Files
mercury/compiler/prog_io_pragma.m
Fergus Henderson 11d8161692 Add support for nested modules.
Estimated hours taken: 50

Add support for nested modules.

- module names may themselves be module-qualified
- modules may contain `:- include_module' declarations
  which name sub-modules
- a sub-module has access to all the declarations in the
  parent module (including its implementation section).

This support is not yet complete; see the BUGS and LIMITATIONS below.

LIMITATIONS
- source file names must match module names
	(just as they did previously)
- mmc doesn't allow path names on the command line any more
	(e.g. `mmc --make-int ../library/foo.m').
- import_module declarations must use the fully-qualified module name
- module qualifiers must use the fully-qualified module name
- no support for root-qualified module names
	(e.g. `:parent:child' instead of `parent:child').
- modules may not be physically nested (only logical nesting, via
  `include_module').

BUGS
- doesn't check that the parent module is imported/used before allowing
	import/use of its sub-modules.
- doesn't check that there is an include_module declaration in the
	parent for each module claiming to be a child of that parent
- privacy of private modules is not enforced

-------------------

NEWS:
	Mention that we support nested modules.

library/ops.m:
library/nc_builtin.nl:
library/sp_builtin.nl:
compiler/mercury_to_mercury.m:
	Add `include_module' as a new prefix operator.
	Change the associativity of `:' from xfy to yfx
	(since this made parsing module qualifiers slightly easier).

compiler/prog_data.m:
	Add new `include_module' declaration.
	Change the `module_name' and `module_specifier' types
	from strings to sym_names, so that module names can
	themselves be module qualified.

compiler/modules.m:
	Add predicates module_name_to_file_name/2 and
	file_name_to_module_name/2.
	Lots of changes to handle parent module dependencies,
	to create parent interface (`.int0') files, to read them in,
	to output correct dependencies information for them to the
	`.d' and `.dep' files, etc.
	Rewrite a lot of the code to improve the readability
	(add comments, use subroutines, better variable names).
	Also fix a couple of bugs:
	- generate_dependencies was using the transitive implementation
	  dependencies rather than the transitive interface dependencies
	  to compute the `.int3' dependencies when writing `.d' files
	  (this bug was introduced during crs's changes to support
	  `.trans_opt' files)
	- when creating the `.int' file, it was reading in the
	  interfaces for modules imported in the implementation section,
	  not just those in the interface section.
	  This meant that the compiler missed a lot of errors.

library/graph.m:
library/lexer.m:
library/term.m:
library/term_io.m:
library/varset.m:
compiler/*.m:
	Add `:- import_module' declarations to the interface needed
	by declarations in the interface.  (The previous version
	of the compiler did not detect these missing interface imports,
	due to the above-mentioned bug in modules.m.)

compiler/mercury_compile.m:
compiler/intermod.m:
	Change mercury_compile__maybe_grab_optfiles and
	intermod__grab_optfiles so that they grab the opt files for
	parent modules as well as the ones for imported modules.

compiler/mercury_compile.m:
	Minor changes to handle parent module dependencies.
	(Also improve the wording of the warning about trans-opt
	dependencies.)

compiler/make_hlds.m:
compiler/module_qual.m:
	Ignore `:- include_module' declarations.

compiler/module_qual.m:
	A couple of small changes to handle nested module names.

compiler/prog_out.m:
compiler/prog_util.m:
	Add new predicates string_to_sym_name/3 (prog_util.m) and
	sym_name_to_string/{2,3} (prog_out.m).

compiler/*.m:
	Replace many occurrences of `string' with `module_name'.
	Change code that prints out module names or converts
	them to strings or filenames to handle the fact that
	module names are now sym_names intead of strings.
	Also change a few places (e.g. in intermod.m, hlds_module.m)
	where the code assumed that any qualified symbol was
	fully-qualified.

compiler/prog_io.m:
compiler/prog_io_goal.m:
	Move sym_name_and_args/3, parse_qualified_term/4 and
	parse_qualified_term/5 preds from prog_io_goal.m to prog_io.m,
	since they are very similar to the parse_symbol_name/2 predicate
	already in prog_io.m.  Rewrite these predicates, both
	to improve maintainability, and to handle the newly
	allowed syntax (module-qualified module names).
	Rename parse_qualified_term/5 as `parse_implicit_qualified_term'.

compiler/prog_io.m:
	Rewrite the handling of `:- module' and `:- end_module'
	declarations, so that it can handle nested modules.
	Add code to parse `include_module' declarations.

compiler/prog_util.m:
compiler/*.m:
	Add new predicates mercury_public_builtin_module/1 and
	mercury_private_builtin_module/1 in prog_util.m.
	Change most of the hard-coded occurrences of "mercury_builtin"
	to call mercury_private_builtin_module/1 or
	mercury_public_builtin_module/1 or both.

compiler/llds_out.m:
	Add llds_out__sym_name_mangle/2, for mangling module names.

compiler/special_pred.m:
compiler/mode_util.m:
compiler/clause_to_proc.m:
compiler/prog_io_goal.m:
compiler/lambda.m:
compiler/polymorphism.m:
	Move the predicates in_mode/1, out_mode/1, and uo_mode/1
	from special_pred.m to mode_util.m, and change various
	hard-coded definitions to instead call these predicates.

compiler/polymorphism.m:
	Ensure that the type names `type_info' and `typeclass_info' are
	module-qualified in the generated code.  This avoids a problem
	where the code generated by polymorphism.m was not considered
	type-correct, due to the type `type_info' not matching
	`mercury_builtin:type_info'.

compiler/check_typeclass.m:
	Simplify the code for check_instance_pred and
	get_matching_instance_pred_ids.

compiler/mercury_compile.m:
compiler/modules.m:
	Disallow directory names in command-line arguments.

compiler/options.m:
compiler/handle_options.m:
compiler/mercury_compile.m:
compiler/modules.m:
	Add a `--make-private-interface' option.
	The private interface file `<module>.int0' contains
	all the declarations in the module; it is used for
	compiling sub-modules.

scripts/Mmake.rules:
scripts/Mmake.vars.in:
	Add support for creating `.int0' and `.date0' files
	by invoking mmc with `--make-private-interface'.

doc/user_guide.texi:
	Document `--make-private-interface' and the `.int0'
	and `.date0' file extensions.

doc/reference_manual.texi:
	Document nested modules.

util/mdemangle.c:
profiler/demangle.m:
	Demangle names with multiple module qualifiers.

tests/general/Mmakefile:
tests/general/string_format_test.m:
tests/general/string_format_test.exp:
tests/general/string__format_test.m:
tests/general/string__format_test.exp:
tests/general/.cvsignore:
	Change the `:- module string__format_test' declaration in
	`string__format_test.m' to `:- module string_format_test',
	because with the original declaration the `__' was taken
	as a module qualifier, which lead to an error message.
	Hence rename the file accordingly, to avoid the warning
	about file name not matching module name.

tests/invalid/Mmakefile:
tests/invalid/missing_interface_import.m:
tests/invalid/missing_interface_import.err_exp:
	Regression test to check that the compiler reports
	errors for missing `import_module' in the interface section.

tests/invalid/*.err_exp:
tests/warnings/unused_args_test.exp:
tests/warnings/unused_import.exp:
	Update the expected diagnostics output for the test cases to
	reflect a few minor changes to the warning messages.

tests/hard_coded/Mmakefile:
tests/hard_coded/parent.m:
tests/hard_coded/parent.child.m:
tests/hard_coded/parent.exp:
tests/hard_coded/parent2.m:
tests/hard_coded/parent2.child.m:
tests/hard_coded/parent2.exp:
	Two simple tests case for the use of nested modules with
	separate compilation.
1998-03-03 17:48:14 +00:00

829 lines
25 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1996-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io_pragma.m.
% Main authors: fjh, dgj.
%
% This module handles the parsing of pragma directives.
:- module prog_io_pragma.
:- interface.
:- import_module prog_data, prog_io_util.
:- import_module list, varset, term.
% parse the pragma declaration.
:- pred parse_pragma(module_name, varset, list(term), maybe1(item)).
:- mode parse_pragma(in, in, in, out) is semidet.
:- implementation.
:- import_module prog_io, prog_io_goal, hlds_pred, term_util, term_errors.
:- import_module int, string, std_util, bool, require.
parse_pragma(ModuleName, VarSet, PragmaTerms, Result) :-
(
% new syntax: `:- pragma foo(...).'
PragmaTerms = [SinglePragmaTerm],
SinglePragmaTerm = term__functor(term__atom(PragmaType),
PragmaArgs, _),
parse_pragma_type(ModuleName, PragmaType, PragmaArgs,
SinglePragmaTerm, VarSet, Result0)
->
Result = Result0
;
% old syntax: `:- pragma(foo, ...).'
% XXX we should issue a warning; this syntax is deprecated.
PragmaTerms = [PragmaTypeTerm | PragmaArgs2],
PragmaTypeTerm = term__functor(term__atom(PragmaType), [], _),
parse_pragma_type(ModuleName, PragmaType, PragmaArgs2,
PragmaTypeTerm, VarSet, Result1)
->
Result = Result1
;
fail
).
:- pred parse_pragma_type(module_name, string, list(term), term,
varset, maybe1(item)).
:- mode parse_pragma_type(in, in, in, in, in, out) is semidet.
parse_pragma_type(_, "source_file", PragmaTerms, ErrorTerm, _VarSet, Result) :-
( PragmaTerms = [SourceFileTerm] ->
(
SourceFileTerm = term__functor(term__string(SourceFile), [], _)
->
Result = ok(pragma(source_file(SourceFile)))
;
Result = error(
"string expected in `pragma source_file' declaration",
SourceFileTerm)
)
;
Result = error(
"wrong number of arguments in `pragma source_file' declaration",
ErrorTerm)
).
parse_pragma_type(_, "c_header_code", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
(
PragmaTerms = [HeaderTerm]
->
(
HeaderTerm = term__functor(term__string(HeaderCode), [], _)
->
Result = ok(pragma(c_header_code(HeaderCode)))
;
Result = error("expected string for C header code", HeaderTerm)
)
;
Result = error(
"wrong number of arguments in `pragma c_header_code(...) declaration",
ErrorTerm)
).
parse_pragma_type(ModuleName, "c_code", PragmaTerms,
ErrorTerm, VarSet, Result) :-
(
PragmaTerms = [Just_C_Code_Term]
->
(
Just_C_Code_Term = term__functor(term__string(Just_C_Code), [],
_)
->
Result = ok(pragma(c_code(Just_C_Code)))
;
Result = error("expected string for C code", Just_C_Code_Term)
)
;
PragmaTerms = [PredAndVarsTerm, C_CodeTerm]
->
% XXX we should issue a warning; this syntax is deprecated.
% Result = error("pragma c_code doesn't say whether it can call mercury", PredAndVarsTerm)
MayCallMercury = will_not_call_mercury,
(
C_CodeTerm = term__functor(term__string(C_Code), [], Context)
->
parse_pragma_c_code(ModuleName, MayCallMercury, PredAndVarsTerm,
ordinary(C_Code, yes(Context)), VarSet, Result)
;
Result = error("invalid `:- pragma c_code' declaration -- expecting either `may_call_mercury' or `will_not_call_mercury', and a string for C code",
C_CodeTerm)
)
;
PragmaTerms = [PredAndVarsTerm, MayCallMercuryTerm, C_CodeTerm]
->
(
C_CodeTerm = term__functor(term__string(C_Code), [], Context)
->
( parse_may_call_mercury(MayCallMercuryTerm, MayCallMercury) ->
parse_pragma_c_code(ModuleName, MayCallMercury,
PredAndVarsTerm, ordinary(C_Code, yes(Context)),
VarSet, Result)
; parse_may_call_mercury(PredAndVarsTerm, MayCallMercury) ->
% XXX we should issue a warning; this syntax is deprecated
parse_pragma_c_code(ModuleName, MayCallMercury,
MayCallMercuryTerm, ordinary(C_Code, yes(Context)),
VarSet, Result)
;
Result = error("invalid second argument in `:- pragma c_code' declaration -- expecting either `may_call_mercury' or `will_not_call_mercury'",
MayCallMercuryTerm)
)
;
Result = error("invalid third argument in `:- pragma c_code' declaration -- expecting string for C code",
C_CodeTerm)
)
;
(
PragmaTerms = [PredAndVarsTerm, MayCallMercuryTerm,
FieldsTerm, FirstTerm, LaterTerm],
term__context_init(DummyContext),
SharedTerm = term__functor(term__atom("common_code"),
[term__functor(term__string(""), [], DummyContext)],
DummyContext)
;
PragmaTerms = [PredAndVarsTerm, MayCallMercuryTerm,
FieldsTerm, FirstTerm, LaterTerm, SharedTerm]
)
->
( parse_may_call_mercury(MayCallMercuryTerm, MayCallMercury) ->
( parse_pragma_keyword("local_vars", FieldsTerm, Fields, FieldsContext) ->
( parse_pragma_keyword("first_code", FirstTerm, First, FirstContext) ->
( parse_pragma_keyword("retry_code", LaterTerm, Later, LaterContext) ->
( parse_pragma_keyword("shared_code", SharedTerm, Shared, SharedContext) ->
parse_pragma_c_code(ModuleName, MayCallMercury,
PredAndVarsTerm,
nondet(Fields, yes(FieldsContext),
First, yes(FirstContext),
Later, yes(LaterContext),
share, Shared, yes(SharedContext)),
VarSet, Result)
; parse_pragma_keyword("duplicated_code", SharedTerm, Shared, SharedContext) ->
parse_pragma_c_code(ModuleName, MayCallMercury,
PredAndVarsTerm,
nondet(Fields, yes(FieldsContext),
First, yes(FirstContext),
Later, yes(LaterContext),
duplicate, Shared, yes(SharedContext)),
VarSet, Result)
; parse_pragma_keyword("common_code", SharedTerm, Shared, SharedContext) ->
parse_pragma_c_code(ModuleName, MayCallMercury,
PredAndVarsTerm,
nondet(Fields, yes(FieldsContext),
First, yes(FirstContext),
Later, yes(LaterContext),
automatic, Shared, yes(SharedContext)),
VarSet, Result)
;
Result = error("invalid sixth argument in `:- pragma c_code' declaration -- expecting `shared_code(<code>')",
LaterTerm)
)
;
Result = error("invalid fifth argument in `:- pragma c_code' declaration -- expecting `later_code(<code>')",
LaterTerm)
)
;
Result = error("invalid fourth argument in `:- pragma c_code' declaration -- expecting `first_code(<code>')",
FirstTerm)
)
;
Result = error("invalid third argument in `:- pragma c_code' declaration -- expecting `local_vars(<fields>)'",
FieldsTerm)
)
;
Result = error("invalid second argument in `:- pragma c_code' declaration -- expecting either `may_call_mercury' or `will_not_call_mercury'",
MayCallMercuryTerm)
)
;
Result = error(
"wrong number of arguments in `:- pragma c_code' declaration",
ErrorTerm)
).
parse_pragma_type(ModuleName, "import", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
(
PragmaTerms = [PredAndModesTerm, MayCallMercuryTerm,
C_FunctionTerm]
->
(
PredAndModesTerm = term__functor(_, _, _),
C_FunctionTerm = term__functor(term__string(C_Function), [], _)
->
(
PredAndModesTerm = term__functor(term__atom("="),
[FuncAndArgModesTerm, RetModeTerm], _)
->
parse_implicitly_qualified_term(ModuleName,
FuncAndArgModesTerm, PredAndModesTerm,
"pragma import declaration", FuncAndArgModesResult),
(
FuncAndArgModesResult = ok(FuncName, ArgModeTerms),
(
convert_mode_list(ArgModeTerms, ArgModes),
convert_mode(RetModeTerm, RetMode)
->
list__append(ArgModes, [RetMode], Modes),
(
parse_may_call_mercury(MayCallMercuryTerm,
MayCallMercury)
->
Result = ok(pragma(import(FuncName, function,
Modes, MayCallMercury, C_Function)))
;
Result = error("invalid second argument in `:- pragma import/3' declaration -- expecting either `may_call_mercury' or `will_not_call_mercury'",
MayCallMercuryTerm)
)
;
Result = error(
"expected pragma import(FuncName(ModeList) = Mode, MayCallMercury, C_Function)",
PredAndModesTerm)
)
;
FuncAndArgModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
parse_implicitly_qualified_term(ModuleName,
PredAndModesTerm, ErrorTerm,
"pragma import declaration", PredAndModesResult),
(
PredAndModesResult = ok(PredName, ModeTerms),
(
convert_mode_list(ModeTerms, Modes)
->
(
parse_may_call_mercury(MayCallMercuryTerm,
MayCallMercury)
->
Result = ok(pragma(import(PredName, predicate,
Modes, MayCallMercury, C_Function)))
;
Result = error("invalid second argument in `:- pragma import/3' declaration -- expecting either `may_call_mercury' or `will_not_call_mercury'",
MayCallMercuryTerm)
)
;
Result = error(
"expected pragma import(PredName(ModeList), MayCallMercury, C_Function)",
PredAndModesTerm)
)
;
PredAndModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
)
;
Result = error(
"expected pragma import(PredName(ModeList), MayCallMercury, C_Function)",
PredAndModesTerm)
)
;
PragmaTerms = [PredAndModesTerm, C_FunctionTerm]
->
MayCallMercury = may_call_mercury,
(
PredAndModesTerm = term__functor(_, _, _),
C_FunctionTerm = term__functor(term__string(C_Function), [], _)
->
(
PredAndModesTerm = term__functor(term__atom("="),
[FuncAndArgModesTerm, RetModeTerm], _)
->
parse_implicitly_qualified_term(ModuleName,
FuncAndArgModesTerm, PredAndModesTerm,
"pragma import declaration", FuncAndArgModesResult),
(
FuncAndArgModesResult = ok(FuncName, ArgModeTerms),
(
convert_mode_list(ArgModeTerms, ArgModes),
convert_mode(RetModeTerm, RetMode)
->
list__append(ArgModes, [RetMode], Modes),
Result = ok(pragma(import(FuncName, function,
Modes, MayCallMercury, C_Function)))
;
Result = error(
"expected pragma import(FuncName(ModeList) = Mode, C_Function)",
PredAndModesTerm)
)
;
FuncAndArgModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
parse_implicitly_qualified_term(ModuleName,
PredAndModesTerm, ErrorTerm,
"pragma import declaration", PredAndModesResult),
(
PredAndModesResult = ok(PredName, ModeTerms),
(
convert_mode_list(ModeTerms, Modes)
->
Result = ok(pragma(import(PredName, predicate,
Modes, MayCallMercury, C_Function)))
;
Result = error(
"expected pragma import(PredName(ModeList), C_Function)",
PredAndModesTerm)
)
;
PredAndModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
)
;
Result = error(
"expected pragma import(PredName(ModeList), C_Function)",
PredAndModesTerm)
)
;
Result =
error(
"wrong number of arguments in `pragma import(...)' declaration",
ErrorTerm)
).
parse_pragma_type(_ModuleName, "export", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
(
PragmaTerms = [PredAndModesTerm, C_FunctionTerm]
->
(
PredAndModesTerm = term__functor(_, _, _),
C_FunctionTerm = term__functor(term__string(C_Function), [], _)
->
(
PredAndModesTerm = term__functor(term__atom("="),
[FuncAndArgModesTerm, RetModeTerm], _)
->
parse_qualified_term(FuncAndArgModesTerm, PredAndModesTerm,
"pragma export declaration", FuncAndArgModesResult),
(
FuncAndArgModesResult = ok(FuncName, ArgModeTerms),
(
convert_mode_list(ArgModeTerms, ArgModes),
convert_mode(RetModeTerm, RetMode)
->
list__append(ArgModes, [RetMode], Modes),
Result =
ok(pragma(export(FuncName, function,
Modes, C_Function)))
;
Result = error(
"expected pragma export(FuncName(ModeList) = Mode, C_Function)",
PredAndModesTerm)
)
;
FuncAndArgModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
parse_qualified_term(PredAndModesTerm, ErrorTerm,
"pragma export declaration", PredAndModesResult),
(
PredAndModesResult = ok(PredName, ModeTerms),
(
convert_mode_list(ModeTerms, Modes)
->
Result =
ok(pragma(export(PredName, predicate, Modes,
C_Function)))
;
Result = error(
"expected pragma export(PredName(ModeList), C_Function)",
PredAndModesTerm)
)
;
PredAndModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
)
;
Result = error(
"expected pragma export(PredName(ModeList), C_Function)",
PredAndModesTerm)
)
;
Result =
error(
"wrong number of arguments in `pragma export(...)' declaration",
ErrorTerm)
).
parse_pragma_type(ModuleName, "inline", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "inline",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = inline(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "no_inline", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "no_inline",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = no_inline(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "memo", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "memo",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = memo(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "obsolete", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "obsolete",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = obsolete(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
% pragma unused_args should never appear in user programs,
% only in .opt files.
parse_pragma_type(_ModuleName, "unused_args", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
(
PragmaTerms = [
PredOrFuncTerm,
PredNameTerm,
term__functor(term__integer(Arity), [], _),
term__functor(term__integer(ProcInt), [], _),
UnusedArgsTerm
],
proc_id_to_int(ProcId, ProcInt),
(
PredOrFuncTerm = term__functor(
term__atom("predicate"), [], _),
PredOrFunc = predicate
;
PredOrFuncTerm = term__functor(
term__atom("function"), [], _),
PredOrFunc = function
),
parse_qualified_term(PredNameTerm, ErrorTerm,
"predicate name", PredNameResult),
PredNameResult = ok(PredName, []),
convert_int_list(UnusedArgsTerm, UnusedArgsResult),
UnusedArgsResult = ok(UnusedArgs)
->
Result = ok(pragma(unused_args(PredOrFunc, PredName,
Arity, ProcId, UnusedArgs)))
;
Result = error("error in pragma unused_args", ErrorTerm)
).
parse_pragma_type(ModuleName, "fact_table", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
(
PragmaTerms = [PredAndArityTerm, FileNameTerm]
->
(
PredAndArityTerm = term__functor(term__atom("/"),
[PredNameTerm, ArityTerm], _)
->
(
parse_implicitly_qualified_term(ModuleName, PredNameTerm,
PredAndArityTerm, "pragma fact_table declaration",
ok(PredName, [])),
ArityTerm = term__functor(term__integer(Arity), [], _)
->
(
FileNameTerm =
term__functor(term__string(FileName), [], _)
->
Result = ok(pragma(fact_table(PredName, Arity,
FileName)))
;
Result = error(
"expected string for fact table filename",
FileNameTerm)
)
;
Result = error(
"expected predname/arity for `pragma fact_table(..., ...)'",
PredAndArityTerm)
)
;
Result = error(
"expected predname/arity for `pragma fact_table(..., ...)'",
PredAndArityTerm)
)
;
Result =
error(
"wrong number of arguments in pragma fact_table(..., ...) declaration",
ErrorTerm)
).
parse_pragma_type(ModuleName, "promise_pure", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "promise_pure",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = promise_pure(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "termination_info", PragmaTerms, ErrorTerm,
_VarSet, Result) :-
(
PragmaTerms = [
PredAndModesTerm0,
ArgSizeTerm,
TerminationTerm
],
(
PredAndModesTerm0 = term__functor(Const, Terms0, _)
->
(
Const = term__atom("="),
Terms0 = [FuncAndModesTerm, FuncResultTerm0]
->
% function
PredOrFunc = function,
PredAndModesTerm = FuncAndModesTerm,
FuncResultTerm = [FuncResultTerm0]
;
% predicate
PredOrFunc = predicate,
PredAndModesTerm = PredAndModesTerm0,
FuncResultTerm = []
),
parse_implicitly_qualified_term(ModuleName,
PredAndModesTerm, ErrorTerm,
"`pragma termination_info' declaration", PredNameResult),
PredNameResult = ok(PredName, ModeListTerm0),
(
PredOrFunc = predicate,
ModeListTerm = ModeListTerm0
;
PredOrFunc = function,
list__append(ModeListTerm0, FuncResultTerm, ModeListTerm)
),
convert_mode_list(ModeListTerm, ModeList),
(
ArgSizeTerm = term__functor(term__atom("not_set"), [], _),
MaybeArgSizeInfo = no
;
ArgSizeTerm = term__functor(term__atom("infinite"), [],
ArgSizeContext),
MaybeArgSizeInfo = yes(infinite(
[ArgSizeContext - imported_pred]))
;
ArgSizeTerm = term__functor(term__atom("finite"),
[IntTerm, UsedArgsTerm], _),
IntTerm = term__functor(term__integer(Int), [], _),
convert_bool_list(UsedArgsTerm, UsedArgs),
MaybeArgSizeInfo = yes(finite(Int, UsedArgs))
),
(
TerminationTerm = term__functor(term__atom("not_set"), [], _),
MaybeTerminationInfo = no
;
TerminationTerm = term__functor(term__atom("can_loop"),
[], TermContext),
MaybeTerminationInfo = yes(can_loop(
[TermContext - imported_pred]))
;
TerminationTerm = term__functor(term__atom("cannot_loop"),
[], _),
MaybeTerminationInfo = yes(cannot_loop)
),
Result0 = ok(pragma(termination_info(PredOrFunc, PredName,
ModeList, MaybeArgSizeInfo, MaybeTerminationInfo)))
;
Result0 = error("unexpected variable in pragma termination_info",
ErrorTerm)
)
->
Result = Result0
;
Result = error("syntax error in `pragma termination_info'", ErrorTerm)
).
parse_pragma_type(ModuleName, "terminates", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "terminates",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = terminates(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "does_not_terminate", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "does_not_terminate",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = does_not_terminate(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "check_termination", PragmaTerms,
ErrorTerm, _VarSet, Result) :-
parse_simple_pragma(ModuleName, "check_termination",
lambda([Name::in, Arity::in, Pragma::out] is det,
Pragma = check_termination(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
:- pred parse_simple_pragma(module_name, string,
pred(sym_name, int, pragma_type),
list(term), term, maybe1(item)).
:- mode parse_simple_pragma(in, in, pred(in, in, out) is det,
in, in, out) is det.
parse_simple_pragma(ModuleName, PragmaType, MakePragma,
PragmaTerms, ErrorTerm, Result) :-
(
PragmaTerms = [PredAndArityTerm]
->
(
PredAndArityTerm = term__functor(term__atom("/"),
[PredNameTerm, ArityTerm], _)
->
(
parse_implicitly_qualified_term(ModuleName,
PredNameTerm, ErrorTerm, "", ok(PredName, [])),
ArityTerm = term__functor(term__integer(Arity), [], _)
->
call(MakePragma, PredName, Arity, Pragma),
Result = ok(pragma(Pragma))
;
string__append_list(
["expected predname/arity for `pragma ",
PragmaType, "(...)' declaration"], ErrorMsg),
Result = error(ErrorMsg, PredAndArityTerm)
)
;
string__append_list(["expected predname/arity for `pragma ",
PragmaType, "(...)' declaration"], ErrorMsg),
Result = error(ErrorMsg, PredAndArityTerm)
)
;
string__append_list(["wrong number of arguments in `pragma ",
PragmaType, "(...)' declaration"], ErrorMsg),
Result = error(ErrorMsg, ErrorTerm)
).
%-----------------------------------------------------------------------------%
:- pred parse_pragma_keyword(string, term, string, term__context).
:- mode parse_pragma_keyword(in, in, out, out) is semidet.
parse_pragma_keyword(ExpectedKeyword, Term, StringArg, StartContext) :-
Term = term__functor(term__atom(ExpectedKeyword), [Arg], _),
Arg = term__functor(term__string(StringArg), [], StartContext).
:- pred parse_may_call_mercury(term, may_call_mercury).
:- mode parse_may_call_mercury(in, out) is semidet.
parse_may_call_mercury(term__functor(term__atom("recursive"), [], _),
may_call_mercury).
parse_may_call_mercury(term__functor(term__atom("non_recursive"), [], _),
will_not_call_mercury).
parse_may_call_mercury(term__functor(term__atom("may_call_mercury"), [], _),
may_call_mercury).
parse_may_call_mercury(term__functor(term__atom("will_not_call_mercury"), [],
_), will_not_call_mercury).
% parse a pragma c_code declaration
:- pred parse_pragma_c_code(module_name, may_call_mercury, term,
pragma_c_code_impl, varset, maybe1(item)).
:- mode parse_pragma_c_code(in, in, in, in, in, out) is det.
parse_pragma_c_code(ModuleName, MayCallMercury, PredAndVarsTerm0, PragmaImpl,
VarSet, Result) :-
(
PredAndVarsTerm0 = term__functor(Const, Terms0, _)
->
(
% is this a function or a predicate?
Const = term__atom("="),
Terms0 = [FuncAndVarsTerm, FuncResultTerm0]
->
% function
PredOrFunc = function,
PredAndVarsTerm = FuncAndVarsTerm,
FuncResultTerms = [FuncResultTerm0]
;
% predicate
PredOrFunc = predicate,
PredAndVarsTerm = PredAndVarsTerm0,
FuncResultTerms = []
),
parse_implicitly_qualified_term(ModuleName,
PredAndVarsTerm, PredAndVarsTerm0,
"pragma c_code declaration", PredNameResult),
(
PredNameResult = ok(PredName, VarList0),
(
PredOrFunc = predicate,
VarList = VarList0
;
PredOrFunc = function,
list__append(VarList0, FuncResultTerms, VarList)
),
parse_pragma_c_code_varlist(VarSet, VarList, PragmaVars, Error),
(
Error = no,
Result = ok(pragma(c_code(MayCallMercury, PredName,
PredOrFunc, PragmaVars, VarSet, PragmaImpl)))
;
Error = yes(ErrorMessage),
Result = error(ErrorMessage, PredAndVarsTerm)
)
;
PredNameResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
Result = error("unexpected variable in `pragma c_code' declaration",
PredAndVarsTerm0)
).
% parse the variable list in the pragma c code declaration.
% The final argument is 'no' for no error, or 'yes(ErrorMessage)'.
:- pred parse_pragma_c_code_varlist(varset, list(term), list(pragma_var),
maybe(string)).
:- mode parse_pragma_c_code_varlist(in, in, out, out) is det.
parse_pragma_c_code_varlist(_, [], [], no).
parse_pragma_c_code_varlist(VarSet, [V|Vars], PragmaVars, Error):-
(
V = term__functor(term__atom("::"), [VarTerm, ModeTerm], _),
VarTerm = term__variable(Var)
->
(
varset__search_name(VarSet, Var, VarName)
->
(
convert_mode(ModeTerm, Mode)
->
P = (pragma_var(Var, VarName, Mode)),
parse_pragma_c_code_varlist(VarSet,
Vars, PragmaVars0, Error),
PragmaVars = [P|PragmaVars0]
;
PragmaVars = [],
Error = yes("unknown mode in pragma c_code")
)
;
% if the variable wasn't in the varset it must be an
% underscore variable.
PragmaVars = [], % return any old junk for that.
Error = yes(
"sorry, not implemented: anonymous `_' variable in pragma c_code")
)
;
PragmaVars = [], % return any old junk in PragmaVars
Error = yes("arguments not in form 'Var :: mode'")
).
:- pred convert_int_list(term::in, maybe1(list(int))::out) is det.
convert_int_list(term__variable(V),
error("variable in int list", term__variable(V))).
convert_int_list(term__functor(Functor, Args, Context), Result) :-
(
Functor = term__atom("."),
Args = [term__functor(term__integer(Int), [], _), RestTerm]
->
convert_int_list(RestTerm, RestResult),
(
RestResult = ok(List0),
Result = ok([Int | List0])
;
RestResult = error(_, _),
Result = RestResult
)
;
Functor = term__atom("[]"),
Args = []
->
Result = ok([])
;
Result = error("error in int list",
term__functor(Functor, Args, Context))
).
:- pred convert_bool_list(term::in, list(bool)::out) is semidet.
convert_bool_list(term__functor(Functor, Args, _), Bools) :-
(
Functor = term__atom("."),
Args = [term__functor(AtomTerm, [], _), RestTerm],
(
AtomTerm = term__atom("yes"),
Bool = yes
;
AtomTerm = term__atom("no"),
Bool = no
),
convert_bool_list(RestTerm, RestList),
Bools = [ Bool | RestList ]
;
Functor = term__atom("[]"),
Args = [],
Bools = []
).