflect what the machine
% state will be on entry to the procedure. Ensuring that the
% machine state at exit will conform to the expectation
% of the caller is the job of code_gen__generate_exit.
%
% The reason why we generate the entry code after the body is that
% information such as the total number of stack slots needed,
% which is needed in the procedure entry prologue, cannot be
% conveniently obtained before generating the body, since the
% code generator may allocate temporary variables to hold values
% such as saved heap and trail pointers.
%
% Code_gen__generate_entry cannot depend on the code generator
% state, since when it is invoked this state is not appropriate
% for the procedure entry. Nor can it change the code generator state,
% since that would confuse code_gen__generate_exit.
%
% Generating CALL trace events is done by generate_category_code,
% since only on entry to generate_category_code is the code generator
% state set up right. Generating EXIT trace events is done by
% code_gen__generate_exit. Generating FAIL trace events is done
% by generate_category_code, since this requires modifying how
% we generate code for the body of the procedure (failures must
% now branch to a different place). Since FAIL trace events are
% part of the failure continuation, generate_category_code takes
% care of the failure continuation as well. (Model_det procedures
% of course have no failure continuation. Model_non procedures have
% a failure continuation, but in the absence of tracing this
% continuation needs no code. Only model_semi procedures need code
% for the failure continuation at all times.)
:- pred generate_category_code(code_model::in, hlds_goal::in,
resume_point_info::in, trace_slot_info::in, code_tree::out,
maybe(label)::out, frame_info::out, code_info::in, code_info::out)
is det.
generate_category_code(model_det, Goal, ResumePoint, TraceSlotInfo, Code,
MaybeTraceCallLabel, FrameInfo) -->
% generate the code for the body of the clause
(
code_info__get_globals(Globals),
{ globals__lookup_bool_option(Globals, middle_rec, yes) },
middle_rec__match_and_generate(Goal, MiddleRecCode)
->
{ Code = MiddleRecCode },
{ MaybeTraceCallLabel = no },
{ FrameInfo = frame(0, no, no) }
;
{ Goal = _ - GoalInfo },
{ goal_info_get_context(GoalInfo, BodyContext) },
code_info__get_maybe_trace_info(MaybeTraceInfo),
( { MaybeTraceInfo = yes(TraceInfo) } ->
trace__generate_external_event_code(call, TraceInfo,
BodyContext, MaybeCallExternalInfo),
{
MaybeCallExternalInfo = yes(CallExternalInfo),
CallExternalInfo = external_event_info(
TraceCallLabel, _, TraceCallCode)
;
MaybeCallExternalInfo = no,
error("generate_category_code: call events suppressed")
},
{ MaybeTraceCallLabel = yes(TraceCallLabel) }
;
{ TraceCallCode = empty },
{ MaybeTraceCallLabel = no }
),
code_gen__generate_goal(model_det, Goal, BodyCode),
code_gen__generate_entry(model_det, Goal, ResumePoint,
FrameInfo, EntryCode),
code_gen__generate_exit(model_det, FrameInfo, TraceSlotInfo,
BodyContext, _, ExitCode),
{ Code =
tree(EntryCode,
tree(TraceCallCode,
tree(BodyCode,
ExitCode)))
}
).
generate_category_code(model_semi, Goal, ResumePoint, TraceSlotInfo, Code,
MaybeTraceCallLabel, FrameInfo) -->
{ set__singleton_set(FailureLiveRegs, reg(r, 1)) },
{ FailCode = node([
assign(reg(r, 1), const(false)) - "Fail",
livevals(FailureLiveRegs) - "",
goto(succip) - "Return from procedure call"
]) },
{ Goal = _ - GoalInfo },
{ goal_info_get_context(GoalInfo, BodyContext) },
code_info__get_maybe_trace_info(MaybeTraceInfo),
( { MaybeTraceInfo = yes(TraceInfo) } ->
trace__generate_external_event_code(call, TraceInfo,
BodyContext, MaybeCallExternalInfo),
{
MaybeCallExternalInfo = yes(CallExternalInfo),
CallExternalInfo = external_event_info(
TraceCallLabel, _, TraceCallCode)
;
MaybeCallExternalInfo = no,
error("generate_category_code: call events suppressed")
},
{ MaybeTraceCallLabel = yes(TraceCallLabel) },
code_gen__generate_goal(model_semi, Goal, BodyCode),
code_gen__generate_entry(model_semi, Goal, ResumePoint,
FrameInfo, EntryCode),
code_gen__generate_exit(model_semi, FrameInfo, TraceSlotInfo,
BodyContext, RestoreDeallocCode, ExitCode),
code_info__generate_resume_point(ResumePoint, ResumeCode),
{ code_info__resume_point_vars(ResumePoint, ResumeVarList) },
{ set__list_to_set(ResumeVarList, ResumeVars) },
code_info__set_forward_live_vars(ResumeVars),
% XXX A context that gives the end of the procedure
% definition would be better than BodyContext.
trace__generate_external_event_code(fail, TraceInfo,
BodyContext, MaybeFailExternalInfo),
{
MaybeFailExternalInfo = yes(FailExternalInfo),
FailExternalInfo = external_event_info(
_, _, TraceFailCode)
;
MaybeFailExternalInfo = no,
TraceFailCode = empty
},
{ Code =
tree(EntryCode,
tree(TraceCallCode,
tree(BodyCode,
tree(ExitCode,
tree(ResumeCode,
tree(TraceFailCode,
tree(RestoreDeallocCode,
FailCode)))))))
}
;
{ MaybeTraceCallLabel = no },
code_gen__generate_goal(model_semi, Goal, BodyCode),
code_gen__generate_entry(model_semi, Goal, ResumePoint,
FrameInfo, EntryCode),
code_gen__generate_exit(model_semi, FrameInfo, TraceSlotInfo,
BodyContext, RestoreDeallocCode, ExitCode),
code_info__generate_resume_point(ResumePoint, ResumeCode),
{ Code =
tree(EntryCode,
tree(BodyCode,
tree(ExitCode,
tree(ResumeCode,
tree(RestoreDeallocCode,
FailCode)))))
}
).
generate_category_code(model_non, Goal, ResumePoint, TraceSlotInfo, Code,
MaybeTraceCallLabel, FrameInfo) -->
code_info__get_maybe_trace_info(MaybeTraceInfo),
{ Goal = _ - GoalInfo },
{ goal_info_get_context(GoalInfo, BodyContext) },
( { MaybeTraceInfo = yes(TraceInfo) } ->
trace__generate_external_event_code(call, TraceInfo,
BodyContext, MaybeCallExternalInfo),
{
MaybeCallExternalInfo = yes(CallExternalInfo),
CallExternalInfo = external_event_info(
TraceCallLabel, _, TraceCallCode)
;
MaybeCallExternalInfo = no,
error("generate_category_code: call events suppressed")
},
{ MaybeTraceCallLabel = yes(TraceCallLabel) },
code_gen__generate_goal(model_non, Goal, BodyCode),
code_gen__generate_entry(model_non, Goal, ResumePoint,
FrameInfo, EntryCode),
code_gen__generate_exit(model_non, FrameInfo, TraceSlotInfo,
BodyContext, _, ExitCode),
code_info__generate_resume_point(ResumePoint, ResumeCode),
{ code_info__resume_point_vars(ResumePoint, ResumeVarList) },
{ set__list_to_set(ResumeVarList, ResumeVars) },
code_info__set_forward_live_vars(ResumeVars),
% XXX A context that gives the end of the procedure
% definition would be better than BodyContext.
trace__generate_external_event_code(fail, TraceInfo,
BodyContext, MaybeFailExternalInfo),
{
MaybeFailExternalInfo = yes(FailExternalInfo),
FailExternalInfo = external_event_info(
_, _, TraceFailCode)
;
MaybeFailExternalInfo = no,
TraceFailCode = empty
},
( { TraceSlotInfo ^ slot_trail = yes(_) } ->
( { TraceSlotInfo ^ slot_from_full =
yes(FromFullSlot) }
->
%
% Generate code which discards the ticket
% only if it was allocated, i.e. only if
% MR_trace_from_full was true on entry.
%
{ FromFullSlotLval =
llds__stack_slot_num_to_lval(
model_non, FromFullSlot) },
code_info__get_next_label(SkipLabel),
{ DiscardTraceTicketCode = node([
if_val(unop(not,
lval(FromFullSlotLval)),
label(SkipLabel)) - "",
discard_ticket - "discard retry ticket",
label(SkipLabel) - ""
]) }
;
{ DiscardTraceTicketCode = node([
discard_ticket - "discard retry ticket"
]) }
)
;
{ DiscardTraceTicketCode = empty }
),
{ FailCode = node([
goto(do_fail) - "fail after fail trace port"
]) },
{ Code =
tree(EntryCode,
tree(TraceCallCode,
tree(BodyCode,
tree(ExitCode,
tree(ResumeCode,
tree(TraceFailCode,
tree(DiscardTraceTicketCode,
FailCode)))))))
}
;
{ MaybeTraceCallLabel = no },
code_gen__generate_goal(model_non, Goal, BodyCode),
code_gen__generate_entry(model_non, Goal, ResumePoint,
FrameInfo, EntryCode),
code_gen__generate_exit(model_non, FrameInfo, TraceSlotInfo,
BodyContext, _, ExitCode),
{ Code =
tree(EntryCode,
tree(BodyCode,
ExitCode))
}
).
%---------------------------------------------------------------------------%
% Generate the prologue for a procedure.
%
% The prologue will contain
%
% a comment to mark prologue start
% a comment explaining the stack layout
% the procedure entry label
% code to allocate a stack frame
% code to fill in some special slots in the stack frame
% a comment to mark prologue end
%
% At the moment the only special slots are the succip slot, and
% the slots holding the call number and call depth for tracing.
%
% Not all frames will have all these components. For example, the code
% to allocate a stack frame will be missing if the procedure doesn't
% need a stack frame, and if the procedure is nondet, then the code
% to fill in the succip slot is subsumed by the mkframe.
:- pred code_gen__generate_entry(code_model::in, hlds_goal::in,
resume_point_info::in, frame_info::out, code_tree::out,
code_info::in, code_info::out) is det.
code_gen__generate_entry(CodeModel, Goal, OutsideResumePoint, FrameInfo,
EntryCode) -->
code_info__get_stack_slots(StackSlots),
code_info__get_varset(VarSet),
{ code_aux__explain_stack_slots(StackSlots, VarSet, SlotsComment) },
{ StartComment = node([
comment("Start of procedure prologue") - "",
comment(SlotsComment) - ""
]) },
code_info__get_total_stackslot_count(MainSlots),
code_info__get_pred_id(PredId),
code_info__get_proc_id(ProcId),
code_info__get_module_info(ModuleInfo),
{ code_util__make_local_entry_label(ModuleInfo, PredId, ProcId, no,
Entry) },
{ LabelCode = node([
label(Entry) - "Procedure entry point"
]) },
code_info__get_succip_used(Used),
(
% Do we need to save the succip across calls?
{ Used = yes },
% Do we need to use a general slot for storing succip?
{ CodeModel \= model_non }
->
{ SuccipSlot is MainSlots + 1 },
{ SaveSuccipCode = node([
assign(stackvar(SuccipSlot), lval(succip)) -
"Save the success ip"
]) },
{ TotalSlots = SuccipSlot },
{ MaybeSuccipSlot = yes(SuccipSlot) }
;
{ SaveSuccipCode = empty },
{ TotalSlots = MainSlots },
{ MaybeSuccipSlot = no }
),
code_info__get_maybe_trace_info(MaybeTraceInfo),
( { MaybeTraceInfo = yes(TraceInfo) } ->
trace__generate_slot_fill_code(TraceInfo, TraceFillCode)
;
{ TraceFillCode = empty }
),
{ predicate_module(ModuleInfo, PredId, ModuleName) },
{ predicate_name(ModuleInfo, PredId, PredName) },
{ predicate_arity(ModuleInfo, PredId, Arity) },
{ prog_out__sym_name_to_string(ModuleName, ModuleNameString) },
{ string__int_to_string(Arity, ArityStr) },
{ string__append_list([ModuleNameString, ":", PredName, "/", ArityStr],
PushMsg) },
(
{ CodeModel = model_non }
->
{ code_info__resume_point_stack_addr(OutsideResumePoint,
OutsideResumeAddress) },
(
{ Goal = foreign_proc(_, _, _, _, _, _,
PragmaCode) - _},
{ PragmaCode = nondet(Fields, FieldsContext,
_,_,_,_,_,_,_) }
->
{ pragma_c_gen__struct_name(ModuleName, PredName,
Arity, ProcId, StructName) },
{ Struct = pragma_c_struct(StructName,
Fields, FieldsContext) },
{ string__format("#define\tMR_ORDINARY_SLOTS\t%d\n",
[i(TotalSlots)], DefineStr) },
{ DefineComponents = [pragma_c_raw_code(DefineStr,
live_lvals_info(set__init))] },
{ NondetFrameInfo = ordinary_frame(PushMsg, TotalSlots,
yes(Struct)) },
{ AllocCode = node([
mkframe(NondetFrameInfo, OutsideResumeAddress)
- "Allocate stack frame",
pragma_c([], DefineComponents,
will_not_call_mercury, no, no, no, no,
no)
- ""
]) },
{ NondetPragma = yes }
;
{ NondetFrameInfo = ordinary_frame(PushMsg, TotalSlots,
no) },
{ AllocCode = node([
mkframe(NondetFrameInfo, OutsideResumeAddress)
- "Allocate stack frame"
]) },
{ NondetPragma = no }
)
;
{ TotalSlots > 0 }
->
{ AllocCode = node([
incr_sp(TotalSlots, PushMsg) -
"Allocate stack frame"
]) },
{ NondetPragma = no }
;
{ AllocCode = empty },
{ NondetPragma = no }
),
{ FrameInfo = frame(TotalSlots, MaybeSuccipSlot, NondetPragma) },
{ EndComment = node([
comment("End of procedure prologue") - ""
]) },
{ EntryCode =
tree(StartComment,
tree(LabelCode,
tree(AllocCode,
tree(SaveSuccipCode,
tree(TraceFillCode,
EndComment)))))
}.
%---------------------------------------------------------------------------%
% Generate the success epilogue for a procedure.
%
% The success epilogue will contain
%
% a comment to mark epilogue start
% code to place the output arguments where their caller expects
% code to restore registers from some special slots
% code to deallocate the stack frame
% code to set r1 to MR_TRUE (for semidet procedures only)
% a jump back to the caller, including livevals information
% a comment to mark epilogue end
%
% The parts of this that restore registers and deallocate the stack
% frame are also part of the failure epilog, which is handled by
% our caller; this is why we return RestoreDeallocCode.
%
% At the moment the only special slots are the succip slot, and
% the tracing slots (holding the call sequence number, call event
% number, call depth, from-full indication, and trail state).
%
% Not all frames will have all these components. For example, for
% nondet procedures we don't deallocate the stack frame before
% success.
%
% Epilogues for procedures defined by nondet pragma C codes do not
% follow the rules above. For such procedures, the normal functions
% of the epilogue are handled when traversing the pragma C code goal;
% we need only #undef a macro defined by the procedure prologue.
:- pred code_gen__generate_exit(code_model::in, frame_info::in,
trace_slot_info::in, prog_context::in, code_tree::out, code_tree::out,
code_info::in, code_info::out) is det.
code_gen__generate_exit(CodeModel, FrameInfo, TraceSlotInfo, BodyContext,
RestoreDeallocCode, ExitCode) -->
{ StartComment = node([
comment("Start of procedure epilogue") - ""
]) },
{ EndComment = node([
comment("End of procedure epilogue") - ""
]) },
{ FrameInfo = frame(TotalSlots, MaybeSuccipSlot, NondetPragma) },
( { NondetPragma = yes } ->
{ UndefStr = "#undef\tMR_ORDINARY_SLOTS\n" },
{ UndefComponents = [pragma_c_raw_code(UndefStr,
live_lvals_info(set__init))] },
{ UndefCode = node([
pragma_c([], UndefComponents,
will_not_call_mercury, no, no, no, no, no)
- ""
]) },
{ RestoreDeallocCode = empty }, % always empty for nondet code
{ ExitCode =
tree(StartComment,
tree(UndefCode,
EndComment))
}
;
code_info__get_instmap(Instmap),
code_info__get_arginfo(ArgModes),
code_info__get_headvars(HeadVars),
{ assoc_list__from_corresponding_lists(HeadVars, ArgModes,
Args)},
(
{ instmap__is_unreachable(Instmap) }
->
{ OutLvals = set__init },
{ FlushCode = empty }
;
code_info__setup_return(Args, OutLvals, FlushCode)
),
{
MaybeSuccipSlot = yes(SuccipSlot)
->
RestoreSuccipCode = node([
assign(succip, lval(stackvar(SuccipSlot))) -
"restore the success ip"
])
;
RestoreSuccipCode = empty
},
{
( TotalSlots = 0 ; CodeModel = model_non )
->
DeallocCode = empty
;
DeallocCode = node([
decr_sp(TotalSlots) - "Deallocate stack frame"
])
},
(
{ TraceSlotInfo ^ slot_trail = yes(_) },
{ CodeModel \= model_non }
->
(
{ TraceSlotInfo ^ slot_from_full =
yes(FromFullSlot) }
->
%
% Generate code which prunes the ticket
% only if it was allocated, i.e. only if
% MR_trace_from_full was true on entry.
%
% Note that to avoid duplicating label names,
% we need to generate two different copies
% of this with different labels; this is
% needed for semidet code, which will get one
% copy in the success epilogue and one copy
% in the failure epilogue
%
{ FromFullSlotLval =
llds__stack_slot_num_to_lval(
CodeModel, FromFullSlot) },
code_info__get_next_label(SkipLabel),
code_info__get_next_label(SkipLabelCopy),
{ PruneTraceTicketCode = node([
if_val(unop(not,
lval(FromFullSlotLval)),
label(SkipLabel)) - "",
prune_ticket - "prune retry ticket",
label(SkipLabel) - ""
]) },
{ PruneTraceTicketCodeCopy = node([
if_val(unop(not,
lval(FromFullSlotLval)),
label(SkipLabelCopy)) - "",
prune_ticket - "prune retry ticket",
label(SkipLabelCopy) - ""
]) }
;
{ PruneTraceTicketCode = node([
prune_ticket - "prune retry ticket"
]) },
{ PruneTraceTicketCodeCopy = PruneTraceTicketCode }
)
;
{ PruneTraceTicketCode = empty },
{ PruneTraceTicketCodeCopy = empty }
),
{ RestoreDeallocCode =
tree(RestoreSuccipCode,
tree(PruneTraceTicketCode,
DeallocCode))
},
{ RestoreDeallocCodeCopy =
tree(RestoreSuccipCode,
tree(PruneTraceTicketCodeCopy,
DeallocCode))
},
code_info__get_maybe_trace_info(MaybeTraceInfo),
( { MaybeTraceInfo = yes(TraceInfo) } ->
% XXX A context that gives the end of the
% procedure definition would be better than
% CallContext.
trace__generate_external_event_code(exit, TraceInfo,
BodyContext, MaybeExitExternalInfo),
{
MaybeExitExternalInfo = yes(ExitExternalInfo),
ExitExternalInfo = external_event_info(
_, TypeInfoDatas, TraceExitCode)
;
MaybeExitExternalInfo = no,
TypeInfoDatas = map__init,
TraceExitCode = empty
},
{ map__values(TypeInfoDatas, TypeInfoLocnSets) },
{ FindBaseLvals = lambda([Lval::out] is nondet, (
list__member(LocnSet, TypeInfoLocnSets),
set__member(Locn, LocnSet),
(
Locn = direct(Lval)
;
Locn = indirect(Lval, _)
)
)) },
{ solutions(FindBaseLvals, TypeInfoLvals) },
{ set__insert_list(OutLvals, TypeInfoLvals,
LiveLvals) }
;
{ TraceExitCode = empty },
{ LiveLvals = OutLvals }
),
(
{ CodeModel = model_det },
{ SuccessCode = node([
livevals(LiveLvals) - "",
goto(succip) - "Return from procedure call"
]) },
{ AllSuccessCode =
tree(TraceExitCode,
tree(RestoreDeallocCodeCopy,
SuccessCode))
}
;
{ CodeModel = model_semi },
{ set__insert(LiveLvals, reg(r, 1), SuccessLiveRegs) },
{ SuccessCode = node([
assign(reg(r, 1), const(true)) - "Succeed",
livevals(SuccessLiveRegs) - "",
goto(succip) - "Return from procedure call"
]) },
{ AllSuccessCode =
tree(TraceExitCode,
tree(RestoreDeallocCodeCopy,
SuccessCode))
}
;
{ CodeModel = model_non },
{ MaybeTraceInfo = yes(TraceInfo2) ->
trace__maybe_setup_redo_event(TraceInfo2,
SetupRedoCode)
;
SetupRedoCode = empty
},
{ SuccessCode = node([
livevals(LiveLvals) - "",
goto(do_succeed(no))
- "Return from procedure call"
]) },
{ AllSuccessCode =
tree(SetupRedoCode,
tree(TraceExitCode,
SuccessCode))
}
),
{ ExitCode =
tree(StartComment,
tree(FlushCode,
tree(AllSuccessCode,
EndComment)))
}
).
%---------------------------------------------------------------------------%
% Generate a goal. This predicate arranges for the necessary updates of
% the generic data structures before and after the actual code generation,
% which is delegated to goal-specific predicates.
code_gen__generate_goal(ContextModel, Goal - GoalInfo, Code) -->
% Make any changes to liveness before Goal
{ goal_is_atomic(Goal) ->
IsAtomic = yes
;
IsAtomic = no
},
code_info__pre_goal_update(GoalInfo, IsAtomic),
code_info__get_instmap(Instmap),
(
{ instmap__is_reachable(Instmap) }
->
{ goal_info_get_code_model(GoalInfo, CodeModel) },
% sanity check: code of some code models
% should occur only in limited contexts
{
CodeModel = model_det
;
CodeModel = model_semi,
( ContextModel \= model_det ->
true
;
error("semidet model in det context")
)
;
CodeModel = model_non,
( ContextModel = model_non ->
true
;
error("nondet model in det/semidet context")
)
},
code_gen__generate_goal_2(Goal, GoalInfo, CodeModel, GoalCode),
% If the predicate's evaluation method is memo,
% loopcheck or minimal model, the goal generated
% the variable that represents the call table tip,
% *and* tracing is enabled, then we save this variable
% to its stack slot. This is necessary to enable
% retries across this procedure to reset the call table
% entry to uninitialized, effectively removing the
% call table entry.
(
{ goal_info_get_features(GoalInfo, Features) },
{ set__member(call_table_gen, Features) },
code_info__get_proc_info(ProcInfo),
{ proc_info_get_call_table_tip(ProcInfo,
MaybeCallTableVar) },
% MaybeCallTableVar will be `no' unless
% tracing is enabled.
{ MaybeCallTableVar = yes(CallTableVar) }
->
code_info__save_variables_on_stack([CallTableVar],
SaveCode),
{ Code = tree(GoalCode, SaveCode) }
;
{ Code = GoalCode }
),
% Make live any variables which subsequent goals
% will expect to be live, but were not generated
code_info__set_instmap(Instmap),
code_info__post_goal_update(GoalInfo)
;
{ Code = empty }
).
%---------------------------------------------------------------------------%
:- pred code_gen__generate_goal_2(hlds_goal_expr::in, hlds_goal_info::in,
code_model::in, code_tree::out, code_info::in, code_info::out) is det.
code_gen__generate_goal_2(unify(_, _, _, Uni, _), GoalInfo, CodeModel, Code)
-->
unify_gen__generate_unification(CodeModel, Uni, GoalInfo, Code).
code_gen__generate_goal_2(conj(Goals), _GoalInfo, CodeModel, Code) -->
code_gen__generate_goals(Goals, CodeModel, Code).
code_gen__generate_goal_2(par_conj(Goals, _SM), GoalInfo, CodeModel, Code) -->
par_conj_gen__generate_par_conj(Goals, GoalInfo, CodeModel, Code).
code_gen__generate_goal_2(disj(Goals, StoreMap), _, CodeModel, Code) -->
disj_gen__generate_disj(CodeModel, Goals, StoreMap, Code).
code_gen__generate_goal_2(not(Goal), _GoalInfo, CodeModel, Code) -->
ite_gen__generate_negation(CodeModel, Goal, Code).
code_gen__generate_goal_2(if_then_else(_Vars, Cond, Then, Else, StoreMap),
_GoalInfo, CodeModel, Code) -->
ite_gen__generate_ite(CodeModel, Cond, Then, Else, StoreMap, Code).
code_gen__generate_goal_2(switch(Var, CanFail, CaseList, StoreMap),
GoalInfo, CodeModel, Code) -->
switch_gen__generate_switch(CodeModel, Var, CanFail, CaseList,
StoreMap, GoalInfo, Code).
code_gen__generate_goal_2(some(_Vars, _, Goal), _GoalInfo, CodeModel, Code) -->
commit_gen__generate_commit(CodeModel, Goal, Code).
code_gen__generate_goal_2(generic_call(GenericCall, Args, Modes, Det),
GoalInfo, CodeModel, Code) -->
call_gen__generate_generic_call(CodeModel, GenericCall, Args,
Modes, Det, GoalInfo, Code).
code_gen__generate_goal_2(call(PredId, ProcId, Args, BuiltinState, _, _),
GoalInfo, CodeModel, Code) -->
(
{ BuiltinState = not_builtin }
->
call_gen__generate_call(CodeModel, PredId, ProcId, Args,
GoalInfo, Code)
;
call_gen__generate_builtin(CodeModel, PredId, ProcId, Args,
Code)
).
code_gen__generate_goal_2(foreign_proc(Attributes,
PredId, ModeId, Args, ArgNames, OrigArgTypes, PragmaCode),
GoalInfo, CodeModel, Instr) -->
(
{ foreign_language(Attributes, c) }
->
pragma_c_gen__generate_pragma_c_code(CodeModel, Attributes,
PredId, ModeId, Args, ArgNames, OrigArgTypes,
GoalInfo, PragmaCode, Instr)
;
{ error("code_gen__generate_goal_2: foreign code other than C unexpected") }
).
code_gen__generate_goal_2(shorthand(_), _, _, _) -->
% these should have been expanded out by now
{ error("code_gen__generate_goal_2: unexpected shorthand") }.
%---------------------------------------------------------------------------%
% Generate a conjoined series of goals.
% Note of course, that with a conjunction, state information
% flows directly from one conjunct to the next.
:- pred code_gen__generate_goals(hlds_goals::in, code_model::in,
code_tree::out, code_info::in, code_info::out) is det.
code_gen__generate_goals([], _, empty) --> [].
code_gen__generate_goals([Goal | Goals], CodeModel, Instr) -->
code_gen__generate_goal(CodeModel, Goal, Instr1),
code_info__get_instmap(Instmap),
(
{ instmap__is_unreachable(Instmap) }
->
{ Instr = Instr1 }
;
code_gen__generate_goals(Goals, CodeModel, Instr2),
{ Instr = tree(Instr1, Instr2) }
).
%---------------------------------------------------------------------------%
:- pred code_gen__select_args_with_mode(assoc_list(prog_var, arg_info)::in,
arg_mode::in, list(prog_var)::out, list(lval)::out) is det.
code_gen__select_args_with_mode([], _, [], []).
code_gen__select_args_with_mode([Var - ArgInfo | Args], DesiredMode, Vs, Ls) :-
code_gen__select_args_with_mode(Args, DesiredMode, Vs0, Ls0),
ArgInfo = arg_info(Loc, Mode),
(
Mode = DesiredMode
->
code_util__arg_loc_to_register(Loc, Reg),
Vs = [Var | Vs0],
Ls = [Reg | Ls0]
;
Vs = Vs0,
Ls = Ls0
).
%---------------------------------------------------------------------------%
% Add the succip to the livevals before and after calls.
% Traverses the list of instructions looking for livevals and calls,
% adding succip in the stackvar number given as an argument.
:- pred code_gen__add_saved_succip(list(instruction)::in, int::in,
list(instruction)::out) is det.
code_gen__add_saved_succip([], _StackLoc, []).
code_gen__add_saved_succip([Instrn0 - Comment | Instrns0 ], StackLoc,
[Instrn - Comment | Instrns]) :-
(
Instrn0 = livevals(LiveVals0),
Instrns0 \= [goto(succip) - _ | _]
% XXX We should also test for tailcalls
% once we start generating them directly.
->
set__insert(LiveVals0, stackvar(StackLoc), LiveVals1),
Instrn = livevals(LiveVals1)
;
Instrn0 = call(Target, ReturnLabel, LiveVals0, Context, GP, CM)
->
map__init(Empty),
LiveVals = [live_lvalue(direct(stackvar(StackLoc)),
succip, Empty) | LiveVals0],
Instrn = call(Target, ReturnLabel, LiveVals, Context, GP, CM)
;
Instrn = Instrn0
),
code_gen__add_saved_succip(Instrns0, StackLoc, Instrns).
%---------------------------------------------------------------------------%
:- pred code_gen__bytecode_stub(module_info::in, pred_id::in, proc_id::in,
list(instruction)::out) is det.
code_gen__bytecode_stub(ModuleInfo, PredId, ProcId, BytecodeInstructions) :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_module(PredInfo, ModuleSymName),
prog_out__sym_name_to_string(ModuleSymName, "__", ModuleName),
code_util__make_local_entry_label(ModuleInfo, PredId,
ProcId, no, Entry),
pred_info_name(PredInfo, PredName),
proc_id_to_int(ProcId, ProcNum),
string__int_to_string(ProcNum, ProcStr),
pred_info_arity(PredInfo, Arity),
int_to_string(Arity, ArityStr),
pred_info_get_is_pred_or_func(PredInfo, PredOrFunc),
CallStructName = "bytecode_call_info",
append_list([
"\t\tstatic MB_Call ", CallStructName, " = {\n",
"\t\t\t(MB_Word)NULL,\n",
"\t\t\t""", ModuleName, """,\n",
"\t\t\t""", PredName, """,\n",
"\t\t\t", ProcStr, ",\n",
"\t\t\t", ArityStr, ",\n",
"\t\t\t", (PredOrFunc = function -> "MR_TRUE" ; "MR_FALSE"),
"\n",
"\t\t};\n"
], CallStruct),
append_list([
"\t\tMB_Native_Addr return_addr;\n",
"\t\tMR_save_registers();\n",
"\t\treturn_addr = MB_bytecode_call_entry(",
"&",CallStructName,");\n",
"\t\tMR_restore_registers();\n",
"\t\tMR_GOTO(return_addr);\n"
], BytecodeCall),
BytecodeInstructions = [
label(Entry) - "Procedure entry point",
pragma_c(
[],
[
pragma_c_raw_code("\t{\n", live_lvals_info(set__init)),
pragma_c_raw_code(CallStruct, live_lvals_info(set__init)),
pragma_c_raw_code(BytecodeCall, no_live_lvals_info),
pragma_c_raw_code("\t}\n", live_lvals_info(set__init))
],
may_call_mercury, no, no, no, no, no
) - "Entry stub"
].
%---------------------------------------------------------------------------%