Files
mercury/compiler/trace.m
Zoltan Somogyi d869c5505b Hide the events associated with the goals inserted by tabling transformations,
Estimated hours taken: 2
Branches: main

Hide the events associated with the goals inserted by tabling transformations,
since ordinary programmers shouldn't be exposed to the details of the
transformation. (A later diff will adjust the goal paths of the events
associated with the original code back to what they would have been without
the transformation.)

Add a new mdb command, unhide_events, that allows the programmer to expose
hidden events. This is intended for implementors only.

compiler/hlds_goal.m:
	Add a new goal feature, hide_debug_event. If a nonatomic goal has this
	feature, then the associated trace events will be hidden.

compiler/trace.m:
	Respect the new goal feature.

compiler/table_gen.m:
	Add the new goal feature to the compound goals created by tabling
	transformations.

compiler/code_gen.m:
compiler/dense_switch.m:
compiler/disj_gen.m:
compiler/ite_gen.m:
compiler/string_switch.m:
compiler/switch_gen.m:
compiler/tag_switch.m:
	Pass the required goal_info to trace.m, to allow it to hide events as
	required.

runtime/mercury_trace_base.[ch]:
	Add two global boolean variables. One says whether we are exposing
	hidden events, the other says whether we have ever exposed hidden
	events.

trace/mercury_trace.c:
	Hide hidden events, unless the programmer has asked for them to be
	exposed.

trace/mercury_trace_internal.c:
	Implement the unhide_events command.

	Make "dd" check whether we have ever exposed hidden events.

	Fix some unclear code in "print_optionals".

doc/user_guide.texi:
	Doument the unhide_events command.

doc/mdb_categories:
	Mention the unhide_events command.

tests/debugger/mdb_command_test.inp:
	Test the documentation of the unhide_events command.
2002-09-09 07:48:25 +00:00

1130 lines
38 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1997-2002 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Author: zs.
%
% This module handles the generation of traces for the trace analysis system.
%
% For the general basis of trace analysis systems, see the paper
% "Opium: An extendable trace analyser for Prolog" by Mireille Ducasse,
% available from http://www.irisa.fr/lande/ducasse.
%
% We reserve some slots in the stack frame of the traced procedure.
% One contains the call sequence number, which is set in the procedure prologue
% by incrementing a global counter. Another contains the call depth, which
% is also set by incrementing a global variable containing the depth of the
% caller. The caller sets this global variable from its own saved depth
% just before the call. We also save the event number, and sometimes also
% the redo layout and the from_full flag.
%
% Each event has a label associated with it. The stack layout for that label
% records what variables are live and where they are at the time of the event.
% These labels are generated by the same predicate that generates the code
% for the event, and are initially not used for anything else.
% However, some of these labels may be fallen into from other places,
% and thus optimization may redirect references from labels to one of these
% labels. This cannot happen in the opposite direction, due to the reference
% to each event's label from the event's pragma C code instruction.
% (This prevents labelopt from removing the label.)
%
% We classify events into three kinds: external events (call, exit, fail),
% internal events (switch, disj, ite_then, ite_else), and nondet pragma C
% events (first, later). Code_gen.m, which calls this module to generate
% all external events, checks whether tracing is required before calling us;
% the predicates handing internal and nondet pragma C events must check this
% themselves. The predicates generating internal events need the goal
% following the event as a parameter. For the first and later arms of
% nondet pragma C code, there is no such hlds_goal, which is why these events
% need a bit of special treatment.
%-----------------------------------------------------------------------------%
:- module ll_backend__trace.
:- interface.
:- import_module parse_tree__prog_data.
:- import_module hlds__hlds_goal, hlds__hlds_pred, hlds__hlds_module.
:- import_module ll_backend__code_info, ll_backend__llds.
:- import_module libs__globals.
:- import_module map, std_util, set.
% The kinds of external ports for which the code we generate will
% call MR_trace. The redo port is not on this list, because for that
% port the code that calls MR_trace is not in compiler-generated code,
% but in the runtime system. Likewise for the exception port.
% (The same comment applies to the type `trace_port' in llds.m.)
:- type external_trace_port
---> call
; exit
; fail.
% These ports are different from other internal ports (even neg_enter)
% because their goal path identifies not the goal we are about to enter
% but the goal we have just left.
:- type negation_end_port
---> neg_success
; neg_failure.
:- type nondet_pragma_trace_port
---> nondet_pragma_first
; nondet_pragma_later.
:- type trace_info.
:- type trace_slot_info --->
trace_slot_info(
slot_from_full :: maybe(int),
% If the procedure is shallow traced,
% this will be yes(N), where stack
% slot N is the slot that holds the
% value of the from-full flag at call.
% Otherwise, it will be no.
slot_io :: maybe(int),
% If the procedure has io state
% arguments this will be yes(N), where
% stack slot N is the slot that holds
% the saved value of the io sequence
% number. Otherwise, it will be no.
slot_trail :: maybe(int),
% If --use-trail is set, this will
% be yes(M), where stack slots M
% and M+1 are the slots that hold the
% saved values of the trail pointer
% and the ticket counter respectively
% at the time of the call. Otherwise,
% it will be no.
slot_maxfr :: maybe(int),
% If the procedure lives on the det
% stack but creates temporary frames
% on the nondet stack, this will be
% yes(M), where stack slot M is
% reserved to hold the value of maxfr
% at the time of the call. Otherwise,
% it will be no.
slot_call_table :: maybe(int)
% If the procedure's evaluation method
% is memo, loopcheck or minimal model,
% this will be yes(M), where stack slot
% M holds the variable that represents
% the tip of the call table. Otherwise,
% it will be no.
).
% Return the set of input variables whose values should be preserved
% until the exit and fail ports. This will be all the input variables,
% except those that can be totally clobbered during the evaluation
% of the procedure (those partially clobbered may still be of interest,
% although to handle them properly we need to record insts in stack
% layouts).
:- pred trace__fail_vars(module_info::in, proc_info::in,
set(prog_var)::out) is det.
% Figure out whether we need a slot for storing the value of maxfr
% on entry, and record the result in the proc info.
:- pred trace__do_we_need_maxfr_slot(globals::in, pred_info::in, proc_info::in,
proc_info::out) is det.
% Return the number of slots reserved for tracing information.
% If there are N slots, the reserved slots will be 1 through N.
%
% It is possible that one of these reserved slots contains a variable.
% If so, the variable and its slot number are returned in the last
% argument.
:- pred trace__reserved_slots(module_info::in, pred_info::in, proc_info::in,
globals::in, int::out, maybe(pair(prog_var, int))::out) is det.
% Construct and return an abstract struct that represents the
% tracing-specific part of the code generator state. Return also
% info about the non-fixed slots used by the tracing system,
% for eventual use in the constructing the procedure's layout
% structure.
:- pred trace__setup(module_info::in, pred_info::in, proc_info::in,
globals::in, trace_slot_info::out, trace_info::out,
code_info::in, code_info::out) is det.
% Generate code to fill in the reserved stack slots.
:- pred trace__generate_slot_fill_code(trace_info::in, code_tree::out,
code_info::in, code_info::out) is det.
% If we are doing execution tracing, generate code to prepare for
% a call.
:- pred trace__prepare_for_call(code_tree::out, code_info::in, code_info::out)
is det.
% If we are doing execution tracing, generate code for an internal
% trace event. This predicate must be called just before generating
% code for the given goal.
:- pred trace__maybe_generate_internal_event_code(hlds_goal::in,
hlds_goal_info::in, code_tree::out, code_info::in, code_info::out)
is det.
% If we are doing execution tracing, generate code for an trace event
% that represents leaving a negated goal (via success or failure).
:- pred trace__maybe_generate_negated_event_code(hlds_goal::in,
hlds_goal_info::in, negation_end_port::in, code_tree::out,
code_info::in, code_info::out) is det.
% If we are doing execution tracing, generate code for a nondet
% pragma C code trace event.
:- pred trace__maybe_generate_pragma_event_code(nondet_pragma_trace_port::in,
prog_context::in, code_tree::out, code_info::in, code_info::out)
is det.
:- type external_event_info
---> external_event_info(
label, % The label associated with the
% external event.
map(tvar, set(layout_locn)),
% The map saying where the typeinfo
% variables needed to describe the
% types of the variables live at the
% event are.
code_tree % The code generated for the event.
).
% Generate code for an external trace event.
% Besides the trace code, we return the label on which we have hung
% the trace liveness information and data on the type variables in the
% liveness information, since some of our callers also need this
% information.
:- pred trace__generate_external_event_code(external_trace_port::in,
trace_info::in, prog_context::in, maybe(external_event_info)::out,
code_info::in, code_info::out) is det.
% If the trace level calls for redo events, generate code that pushes
% a temporary nondet stack frame whose redoip slot contains the
% address of one of the labels in the runtime that calls MR_trace
% for a redo event. Otherwise, generate empty code.
:- pred trace__maybe_setup_redo_event(trace_info::in, code_tree::out) is det.
% Convert a goal path to a string, using the format documented
% in the Mercury user's guide.
:- pred trace__path_to_string(goal_path::in, string::out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module parse_tree__inst.
:- import_module hlds__instmap, hlds__hlds_llds.
:- import_module check_hlds__type_util.
:- import_module check_hlds__inst_match, check_hlds__mode_util.
:- import_module ll_backend__llds_out, ll_backend__layout_out.
:- import_module ll_backend__continuation_info, ll_backend__code_util.
:- import_module backend_libs__code_model.
:- import_module libs__options, libs__trace_params, libs__tree.
:- import_module list, bool, int, string, map, std_util, require, term, varset.
% Information specific to a trace port.
:- type trace_port_info
---> external
; internal(
goal_path, % The path of the goal whose start
% this port represents.
set(prog_var) % The pre-death set of this goal.
)
; negation_end(
goal_path % The path of the goal whose end
% (one way or another) this port
% represents.
)
; nondet_pragma.
trace__fail_vars(ModuleInfo, ProcInfo, FailVars) :-
proc_info_headvars(ProcInfo, HeadVars),
proc_info_argmodes(ProcInfo, Modes),
proc_info_arg_info(ProcInfo, ArgInfos),
mode_list_get_final_insts(Modes, ModuleInfo, Insts),
(
trace__build_fail_vars(HeadVars, Insts, ArgInfos,
ModuleInfo, FailVarsList)
->
set__list_to_set(FailVarsList, FailVars)
;
error("length mismatch in trace__fail_vars")
).
trace__do_we_need_maxfr_slot(Globals, PredInfo0, ProcInfo0, ProcInfo) :-
globals__get_trace_level(Globals, TraceLevel),
proc_info_interface_code_model(ProcInfo0, CodeModel),
(
eff_trace_level_is_none(PredInfo0, ProcInfo0, TraceLevel) = no,
CodeModel \= model_non,
proc_info_goal(ProcInfo0, Goal),
code_util__goal_may_alloc_temp_frame(Goal)
->
MaxfrFlag = yes
;
MaxfrFlag = no
),
proc_info_set_need_maxfr_slot(ProcInfo0, MaxfrFlag, ProcInfo).
% trace__reserved_slots and trace__setup cooperate in the allocation
% of stack slots for tracing purposes. The allocation is done in the
% following stages.
%
% stage 1: Allocate the fixed slots, slots 1, 2 and 3, to hold
% the event number of call, the call sequence number
% and the call depth respectively.
%
% stage 2: If the procedure is model_non and --trace-redo is set,
% allocate the next available slot (which must be slot 4)
% to hold the address of the redo layout structure.
%
% stage 3: If the procedure is shallow traced, allocate the
% next available slot to the saved copy of the
% from-full flag. The number of this slot is recorded
% in the maybe_from_full field in the proc layout;
% if there is no such slot, that field will contain -1.
%
% stage 4: If --trace-table-io is given, allocate the next slot
% to hold the saved value of the io sequence number,
% for use in implementing retry. The number of this slot
% is recorded in the maybe_io_seq field in the proc
% layout; if there is no such slot, that field will
% contain -1.
%
% stage 5: If --use-trail is set (given or implied), allocate
% two slots to hold the saved value of the trail pointer
% and the ticket counter at the point of the call, for
% use in implementing retry. The number of the first of
% these two slots is recorded in the maybe_trail field
% in the proc layout; if there are no such slots, that
% field will contain -1.
%
% stage 6: If the procedure lives on the det stack but can put
% frames on the nondet stack, allocate a slot to hold
% the saved value of maxfr at the point of the call,
% for use in implementing retry. The number of this
% slot is recorded in the maybe_maxfr field in the proc
% layout; if there is no such slot, that field will
% contain -1.
%
% stage 7: If the procedure's evaluation method is memo, loopcheck
% or minimal model, we allocate a slot to hold the
% variable that represents the tip of the call table.
% The debugger needs this, because when it executes a
% retry command, it must reset this tip to uninitialized.
% The number of this slot is recorded in the maybe_table
% field in the proc layout; if there is no such slot,
% that field will contain -1.
%
% The procedure's layout structure does not need to include
% information about the presence or absence of the slot holding
% the address of the redo layout structure. If we generate redo
% trace events, the runtime will know that this slot exists and
% what its number must be; if we do not, the runtime will never
% refer to such a slot.
%
% We need two redo labels in the runtime. Deep traced procedures
% do not have a from-full slot, but their slots 1 through 4 are always
% valid; the label handling their redos accesses those slots directly.
% Shallow traced procedures do have a from-full slot, and their slots
% 1-4 are valid only if the from-full slot is MR_TRUE; the label
% handling their redos thus checks this slot to see whether it can
% (or should) access the other slots. In shallow-traced model_non
% procedures that generate redo events, the from-full flag is always
% in slot 5.
%
% The slots allocated by stages 1 and 2 are only ever referred to
% by the runtime system if they are guaranteed to exist. The runtime
% system may of course also need to refer to slots allocated by later
% stages, but before it does so, it needs to know whether those slots
% exist or not. This is why trace__setup returns TraceSlotInfo,
% which answers such questions, for later inclusion in the
% procedure's layout structure.
trace__reserved_slots(_ModuleInfo, PredInfo, ProcInfo, Globals, ReservedSlots,
MaybeTableVarInfo) :-
globals__get_trace_level(Globals, TraceLevel),
globals__get_trace_suppress(Globals, TraceSuppress),
globals__lookup_bool_option(Globals, trace_table_io, TraceTableIo),
FixedSlots = eff_trace_level_needs_fixed_slots(PredInfo, ProcInfo,
TraceLevel),
(
FixedSlots = no,
ReservedSlots = 0,
MaybeTableVarInfo = no
;
FixedSlots = yes,
Fixed = 3, % event#, call#, call depth
(
proc_info_interface_code_model(ProcInfo, model_non),
eff_trace_needs_port(PredInfo, ProcInfo, TraceLevel,
TraceSuppress, redo) = yes
->
RedoLayout = 1
;
RedoLayout = 0
),
(
eff_trace_level_needs_from_full_slot(PredInfo,
ProcInfo, TraceLevel) = yes
->
FromFull = 1
;
FromFull = 0
),
( TraceTableIo = yes ->
IoSeq = 1
;
IoSeq = 0
),
globals__lookup_bool_option(Globals, use_trail, UseTrail),
( UseTrail = yes ->
Trail = 2
;
Trail = 0
),
proc_info_get_need_maxfr_slot(ProcInfo, NeedMaxfr),
(
NeedMaxfr = yes,
Maxfr = 1
;
NeedMaxfr = no,
Maxfr = 0
),
ReservedSlots0 = Fixed + RedoLayout + FromFull + IoSeq
+ Trail + Maxfr,
proc_info_get_call_table_tip(ProcInfo, MaybeCallTableVar),
( MaybeCallTableVar = yes(CallTableVar) ->
ReservedSlots = ReservedSlots0 + 1,
MaybeTableVarInfo = yes(CallTableVar - ReservedSlots)
;
ReservedSlots = ReservedSlots0,
MaybeTableVarInfo = no
)
).
trace__setup(_ModuleInfo, PredInfo, ProcInfo, Globals, TraceSlotInfo,
TraceInfo) -->
code_info__get_proc_model(CodeModel),
{ globals__get_trace_level(Globals, TraceLevel) },
{ globals__get_trace_suppress(Globals, TraceSuppress) },
{ globals__lookup_bool_option(Globals, trace_table_io, TraceTableIo) },
{ TraceRedo = eff_trace_needs_port(PredInfo, ProcInfo, TraceLevel,
TraceSuppress, redo) },
(
{ TraceRedo = yes },
{ CodeModel = model_non }
->
code_info__get_next_label(RedoLayoutLabel),
{ MaybeRedoLayoutLabel = yes(RedoLayoutLabel) },
{ NextSlotAfterRedoLayout = 5 }
;
{ MaybeRedoLayoutLabel = no },
{ NextSlotAfterRedoLayout = 4 }
),
{ FromFullSlot = eff_trace_level_needs_from_full_slot(PredInfo,
ProcInfo, TraceLevel) },
{
FromFullSlot = no,
MaybeFromFullSlot = no,
MaybeFromFullSlotLval = no,
NextSlotAfterFromFull = NextSlotAfterRedoLayout
;
FromFullSlot = yes,
MaybeFromFullSlot = yes(NextSlotAfterRedoLayout),
CallFromFullSlot = llds__stack_slot_num_to_lval(
CodeModel, NextSlotAfterRedoLayout),
MaybeFromFullSlotLval = yes(CallFromFullSlot),
NextSlotAfterFromFull = NextSlotAfterRedoLayout + 1
},
{
TraceTableIo = yes,
MaybeIoSeqSlot = yes(NextSlotAfterFromFull),
IoSeqLval = llds__stack_slot_num_to_lval(CodeModel,
NextSlotAfterFromFull),
MaybeIoSeqLval = yes(IoSeqLval),
NextSlotAfterIoSeq = NextSlotAfterFromFull + 1
;
TraceTableIo = no,
MaybeIoSeqSlot = no,
MaybeIoSeqLval = no,
NextSlotAfterIoSeq = NextSlotAfterFromFull
},
{ globals__lookup_bool_option(Globals, use_trail, yes) ->
MaybeTrailSlot = yes(NextSlotAfterIoSeq),
TrailLval = llds__stack_slot_num_to_lval(CodeModel,
NextSlotAfterIoSeq),
TicketLval = llds__stack_slot_num_to_lval(CodeModel,
NextSlotAfterIoSeq + 1),
MaybeTrailLvals = yes(TrailLval - TicketLval),
NextSlotAfterTrail = NextSlotAfterIoSeq + 2
;
MaybeTrailSlot = no,
MaybeTrailLvals = no,
NextSlotAfterTrail = NextSlotAfterIoSeq
},
{ proc_info_get_need_maxfr_slot(ProcInfo, NeedMaxfr) },
{
NeedMaxfr = yes,
MaybeMaxfrSlot = yes(NextSlotAfterTrail),
MaxfrLval = llds__stack_slot_num_to_lval(CodeModel,
NextSlotAfterTrail),
MaybeMaxfrLval = yes(MaxfrLval),
NextSlotAfterMaxfr = NextSlotAfterTrail + 1
;
NeedMaxfr = no,
MaybeMaxfrSlot = no,
MaybeMaxfrLval = no,
NextSlotAfterMaxfr = NextSlotAfterTrail
},
{ proc_info_get_call_table_tip(ProcInfo, yes(_)) ->
MaybeCallTableSlot = yes(NextSlotAfterMaxfr),
CallTableLval = llds__stack_slot_num_to_lval(CodeModel,
NextSlotAfterMaxfr),
MaybeCallTableLval = yes(CallTableLval)
;
MaybeCallTableSlot = no,
MaybeCallTableLval = no
},
{ TraceSlotInfo = trace_slot_info(MaybeFromFullSlot, MaybeIoSeqSlot,
MaybeTrailSlot, MaybeMaxfrSlot, MaybeCallTableSlot) },
{ TraceInfo = trace_info(TraceLevel, TraceSuppress,
MaybeFromFullSlotLval, MaybeIoSeqLval, MaybeTrailLvals,
MaybeMaxfrLval, MaybeCallTableLval, MaybeRedoLayoutLabel) }.
trace__generate_slot_fill_code(TraceInfo, TraceCode) -->
code_info__get_proc_model(CodeModel),
{
MaybeFromFullSlot = TraceInfo ^ from_full_lval,
MaybeIoSeqSlot = TraceInfo ^ io_seq_lval,
MaybeTrailLvals = TraceInfo ^ trail_lvals,
MaybeMaxfrLval = TraceInfo ^ maxfr_lval,
MaybeCallTableLval = TraceInfo ^ call_table_tip_lval,
MaybeRedoLabel = TraceInfo ^ redo_label,
trace__event_num_slot(CodeModel, EventNumLval),
trace__call_num_slot(CodeModel, CallNumLval),
trace__call_depth_slot(CodeModel, CallDepthLval),
trace__stackref_to_string(EventNumLval, EventNumStr),
trace__stackref_to_string(CallNumLval, CallNumStr),
trace__stackref_to_string(CallDepthLval, CallDepthStr),
string__append_list([
"\t\t", EventNumStr, " = MR_trace_event_number;\n",
"\t\t", CallNumStr, " = MR_trace_incr_seq();\n",
"\t\t", CallDepthStr, " = MR_trace_incr_depth();\n"
], FillThreeSlots),
(
MaybeIoSeqSlot = yes(IoSeqLval),
trace__stackref_to_string(IoSeqLval, IoSeqStr),
string__append_list([
FillThreeSlots,
"\t\t", IoSeqStr, " = MR_io_tabling_counter;\n"
], FillSlotsUptoIoSeq)
;
MaybeIoSeqSlot = no,
FillSlotsUptoIoSeq = FillThreeSlots
),
(
MaybeRedoLabel = yes(RedoLayoutLabel),
trace__redo_layout_slot(CodeModel, RedoLayoutLval),
trace__stackref_to_string(RedoLayoutLval, RedoLayoutStr),
LayoutAddrStr =
layout_out__make_label_layout_name(RedoLayoutLabel),
string__append_list([
FillSlotsUptoIoSeq,
"\t\t", RedoLayoutStr,
" = (MR_Word) (const MR_Word *) &",
LayoutAddrStr, ";\n"
], FillSlotsUptoRedo),
MaybeLayoutLabel = yes(RedoLayoutLabel)
;
MaybeRedoLabel = no,
FillSlotsUptoRedo = FillSlotsUptoIoSeq,
MaybeLayoutLabel = no
),
(
% This could be done by generating proper LLDS instead of C.
% However, in shallow traced code we want to execute this
% only when the caller is deep traced, and everything inside
% that test must be in C code.
MaybeTrailLvals = yes(TrailLval - TicketLval),
trace__stackref_to_string(TrailLval, TrailLvalStr),
trace__stackref_to_string(TicketLval, TicketLvalStr),
string__append_list([
FillSlotsUptoRedo,
"\t\tMR_mark_ticket_stack(", TicketLvalStr, ");\n",
"\t\tMR_store_ticket(", TrailLvalStr, ");\n"
], FillSlotsUptoTrail)
;
MaybeTrailLvals = no,
FillSlotsUptoTrail = FillSlotsUptoRedo
),
(
MaybeFromFullSlot = yes(CallFromFullSlot),
trace__stackref_to_string(CallFromFullSlot,
CallFromFullSlotStr),
string__append_list([
"\t\t", CallFromFullSlotStr, " = MR_trace_from_full;\n",
"\t\tif (MR_trace_from_full) {\n",
FillSlotsUptoTrail,
"\t\t} else {\n",
"\t\t\t", CallDepthStr, " = MR_trace_call_depth;\n",
"\t\t}\n"
], TraceStmt1)
;
MaybeFromFullSlot = no,
TraceStmt1 = FillSlotsUptoTrail
),
TraceCode1 = node([
pragma_c([], [pragma_c_raw_code(TraceStmt1,
live_lvals_info(set__init))], will_not_call_mercury,
no, no, MaybeLayoutLabel, no, yes)
- ""
]),
(
MaybeMaxfrLval = yes(MaxfrLval),
TraceCode2 = node([
assign(MaxfrLval, lval(maxfr)) - "save initial maxfr"
])
;
MaybeMaxfrLval = no,
TraceCode2 = empty
),
(
MaybeCallTableLval = yes(CallTableLval),
trace__stackref_to_string(CallTableLval, CallTableLvalStr),
string__append_list([
"\t\t", CallTableLvalStr, " = 0;\n"
], TraceStmt3),
TraceCode3 = node([
pragma_c([], [pragma_c_raw_code(TraceStmt3,
live_lvals_info(set__init))],
will_not_call_mercury, no, no, no, no, yes)
- ""
])
;
MaybeCallTableLval = no,
TraceCode3 = empty
),
TraceCode = tree(TraceCode1, tree(TraceCode2, TraceCode3))
}.
trace__prepare_for_call(TraceCode) -->
code_info__get_maybe_trace_info(MaybeTraceInfo),
code_info__get_proc_model(CodeModel),
{
MaybeTraceInfo = yes(TraceInfo)
->
MaybeFromFullSlot = TraceInfo ^ from_full_lval,
trace__call_depth_slot(CodeModel, CallDepthLval),
trace__stackref_to_string(CallDepthLval, CallDepthStr),
string__append_list([
"MR_trace_reset_depth(", CallDepthStr, ");\n"
], ResetDepthStmt),
(
MaybeFromFullSlot = yes(_),
ResetFromFullStmt = "MR_trace_from_full = MR_FALSE;\n"
;
MaybeFromFullSlot = no,
ResetFromFullStmt = "MR_trace_from_full = MR_TRUE;\n"
),
TraceCode = node([
c_code(ResetFromFullStmt, live_lvals_info(set__init))
- "",
c_code(ResetDepthStmt, live_lvals_info(set__init))
- ""
])
;
TraceCode = empty
}.
trace__maybe_generate_internal_event_code(Goal, OutsideGoalInfo, Code) -->
code_info__get_maybe_trace_info(MaybeTraceInfo),
(
{ MaybeTraceInfo = yes(TraceInfo) }
->
{ Goal = _ - GoalInfo },
{ goal_info_get_goal_path(GoalInfo, Path) },
{
Path = [LastStep | _],
(
LastStep = switch(_, _),
PortPrime = switch
;
LastStep = disj(_),
PortPrime = disj
;
LastStep = ite_cond,
PortPrime = ite_cond
;
LastStep = ite_then,
PortPrime = ite_then
;
LastStep = ite_else,
PortPrime = ite_else
;
LastStep = neg,
PortPrime = neg_enter
)
->
Port = PortPrime
;
error("trace__generate_internal_event_code: bad path")
},
(
code_info__get_pred_info(PredInfo),
code_info__get_proc_info(ProcInfo),
{ eff_trace_needs_port(PredInfo, ProcInfo,
TraceInfo ^ trace_level,
TraceInfo ^ trace_suppress_items, Port) = yes }
->
{ goal_info_get_pre_deaths(GoalInfo, PreDeaths) },
{ goal_info_get_context(GoalInfo, Context) },
{ goal_info_has_feature(OutsideGoalInfo,
hide_debug_event)
->
HideEvent = yes
;
HideEvent = no
},
trace__generate_event_code(Port,
internal(Path, PreDeaths), TraceInfo,
Context, HideEvent, _, _, Code)
;
{ Code = empty }
)
;
{ Code = empty }
).
trace__maybe_generate_negated_event_code(Goal, OutsideGoalInfo, NegPort, Code)
-->
code_info__get_maybe_trace_info(MaybeTraceInfo),
(
{ MaybeTraceInfo = yes(TraceInfo) },
{
NegPort = neg_failure,
Port = neg_failure
;
NegPort = neg_success,
Port = neg_success
},
code_info__get_pred_info(PredInfo),
code_info__get_proc_info(ProcInfo),
{ eff_trace_needs_port(PredInfo, ProcInfo,
TraceInfo ^ trace_level,
TraceInfo ^ trace_suppress_items, Port) = yes }
->
{ Goal = _ - GoalInfo },
{ goal_info_get_goal_path(GoalInfo, Path) },
{ goal_info_get_context(GoalInfo, Context) },
{ goal_info_has_feature(OutsideGoalInfo, hide_debug_event) ->
HideEvent = yes
;
HideEvent = no
},
trace__generate_event_code(Port, negation_end(Path),
TraceInfo, Context, HideEvent, _, _, Code)
;
{ Code = empty }
).
trace__maybe_generate_pragma_event_code(PragmaPort, Context, Code) -->
code_info__get_maybe_trace_info(MaybeTraceInfo),
(
{ MaybeTraceInfo = yes(TraceInfo) },
{ trace__convert_nondet_pragma_port_type(PragmaPort, Port) },
code_info__get_pred_info(PredInfo),
code_info__get_proc_info(ProcInfo),
{ eff_trace_needs_port(PredInfo, ProcInfo,
TraceInfo ^ trace_level,
TraceInfo ^ trace_suppress_items, Port) = yes }
->
trace__generate_event_code(Port, nondet_pragma, TraceInfo,
Context, no, _, _, Code)
;
{ Code = empty }
).
trace__generate_external_event_code(ExternalPort, TraceInfo, Context,
MaybeExternalInfo) -->
{ trace__convert_external_port_type(ExternalPort, Port) },
(
code_info__get_pred_info(PredInfo),
code_info__get_proc_info(ProcInfo),
{ eff_trace_needs_port(PredInfo, ProcInfo,
TraceInfo ^ trace_level,
TraceInfo ^ trace_suppress_items, Port) = yes }
->
trace__generate_event_code(Port, external, TraceInfo,
Context, no, Label, TvarDataMap, Code),
{ MaybeExternalInfo = yes(external_event_info(Label,
TvarDataMap, Code)) }
;
{ MaybeExternalInfo = no }
).
:- pred trace__generate_event_code(trace_port::in, trace_port_info::in,
trace_info::in, prog_context::in, bool::in, label::out,
map(tvar, set(layout_locn))::out, code_tree::out,
code_info::in, code_info::out) is det.
trace__generate_event_code(Port, PortInfo, TraceInfo, Context, HideEvent,
Label, TvarDataMap, Code) -->
code_info__get_next_label(Label),
code_info__get_known_variables(LiveVars0),
(
{ PortInfo = external },
{ LiveVars = LiveVars0 },
{ Path = [] }
;
{ PortInfo = internal(Path, PreDeaths) },
code_info__current_resume_point_vars(ResumeVars),
{ set__difference(PreDeaths, ResumeVars, RealPreDeaths) },
{ set__to_sorted_list(RealPreDeaths, RealPreDeathList) },
{ list__delete_elems(LiveVars0, RealPreDeathList, LiveVars) }
;
{ PortInfo = negation_end(Path) },
{ LiveVars = LiveVars0 }
;
{ PortInfo = nondet_pragma },
{ LiveVars = [] },
{ Port = nondet_pragma_first ->
Path = [first]
; Port = nondet_pragma_later ->
Path = [later]
;
error("bad nondet pragma port")
}
),
code_info__get_varset(VarSet),
code_info__get_instmap(InstMap),
{ set__init(TvarSet0) },
trace__produce_vars(LiveVars, VarSet, InstMap, TvarSet0, TvarSet,
VarInfoList, ProduceCode),
code_info__max_reg_in_use(MaxReg),
code_info__get_max_reg_in_use_at_trace(MaxTraceReg0),
( { MaxTraceReg0 < MaxReg } ->
code_info__set_max_reg_in_use_at_trace(MaxReg)
;
[]
),
code_info__variable_locations(VarLocs),
code_info__get_proc_info(ProcInfo),
{
set__to_sorted_list(TvarSet, TvarList),
continuation_info__find_typeinfos_for_tvars(TvarList,
VarLocs, ProcInfo, TvarDataMap),
% compute the set of live lvals at the event
VarLvals = list__map(find_lval_in_var_info, VarInfoList),
map__values(TvarDataMap, TvarLocnSets),
TvarLocnSet = set__union_list(TvarLocnSets),
set__to_sorted_list(TvarLocnSet, TvarLocns),
TvarLvals = list__map(find_lval_in_layout_locn, TvarLocns),
list__append(VarLvals, TvarLvals, LiveLvals),
LiveLvalSet = set__list_to_set(LiveLvals),
set__list_to_set(VarInfoList, VarInfoSet),
LayoutLabelInfo = layout_label_info(VarInfoSet, TvarDataMap),
LabelStr = layout_out__make_label_layout_name(Label),
DeclStmt = "\t\tMR_Code *MR_jumpaddr;\n",
SaveStmt = "\t\tMR_save_transient_registers();\n",
RestoreStmt = "\t\tMR_restore_transient_registers();\n",
GotoStmt = "\t\tif (MR_jumpaddr != NULL) MR_GOTO(MR_jumpaddr);\n"
},
{ string__append_list([
"\t\tMR_jumpaddr = MR_trace(\n",
"\t\t\t(const MR_Label_Layout *)\n",
"\t\t\t&", LabelStr, ");\n"],
CallStmt) },
code_info__add_trace_layout_for_label(Label, Context, Port, HideEvent,
Path, LayoutLabelInfo),
(
{ Port = fail },
{ TraceInfo ^ redo_label = yes(RedoLabel) }
->
% The layout information for the redo event is the same as
% for the fail event; all the non-clobbered inputs in their
% stack slots. It is convenient to generate this common layout
% when the code generator state is set up for the fail event;
% generating it for the redo event would be much harder.
% On the other hand, the address of the layout structure
% for the redo event should be put into its fixed stack slot
% at procedure entry. Therefore trace__setup reserves a label
% for the redo event, whose layout information is filled in
% when we get to the fail event.
code_info__add_trace_layout_for_label(RedoLabel, Context, redo,
HideEvent, Path, LayoutLabelInfo)
;
[]
),
{
string__append_list([DeclStmt, SaveStmt, CallStmt, RestoreStmt,
GotoStmt], TraceStmt),
TraceCode =
node([
label(Label)
- "A label to hang trace liveness on",
% Referring to the label from the pragma_c
% prevents the label from being renamed
% or optimized away.
% The label is before the trace code
% because sometimes this pair is preceded
% by another label, and this way we can
% eliminate this other label.
pragma_c([], [pragma_c_raw_code(TraceStmt,
live_lvals_info(LiveLvalSet))],
may_call_mercury, no, no, yes(Label), no, yes)
- ""
]),
Code = tree(ProduceCode, TraceCode)
}.
:- func find_lval_in_var_info(var_info) = lval.
find_lval_in_var_info(var_info(LayoutLocn, _)) =
find_lval_in_layout_locn(LayoutLocn).
:- func find_lval_in_layout_locn(layout_locn) = lval.
find_lval_in_layout_locn(direct(Lval)) = Lval.
find_lval_in_layout_locn(indirect(Lval, _)) = Lval.
trace__maybe_setup_redo_event(TraceInfo, Code) :-
TraceRedoLabel = TraceInfo ^ redo_label,
( TraceRedoLabel = yes(_) ->
MaybeFromFullSlot = TraceInfo ^ from_full_lval,
(
MaybeFromFullSlot = yes(Lval),
% The code in the runtime looks for the from-full
% flag in framevar 5; see the comment before
% trace__reserved_slots.
require(unify(Lval, framevar(5)),
"from-full flag not stored in expected slot"),
Code = node([
mkframe(temp_frame(nondet_stack_proc),
do_trace_redo_fail_shallow)
- "set up shallow redo event"
])
;
MaybeFromFullSlot = no,
Code = node([
mkframe(temp_frame(nondet_stack_proc),
do_trace_redo_fail_deep)
- "set up deep redo event"
])
)
;
Code = empty
).
:- pred trace__produce_vars(list(prog_var)::in, prog_varset::in, instmap::in,
set(tvar)::in, set(tvar)::out, list(var_info)::out, code_tree::out,
code_info::in, code_info::out) is det.
trace__produce_vars([], _, _, Tvars, Tvars, [], empty) --> [].
trace__produce_vars([Var | Vars], VarSet, InstMap, Tvars0, Tvars,
[VarInfo | VarInfos], tree(VarCode, VarsCode)) -->
trace__produce_var(Var, VarSet, InstMap, Tvars0, Tvars1,
VarInfo, VarCode),
trace__produce_vars(Vars, VarSet, InstMap, Tvars1, Tvars,
VarInfos, VarsCode).
:- pred trace__produce_var(prog_var::in, prog_varset::in, instmap::in,
set(tvar)::in, set(tvar)::out, var_info::out, code_tree::out,
code_info::in, code_info::out) is det.
trace__produce_var(Var, VarSet, InstMap, Tvars0, Tvars, VarInfo, VarCode) -->
code_info__produce_variable_in_reg_or_stack(Var, VarCode, Lval),
code_info__variable_type(Var, Type),
code_info__get_module_info(ModuleInfo),
{
( varset__search_name(VarSet, Var, SearchName) ->
Name = SearchName
;
Name = ""
),
instmap__lookup_var(InstMap, Var, Inst),
( inst_match__inst_is_ground(ModuleInfo, Inst) ->
LldsInst = ground
;
LldsInst = partial(Inst)
),
LiveType = var(Var, Name, Type, LldsInst),
VarInfo = var_info(direct(Lval), LiveType),
type_util__real_vars(Type, TypeVars),
set__insert_list(Tvars0, TypeVars, Tvars)
}.
%-----------------------------------------------------------------------------%
:- pred trace__build_fail_vars(list(prog_var)::in, list(inst)::in,
list(arg_info)::in, module_info::in, list(prog_var)::out) is semidet.
trace__build_fail_vars([], [], [], _, []).
trace__build_fail_vars([Var | Vars], [Inst | Insts], [Info | Infos],
ModuleInfo, FailVars) :-
trace__build_fail_vars(Vars, Insts, Infos, ModuleInfo, FailVars0),
Info = arg_info(_Loc, ArgMode),
(
ArgMode = top_in,
\+ inst_is_clobbered(ModuleInfo, Inst)
->
FailVars = [Var | FailVars0]
;
FailVars = FailVars0
).
%-----------------------------------------------------------------------------%
:- pred trace__code_model_to_string(code_model::in, string::out) is det.
trace__code_model_to_string(model_det, "MR_MODEL_DET").
trace__code_model_to_string(model_semi, "MR_MODEL_SEMI").
trace__code_model_to_string(model_non, "MR_MODEL_NON").
:- pred trace__stackref_to_string(lval::in, string::out) is det.
trace__stackref_to_string(Lval, LvalStr) :-
( Lval = stackvar(Slot) ->
string__int_to_string(Slot, SlotString),
string__append_list(["MR_stackvar(", SlotString, ")"], LvalStr)
; Lval = framevar(Slot) ->
string__int_to_string(Slot, SlotString),
string__append_list(["MR_framevar(", SlotString, ")"], LvalStr)
;
error("non-stack lval in stackref_to_string")
).
%-----------------------------------------------------------------------------%
trace__path_to_string(Path, PathStr) :-
trace__path_steps_to_strings(Path, StepStrs),
list__reverse(StepStrs, RevStepStrs),
string__append_list(RevStepStrs, PathStr).
:- pred trace__path_steps_to_strings(goal_path::in, list(string)::out) is det.
trace__path_steps_to_strings([], []).
trace__path_steps_to_strings([Step | Steps], [StepStr | StepStrs]) :-
trace__path_step_to_string(Step, StepStr),
trace__path_steps_to_strings(Steps, StepStrs).
% The inverse of this procedure is implemented in
% browser/program_representation.m, and must be updated if this
% is changed.
:- pred trace__path_step_to_string(goal_path_step::in, string::out) is det.
trace__path_step_to_string(conj(N), Str) :-
string__int_to_string(N, NStr),
string__append_list(["c", NStr, ";"], Str).
trace__path_step_to_string(disj(N), Str) :-
string__int_to_string(N, NStr),
string__append_list(["d", NStr, ";"], Str).
trace__path_step_to_string(switch(N, _), Str) :-
string__int_to_string(N, NStr),
string__append_list(["s", NStr, ";"], Str).
trace__path_step_to_string(ite_cond, "?;").
trace__path_step_to_string(ite_then, "t;").
trace__path_step_to_string(ite_else, "e;").
trace__path_step_to_string(neg, "~;").
trace__path_step_to_string(exist(cut), "q!;").
trace__path_step_to_string(exist(no_cut), "q;").
trace__path_step_to_string(first, "f;").
trace__path_step_to_string(later, "l;").
:- pred trace__convert_external_port_type(external_trace_port::in,
trace_port::out) is det.
trace__convert_external_port_type(call, call).
trace__convert_external_port_type(exit, exit).
trace__convert_external_port_type(fail, fail).
:- pred trace__convert_nondet_pragma_port_type(nondet_pragma_trace_port::in,
trace_port::out) is det.
trace__convert_nondet_pragma_port_type(nondet_pragma_first,
nondet_pragma_first).
trace__convert_nondet_pragma_port_type(nondet_pragma_later,
nondet_pragma_later).
%-----------------------------------------------------------------------------%
:- pred trace__event_num_slot(code_model::in, lval::out) is det.
:- pred trace__call_num_slot(code_model::in, lval::out) is det.
:- pred trace__call_depth_slot(code_model::in, lval::out) is det.
:- pred trace__redo_layout_slot(code_model::in, lval::out) is det.
trace__event_num_slot(CodeModel, EventNumSlot) :-
( CodeModel = model_non ->
EventNumSlot = framevar(1)
;
EventNumSlot = stackvar(1)
).
trace__call_num_slot(CodeModel, CallNumSlot) :-
( CodeModel = model_non ->
CallNumSlot = framevar(2)
;
CallNumSlot = stackvar(2)
).
trace__call_depth_slot(CodeModel, CallDepthSlot) :-
( CodeModel = model_non ->
CallDepthSlot = framevar(3)
;
CallDepthSlot = stackvar(3)
).
trace__redo_layout_slot(CodeModel, RedoLayoutSlot) :-
( CodeModel = model_non ->
RedoLayoutSlot = framevar(4)
;
error("attempt to access redo layout slot for det or semi procedure")
).
%-----------------------------------------------------------------------------%
% Information for tracing that is valid throughout the execution
% of a procedure.
:- type trace_info --->
trace_info(
trace_level :: trace_level,
trace_suppress_items :: trace_suppress_items,
from_full_lval :: maybe(lval),
% If the trace level is shallow,
% the lval of the slot that holds the
% from-full flag.
io_seq_lval :: maybe(lval),
% If the procedure has I/O state
% arguments, the lval of the slot
% that holds the initial value of the
% I/O action counter.
trail_lvals :: maybe(pair(lval)),
% If trailing is enabled, the lvals
% of the slots that hold the value
% of the trail pointer and the ticket
% counter at the time of the call.
maxfr_lval :: maybe(lval),
% If we reserve a slot for holding
% the value of maxfr at entry for use
% in implementing retry, the lval of
% the slot.
call_table_tip_lval :: maybe(lval),
% If we reserve a slot for holding
% the value of the call table tip
% variable, the lval of this variable.
redo_label :: maybe(label)
% If we are generating redo events,
% this has the label associated with
% the fail event, which we then reserve
% in advance, so we can put the
% address of its layout struct
% into the slot which holds the
% layout for the redo event (the
% two events have identical layouts).
).