Files
mercury/compiler/polymorphism.m
Fergus Henderson 04b720630b Update the copyright messages so that (a) they contain the correct years
and (b) they say "Copyright (C) ... _The_ University of Melbourne".
1997-07-27 15:09:59 +00:00

1249 lines
47 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1995-1997 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% file: polymorphism.m
% main author: fjh
% This module is a pass over the HLDS.
% It does a syntactic transformation to implement polymorphism
% using higher-order predicates, and also invokes `lambda__transform_lambda'
% to handle lambda expressions by creating new predicates for them.
%
%-----------------------------------------------------------------------------%
%
% Tranformation of polymorphic code:
%
% Every polymorphic predicate is transformed so that it takes one additional
% argument for every type variable in the predicate's type declaration.
% The argument gives information about the type, including higher-order
% predicate variables for each of the builtin polymorphic operations
% (currently unify/2, compare/3, index/2).
%
%-----------------------------------------------------------------------------%
%
% Representation of type information:
%
% IMPORTANT: ANY CHANGES TO THE DOCUMENTATION HERE MUST BE REFLECTED BY
% SIMILAR CHANGES TO THE #defines IN "runtime/type_info.h"
% AND VICE VERSA.
%
% Type information is represented using one or two cells. The cell which
% is always present is the base_type_info structure, laid out like this:
%
% word 0 <arity of type constructor>
% e.g. 0 for `int', 1 for `list(T)', 2 for `map(K, V)'.
% word 1 <=/2 predicate for type>
% word 2 <index/2 predicate for type>
% word 3 <compare/3 predicate for type>
% word 4 <base_type_layout for type>
% word 5 <base_type_functors for type>
% word 6 <string name of type>
% e.g. "int" for `int', "list" for `list(T)',
% "map" for `map(K,V)'
%
% The other cell is the new type_info structure, laid out like this:
%
% word 0 <pointer to the base_type_info structure>
% word 1+ <the type_infos for the type params, at least one>
%
% (but see note below for how higher order types differ)
%
%-----------------------------------------------------------------------------%
%
% Optimization of common case for one-or-two cells:
%
% The type_info structure itself is redundant if the type has no type
% parameters (i.e. its arity is zero). Therefore if the arity is zero,
% we pass the address of the base_type_info structure directly, instead of
% wrapping it up in another cell. The runtime system will look at the first
% field of the cell it is passed. If this field is zero, the cell is a
% base_type_info structure for an arity zero type. If this field is not zero,
% the cell is a new type_info structure, with the first field being the
% pointer to the base_type_info structure.
%
%-----------------------------------------------------------------------------%
%
% Higher order types:
%
% There is a slight variation on this for higher-order types. Higher
% order type_infos always have a pointer to the pred/0 base_type_info,
% regardless of their true arity, so we store the real arity in the
% type-info as well.
%
% word 0 <pointer to the base_type_info structure (pred/0)>
% word 1 <arity of predicate>
% word 2+ <the type_infos for the type params, at least one>
%
%-----------------------------------------------------------------------------%
%
% Sharing one-or-two-cell structures:
%
% For compilation models that can put code addresses in static ground terms,
% we can arrange to create one copy of the base_type_info structure statically,
% avoiding the need to create other copies at runtime. For compilation models
% that cannot put code addresses in static ground terms, we have several
% options:
%
% 1. use a one or two cell representation, but allocate all cells
% at runtime.
% 2. use another representation, allocating all cells at
% runtime.
% 3. use a shared static base_type_info, but initialize its code
% addresses during startup (that is, during the module
% initialization code).
%
% Presently, shared-one-or-two cells are the default, with grades that
% cannot use static code addresses using option 3. Support for older
% type_info representations has been dropped.
%
%-----------------------------------------------------------------------------%
%
% Example of transformation:
%
% Take the following code as an example, ignoring the requirement for
% super-homogeneous form for clarity:
%
% :- pred p(T1).
% :- pred q(T2).
% :- pred r(T3).
%
% p(X) :- q([X]), r(0).
%
% We add an extra argument for each type variable:
%
% :- pred p(type_info(T1), T1).
% :- pred q(type_info(T2), T2).
% :- pred r(type_info(T3), T3).
%
% We transform the body of p to this:
%
% p(TypeInfoT1, X) :-
% BaseTypeInfoT2 = base_type_info(
% 1,
% '__Unify__'<list/1>,
% '__Index__'<list/1>,
% '__Compare__'<list/1>,
% <base_type_layout for list/1>,
% <base_type_functors for list/1>,
% "list"),
% TypeInfoT2 = type_info(
% BaseTypeInfoT2,
% TypeInfoT1),
% q(TypeInfoT2, [X]),
% TypeInfoT3 = base_type_info(
% 0,
% builtin_unify_int,
% builtin_index_int,
% builtin_compare_int,
% <base_type_layout for int/0>,
% <base_type_functors for int/0>,
% "int"),
% r(TypeInfoT3, 0).
%
% Note that base_type_infos are actually generated as references to a
% single shared base_type_info.
%
%-----------------------------------------------------------------------------%
:- module polymorphism.
:- interface.
:- import_module hlds_module.
:- pred polymorphism__process_module(module_info, module_info).
:- mode polymorphism__process_module(in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds_pred, hlds_goal, hlds_data, llds, (lambda), globals.
:- import_module prog_data, type_util, mode_util, quantification, instmap.
:- import_module code_util, unify_proc, special_pred, prog_util, make_hlds.
:- import_module (inst), hlds_out.
:- import_module bool, int, string, list, set, map.
:- import_module term, varset, std_util, require.
%-----------------------------------------------------------------------------%
% This whole section just traverses the module structure.
% We do two passes, the first to fix up the procedure bodies,
% (and in fact everything except the pred_info argtypes),
% the second to fix up the pred_info argtypes.
% The reason we need two passes is that the first pass looks at
% the argtypes of the called predicates, and so we need to make
% sure we don't muck them up before we've finished the first pass.
polymorphism__process_module(ModuleInfo0, ModuleInfo) :-
module_info_preds(ModuleInfo0, Preds0),
map__keys(Preds0, PredIds0),
polymorphism__process_preds(PredIds0, ModuleInfo0, ModuleInfo1),
module_info_preds(ModuleInfo1, Preds1),
map__keys(Preds1, PredIds1),
polymorphism__fixup_preds(PredIds1, ModuleInfo1, ModuleInfo).
:- pred polymorphism__process_preds(list(pred_id), module_info, module_info).
:- mode polymorphism__process_preds(in, in, out) is det.
polymorphism__process_preds([], ModuleInfo, ModuleInfo).
polymorphism__process_preds([PredId | PredIds], ModuleInfo0, ModuleInfo) :-
polymorphism__process_pred(PredId, ModuleInfo0, ModuleInfo1),
polymorphism__process_preds(PredIds, ModuleInfo1, ModuleInfo).
:- pred polymorphism__process_pred(pred_id, module_info, module_info).
:- mode polymorphism__process_pred(in, in, out) is det.
polymorphism__process_pred(PredId, ModuleInfo0, ModuleInfo) :-
module_info_pred_info(ModuleInfo0, PredId, PredInfo),
pred_info_procids(PredInfo, ProcIds),
polymorphism__process_procs(PredId, ProcIds, ModuleInfo0, ModuleInfo).
:- pred polymorphism__process_procs(pred_id, list(proc_id),
module_info, module_info).
:- mode polymorphism__process_procs(in, in, in, out) is det.
polymorphism__process_procs(_PredId, [], ModuleInfo, ModuleInfo).
polymorphism__process_procs(PredId, [ProcId | ProcIds], ModuleInfo0,
ModuleInfo) :-
module_info_preds(ModuleInfo0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
polymorphism__process_proc(ProcInfo0, PredInfo0, ModuleInfo0,
ProcInfo, PredInfo1, ModuleInfo1),
pred_info_procedures(PredInfo1, ProcTable1),
map__det_update(ProcTable1, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(PredInfo1, ProcTable, PredInfo),
module_info_preds(ModuleInfo1, PredTable1),
map__det_update(PredTable1, PredId, PredInfo, PredTable),
module_info_set_preds(ModuleInfo1, PredTable, ModuleInfo2),
polymorphism__process_procs(PredId, ProcIds, ModuleInfo2, ModuleInfo).
%---------------------------------------------------------------------------%
:- pred polymorphism__fixup_preds(list(pred_id), module_info, module_info).
:- mode polymorphism__fixup_preds(in, in, out) is det.
polymorphism__fixup_preds([], ModuleInfo, ModuleInfo).
polymorphism__fixup_preds([PredId | PredIds], ModuleInfo0, ModuleInfo) :-
%
% Recompute the arg types by finding the headvars and the var->type
% mapping (from the first procedure for the predicate) and
% applying the type mapping to the extra headvars to get the new
% arg types. Note that we are careful to only apply the mapping
% to the extra head vars, not to the originals, because otherwise
% we would stuff up the arg types for unification predicates for
% equivalence types.
%
module_info_preds(ModuleInfo0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
pred_info_procids(PredInfo0, ProcIds),
( ProcIds = [ProcId | _] ->
map__lookup(ProcTable0, ProcId, ProcInfo),
proc_info_vartypes(ProcInfo, VarTypes),
proc_info_headvars(ProcInfo, HeadVars),
pred_info_arg_types(PredInfo0, TypeVarSet, ArgTypes0),
list__length(ArgTypes0, NumOldArgs),
list__length(HeadVars, NumNewArgs),
NumExtraArgs is NumNewArgs - NumOldArgs,
(
list__split_list(NumExtraArgs, HeadVars, ExtraHeadVars,
_OldHeadVars)
->
map__apply_to_list(ExtraHeadVars, VarTypes,
ExtraArgTypes),
list__append(ExtraArgTypes, ArgTypes0, ArgTypes)
;
error("polymorphism.m: list__split_list failed")
),
pred_info_set_arg_types(PredInfo0, TypeVarSet, ArgTypes,
PredInfo),
map__det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(ModuleInfo0, PredTable, ModuleInfo1)
;
ModuleInfo1 = ModuleInfo0
),
polymorphism__fixup_preds(PredIds, ModuleInfo1, ModuleInfo).
%---------------------------------------------------------------------------%
:- type poly_info --->
poly_info(
varset, % from the proc_info
map(var, type), % from the proc_info
tvarset, % from the proc_info
map(tvar, var), % specifies the type_info var
% for each of the pred's type
% parameters
module_info
).
:- pred polymorphism__process_proc(proc_info, pred_info, module_info,
proc_info, pred_info, module_info).
:- mode polymorphism__process_proc(in, in, in, out, out, out) is det.
polymorphism__process_proc(ProcInfo0, PredInfo0, ModuleInfo0,
ProcInfo, PredInfo, ModuleInfo) :-
% grab the appropriate fields from the pred_info and proc_info
pred_info_arg_types(PredInfo0, ArgTypeVarSet, ArgTypes),
pred_info_typevarset(PredInfo0, TypeVarSet0),
proc_info_headvars(ProcInfo0, HeadVars0),
proc_info_variables(ProcInfo0, VarSet0),
proc_info_vartypes(ProcInfo0, VarTypes0),
proc_info_goal(ProcInfo0, Goal0),
proc_info_argmodes(ProcInfo0, ArgModes0),
% insert extra head variables to hold the address of the
% equality predicate for each polymorphic type in the predicate's
% type declaration
term__vars_list(ArgTypes, HeadTypeVars0),
list__remove_dups(HeadTypeVars0, HeadTypeVars), % remove duplicates
polymorphism__make_head_vars(HeadTypeVars, ArgTypeVarSet,
VarSet0, VarTypes0, ExtraHeadVars, VarSet1, VarTypes1),
list__append(ExtraHeadVars, HeadVars0, HeadVars),
list__length(ExtraHeadVars, NumExtraVars),
list__duplicate(NumExtraVars, user_defined_mode(
qualified("mercury_builtin", "in"), []), ExtraModes),
list__append(ExtraModes, ArgModes0, ArgModes),
% process any polymorphic calls inside the goal
map__from_corresponding_lists(HeadTypeVars, ExtraHeadVars,
TypeInfoMap0),
Info0 = poly_info(VarSet1, VarTypes1, TypeVarSet0,
TypeInfoMap0, ModuleInfo0),
polymorphism__process_goal(Goal0, Goal1, Info0, Info1),
polymorphism__fixup_quantification(Goal1, Goal, Info1, Info),
Info = poly_info(VarSet, VarTypes, TypeVarSet, TypeInfoMap, ModuleInfo),
% set the new values of the fields in proc_info and pred_info
proc_info_set_headvars(ProcInfo0, HeadVars, ProcInfo1),
proc_info_set_goal(ProcInfo1, Goal, ProcInfo2),
proc_info_set_varset(ProcInfo2, VarSet, ProcInfo3),
proc_info_set_vartypes(ProcInfo3, VarTypes, ProcInfo4),
proc_info_set_argmodes(ProcInfo4, ArgModes, ProcInfo5),
proc_info_set_typeinfo_varmap(ProcInfo5, TypeInfoMap, ProcInfo),
pred_info_set_typevarset(PredInfo0, TypeVarSet, PredInfo).
:- pred polymorphism__process_goal(hlds_goal, hlds_goal,
poly_info, poly_info).
:- mode polymorphism__process_goal(in, out, in, out) is det.
polymorphism__process_goal(Goal0 - GoalInfo0, Goal) -->
polymorphism__process_goal_expr(Goal0, GoalInfo0, Goal).
:- pred polymorphism__process_goal_expr(hlds_goal_expr, hlds_goal_info,
hlds_goal, poly_info, poly_info).
:- mode polymorphism__process_goal_expr(in, in, out, in, out) is det.
% We don't need to add type-infos for higher-order calls,
% since the type-infos are added when the closures are
% constructed, not when they are called. (Or at least I
% think we don't... -fjh.)
polymorphism__process_goal_expr(higher_order_call(A, B, C, D, E),
GoalInfo, higher_order_call(A, B, C, D, E) - GoalInfo)
--> [].
polymorphism__process_goal_expr(call(PredId0, ProcId0, ArgVars0,
Builtin, Context, Name0), GoalInfo, Goal) -->
% Check for a call to a special predicate like compare/3
% for which the type is known at compile-time.
% Replace such calls with calls to the particular version
% for that type.
(
{ Name0 = unqualified(PredName0) },
{ list__length(ArgVars0, Arity) },
{ special_pred_name_arity(SpecialPredId, PredName0,
MangledPredName, Arity) },
=(poly_info(_, VarTypes, _, _TypeInfoMap, ModuleInfo)),
{ special_pred_get_type(MangledPredName, ArgVars0, MainVar) },
{ map__lookup(VarTypes, MainVar, Type) },
{ Type \= term__variable(_) },
% don't try this for any special preds if they're not
% implemented
{ special_pred_list(SpecialPredIds) },
{ list__member(SpecialPredId, SpecialPredIds) }
->
{ classify_type(Type, ModuleInfo, TypeCategory) },
{ polymorphism__get_special_proc(TypeCategory, SpecialPredId,
ModuleInfo, Name, PredId, ProcId) }
;
{ PredId = PredId0 },
{ ProcId = ProcId0 },
{ Name = Name0 }
),
polymorphism__process_call(PredId, ProcId, ArgVars0,
ArgVars, ExtraVars, ExtraGoals),
{ goal_info_get_nonlocals(GoalInfo, NonLocals0) },
{ set__insert_list(NonLocals0, ExtraVars, NonLocals) },
{ goal_info_set_nonlocals(GoalInfo, NonLocals, CallGoalInfo) },
{ Call = call(PredId, ProcId, ArgVars, Builtin, Context, Name)
- CallGoalInfo },
{ list__append(ExtraGoals, [Call], GoalList) },
{ conj_list_to_goal(GoalList, GoalInfo, Goal) }.
polymorphism__process_goal_expr(unify(XVar, Y, Mode, Unification, Context),
GoalInfo, Goal) -->
(
{ Unification = complicated_unify(UniMode, CanFail) },
{ Y = var(YVar) }
->
=(poly_info(_, VarTypes, _, TypeInfoMap, ModuleInfo)),
{ map__lookup(VarTypes, XVar, Type) },
( { Type = term__variable(TypeVar) } ->
% Convert polymorphic unifications into calls to
% `unify/2', the general unification predicate, passing
% the appropriate Type_info
% =(TypeInfoVar, X, Y)
% where TypeInfoVar is the type_info variable
% associated with the type of the variables that
% are being unified.
{ module_info_get_predicate_table(ModuleInfo,
PredicateTable) },
{ predicate_table_search_pred_m_n_a(PredicateTable,
"mercury_builtin", "unify", 2, [CallPredId]) ->
PredId = CallPredId
;
error("polymorphism.m: can't find `mercury_builtin:unify/2'")
},
% XXX Bug! - we should check that the mode is (in, in),
% and report an error (e.g. "unification of
% polymorphically typed variables in partially
% instantiated mode") if it isn't
{ hlds_pred__in_in_unification_proc_id(ProcId) },
{ map__lookup(TypeInfoMap, TypeVar, TypeInfoVar) },
{ SymName = unqualified("unify") },
{ ArgVars = [TypeInfoVar, XVar, YVar] },
{ code_util__builtin_state(ModuleInfo, PredId, ProcId,
BuiltinState) },
{ CallContext = call_unify_context(XVar, Y, Context) },
{ Goal = call(PredId, ProcId, ArgVars, BuiltinState,
yes(CallContext), SymName) - GoalInfo }
; { type_is_higher_order(Type, _, _) } ->
{ SymName = unqualified("builtin_unify_pred") },
{ ArgVars = [XVar, YVar] },
{ module_info_get_predicate_table(ModuleInfo,
PredicateTable) },
{
predicate_table_search_pred_m_n_a(
PredicateTable,
"mercury_builtin", "builtin_unify_pred", 2,
[PredId0])
->
PredId = PredId0
;
error("can't locate mercury_builtin:builtin_unify_pred/2")
},
{ hlds_pred__in_in_unification_proc_id(ProcId) },
{ CallContext = call_unify_context(XVar, Y, Context) },
{ Call = call(PredId, ProcId, ArgVars, not_builtin,
yes(CallContext), SymName) },
polymorphism__process_goal_expr(Call, GoalInfo, Goal)
; { type_to_type_id(Type, TypeId, _) } ->
% Convert other complicated unifications into
% calls to specific unification predicates, and then
% recursively call polymorphism__process_goal_expr
% to insert extra arguments if necessary.
{ module_info_get_special_pred_map(ModuleInfo,
SpecialPredMap) },
{ map__lookup(SpecialPredMap, unify - TypeId, PredId) },
{ determinism_components(Det, CanFail, at_most_one) },
{ unify_proc__lookup_mode_num(ModuleInfo, TypeId,
UniMode, Det, ProcId) },
{ SymName = unqualified("__Unify__") },
{ ArgVars = [XVar, YVar] },
{ CallContext = call_unify_context(XVar, Y, Context) },
{ Call = call(PredId, ProcId, ArgVars, not_builtin,
yes(CallContext), SymName) },
polymorphism__process_goal_expr(Call, GoalInfo, Goal)
;
{ error("polymorphism: type_to_type_id failed") }
)
; { Y = lambda_goal(PredOrFunc, Vars, Modes, Det, LambdaGoal0) } ->
% for lambda expressions, we must recursively traverse the
% lambda goal and then convert the lambda expression
% into a new predicate
{ LambdaGoal0 = _ - GoalInfo0 },
{ goal_info_get_nonlocals(GoalInfo0, OrigNonLocals) },
polymorphism__process_goal(LambdaGoal0, LambdaGoal1),
polymorphism__fixup_quantification(LambdaGoal1, LambdaGoal),
polymorphism__process_lambda(PredOrFunc, Vars, Modes, Det,
OrigNonLocals, LambdaGoal, Unification,
Y1, Unification1),
{ Goal = unify(XVar, Y1, Mode, Unification1, Context)
- GoalInfo }
;
% ordinary unifications are left unchanged,
{ Goal = unify(XVar, Y, Mode, Unification, Context) - GoalInfo }
).
% the rest of the clauses just process goals recursively
polymorphism__process_goal_expr(conj(Goals0), GoalInfo,
conj(Goals) - GoalInfo) -->
polymorphism__process_goal_list(Goals0, Goals).
polymorphism__process_goal_expr(disj(Goals0, SM), GoalInfo,
disj(Goals, SM) - GoalInfo) -->
polymorphism__process_goal_list(Goals0, Goals).
polymorphism__process_goal_expr(not(Goal0), GoalInfo, not(Goal) - GoalInfo) -->
polymorphism__process_goal(Goal0, Goal).
polymorphism__process_goal_expr(switch(Var, CanFail, Cases0, SM), GoalInfo,
switch(Var, CanFail, Cases, SM) - GoalInfo) -->
polymorphism__process_case_list(Cases0, Cases).
polymorphism__process_goal_expr(some(Vars, Goal0), GoalInfo,
some(Vars, Goal) - GoalInfo) -->
polymorphism__process_goal(Goal0, Goal).
polymorphism__process_goal_expr(if_then_else(Vars, A0, B0, C0, SM), GoalInfo,
if_then_else(Vars, A, B, C, SM) - GoalInfo) -->
polymorphism__process_goal(A0, A),
polymorphism__process_goal(B0, B),
polymorphism__process_goal(C0, C).
polymorphism__process_goal_expr(pragma_c_code(IsRecursive, C_Code, PredId,
ProcId, ArgVars0, ArgNames0, OrigArgTypes0, ExtraInfo),
GoalInfo, Goal) -->
polymorphism__process_call(PredId, ProcId, ArgVars0,
ArgVars, ExtraVars, ExtraGoals),
%
% update the non-locals
%
{ goal_info_get_nonlocals(GoalInfo, NonLocals0) },
{ set__insert_list(NonLocals0, ExtraVars, NonLocals) },
{ goal_info_set_nonlocals(GoalInfo, NonLocals, CallGoalInfo) },
%
% insert the type_info vars into the arg-name map,
% so that the c_code can refer to the type_info variable
% for type T as `TypeInfo_for_T'.
%
=(poly_info(_, _, _, _, ModuleInfo)),
{ module_info_pred_info(ModuleInfo, PredId, PredInfo) },
{ pred_info_arg_types(PredInfo, PredTypeVarSet, PredArgTypes) },
{ term__vars_list(PredArgTypes, PredTypeVars0) },
{ list__remove_dups(PredTypeVars0, PredTypeVars) },
{ polymorphism__c_code_add_typeinfos(ExtraVars, PredTypeVars,
PredTypeVarSet, ArgNames0, ArgNames) },
%
% insert type_info types for all the inserted type_info vars
% into the arg-types list
%
{ MakeType = lambda([TypeVar::in, TypeInfoType::out] is det,
construct_type(qualified("mercury_builtin", "type_info") - 1,
[term__variable(TypeVar)], TypeInfoType)) },
{ list__map(MakeType, PredTypeVars, TypeInfoTypes) },
{ list__append(TypeInfoTypes, OrigArgTypes0, OrigArgTypes) },
%
% plug it all back together
%
{ Call = pragma_c_code(IsRecursive, C_Code, PredId, ProcId, ArgVars,
ArgNames, OrigArgTypes, ExtraInfo) - CallGoalInfo },
{ list__append(ExtraGoals, [Call], GoalList) },
{ conj_list_to_goal(GoalList, GoalInfo, Goal) }.
:- pred polymorphism__c_code_add_typeinfos(list(var), list(tvar),
tvarset, list(maybe(string)), list(maybe(string))).
:- mode polymorphism__c_code_add_typeinfos(in, in, in, in, out) is det.
polymorphism__c_code_add_typeinfos([], [], _, ArgNames, ArgNames).
polymorphism__c_code_add_typeinfos([_Var|Vars], [TVar|TVars], TypeVarSet,
ArgNames0, ArgNames) :-
polymorphism__c_code_add_typeinfos(Vars, TVars, TypeVarSet,
ArgNames0, ArgNames1),
( varset__search_name(TypeVarSet, TVar, TypeVarName) ->
string__append("TypeInfo_for_", TypeVarName, C_VarName),
ArgNames = [yes(C_VarName) | ArgNames1]
;
ArgNames = [no | ArgNames1]
).
polymorphism__c_code_add_typeinfos([], [_|_], _, _, _) :-
error("polymorphism__c_code_add_typeinfos: length mismatch").
polymorphism__c_code_add_typeinfos([_|_], [], _, _, _) :-
error("polymorphism__c_code_add_typeinfos: length mismatch").
:- pred polymorphism__process_goal_list(list(hlds_goal), list(hlds_goal),
poly_info, poly_info).
:- mode polymorphism__process_goal_list(in, out, in, out) is det.
polymorphism__process_goal_list([], []) --> [].
polymorphism__process_goal_list([Goal0 | Goals0], [Goal | Goals]) -->
polymorphism__process_goal(Goal0, Goal),
polymorphism__process_goal_list(Goals0, Goals).
:- pred polymorphism__process_case_list(list(case), list(case),
poly_info, poly_info).
:- mode polymorphism__process_case_list(in, out, in, out) is det.
polymorphism__process_case_list([], []) --> [].
polymorphism__process_case_list([Case0 | Cases0], [Case | Cases]) -->
{ Case0 = case(ConsId, Goal0) },
polymorphism__process_goal(Goal0, Goal),
{ Case = case(ConsId, Goal) },
polymorphism__process_case_list(Cases0, Cases).
%-----------------------------------------------------------------------------%
:- pred polymorphism__process_call(pred_id, proc_id, list(var), list(var),
list(var), list(hlds_goal),
poly_info, poly_info).
:- mode polymorphism__process_call(in, in, in, out, out, out, in, out) is det.
polymorphism__process_call(PredId, _ProcId, ArgVars0, ArgVars,
ExtraVars, ExtraGoals, Info0, Info) :-
Info0 = poly_info(VarSet0, VarTypes0, TypeVarSet0,
TypeInfoMap0, ModuleInfo),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_arg_types(PredInfo, PredTypeVarSet, PredArgTypes0),
% rename apart
% (this merge might be a performance bottleneck?)
varset__merge(TypeVarSet0, PredTypeVarSet, PredArgTypes0,
TypeVarSet, PredArgTypes),
term__vars_list(PredArgTypes, PredTypeVars0),
( PredTypeVars0 = [] ->
% optimize for common case of non-polymorphic call
ArgVars = ArgVars0,
ExtraGoals = [],
ExtraVars = [],
Info = Info0
;
list__remove_dups(PredTypeVars0, PredTypeVars),
map__apply_to_list(ArgVars0, VarTypes0, ActualArgTypes),
( type_list_subsumes(PredArgTypes, ActualArgTypes,
TypeSubst1) ->
TypeSubst = TypeSubst1
;
error("polymorphism__process_goal_expr: type unification failed")
),
term__var_list_to_term_list(PredTypeVars, PredTypes0),
term__apply_rec_substitution_to_list(PredTypes0, TypeSubst,
PredTypes),
polymorphism__make_vars(PredTypes, ModuleInfo, TypeInfoMap0,
VarSet0, VarTypes0,
ExtraVars, TypeInfoMap, ExtraGoals, VarSet,
VarTypes),
list__append(ExtraVars, ArgVars0, ArgVars),
Info = poly_info(VarSet, VarTypes, TypeVarSet,
TypeInfoMap, ModuleInfo)
).
:- pred polymorphism__fixup_quantification(hlds_goal, hlds_goal,
poly_info, poly_info).
:- mode polymorphism__fixup_quantification(in, out, in, out) is det.
%
% If the predicate we are processing is a polymorphic predicate,
% or contains polymorphically-typed goals, we
% may need to fix up the quantification (non-local variables)
% so that it includes the type-info variables in the non-locals set.
%
polymorphism__fixup_quantification(Goal0, Goal, Info0, Info) :-
Info0 = poly_info(VarSet0, VarTypes0, TypeVarSet, TypeVarMap,
ModuleInfo),
%
% A type-info variable may be non-local to a goal if any of
% the ordinary non-local variables for that goal are polymorphically
% typed with a type that depends on that type-info variable.
%
Goal0 = _ - GoalInfo0,
goal_info_get_nonlocals(GoalInfo0, NonLocals),
set__to_sorted_list(NonLocals, NonLocalsList),
map__apply_to_list(NonLocalsList, VarTypes0, NonLocalsTypes),
term__vars_list(NonLocalsTypes, NonLocalTypeVars),
solutions(lambda([TypeInfoVar::out] is nondet, (
list__member(Var, NonLocalTypeVars),
map__search(TypeVarMap, Var, TypeInfoVar)
)), ExtraNonLocals),
( ExtraNonLocals = [] ->
Goal = Goal0,
VarTypes = VarTypes0,
VarSet = VarSet0
;
set__sorted_list_to_set(ExtraNonLocals, NewOutsideVars),
set__union(NewOutsideVars, NonLocals, OutsideVars),
implicitly_quantify_goal(Goal0, VarSet0, VarTypes0,
OutsideVars, Goal, VarSet, VarTypes, _Warnings)
),
Info = poly_info(VarSet, VarTypes, TypeVarSet, TypeVarMap, ModuleInfo).
:- pred polymorphism__process_lambda(pred_or_func, list(var), list(mode),
determinism, set(var), hlds_goal, unification,
unify_rhs, unification, poly_info, poly_info).
:- mode polymorphism__process_lambda(in, in, in, in, in, in, in, out, out,
in, out) is det.
polymorphism__process_lambda(PredOrFunc, Vars, Modes, Det, OrigNonLocals,
LambdaGoal, Unification0, Functor, Unification,
PolyInfo0, PolyInfo) :-
PolyInfo0 = poly_info(VarSet, VarTypes, TVarSet, TVarMap, ModuleInfo0),
lambda__transform_lambda(PredOrFunc, Vars, Modes, Det, OrigNonLocals,
LambdaGoal, Unification0, VarSet, VarTypes, TVarSet, TVarMap,
ModuleInfo0, Functor, Unification, ModuleInfo),
PolyInfo = poly_info(VarSet, VarTypes, TVarSet, TVarMap, ModuleInfo).
%---------------------------------------------------------------------------%
% Given a list of types, create a list of variables to hold the type_info
% for those types, and create a list of goals to initialize those type_info
% variables to the appropriate type_info structures for the types.
% Update the varset and vartypes accordingly.
:- pred polymorphism__make_vars(list(type), module_info, map(tvar, var),
varset, map(var, type), list(var), map(tvar, var), list(hlds_goal),
varset, map(var, type)).
:- mode polymorphism__make_vars(in, in, in, in, in, out, out, out, out,
out) is det.
polymorphism__make_vars([], _, TypeInfoMap, VarSet, VarTypes, [], TypeInfoMap,
[], VarSet, VarTypes).
polymorphism__make_vars([Type | Types], ModuleInfo, TypeInfoMap0,
VarSet0, VarTypes0, ExtraVars, TypeInfoMap, ExtraGoals,
VarSet, VarTypes) :-
polymorphism__make_var(Type, ModuleInfo, TypeInfoMap0,
VarSet0, VarTypes0, Var, TypeInfoMap1, ExtraGoals1, VarSet1,
VarTypes1),
polymorphism__make_vars(Types, ModuleInfo, TypeInfoMap1,
VarSet1, VarTypes1, ExtraVars2, TypeInfoMap, ExtraGoals2,
VarSet, VarTypes),
ExtraVars = [Var | ExtraVars2],
list__append(ExtraGoals1, ExtraGoals2, ExtraGoals).
:- pred polymorphism__make_var(type, module_info, map(tvar, var),
varset, map(var, type), var, map(tvar, var), list(hlds_goal),
varset, map(var, type)).
:- mode polymorphism__make_var(in, in, in, in, in, out, out, out, out, out)
is det.
polymorphism__make_var(Type, ModuleInfo, TypeInfoMap0, VarSet0, VarTypes0,
Var, TypeInfoMap, ExtraGoals, VarSet, VarTypes) :-
(
type_is_higher_order(Type, PredOrFunc, TypeArgs)
->
% This occurs for code where a predicate calls a polymorphic
% predicate with a known higher-order value of the type
% variable.
% The transformation we perform is basically the same as
% in the first-order case below, except that we map
% pred/func types to builtin pred/0 or func/0 for the
% purposes of creating type_infos.
% To allow univ_to_type to check the type_infos
% correctly, the actual arity of the pred is added to
% the type_info of higher-order types.
hlds_out__pred_or_func_to_str(PredOrFunc, PredOrFuncStr),
TypeId = unqualified(PredOrFuncStr) - 0,
polymorphism__construct_type_info(Type, TypeId, TypeArgs,
yes, ModuleInfo, TypeInfoMap0, VarSet0, VarTypes0,
Var, TypeInfoMap, ExtraGoals, VarSet, VarTypes)
;
type_to_type_id(Type, TypeId, TypeArgs)
->
% This occurs for code where a predicate calls a polymorphic
% predicate with a known value of the type variable.
% The transformation we perform is shown in the comment
% at the top of the module.
polymorphism__construct_type_info(Type, TypeId, TypeArgs,
no, ModuleInfo, TypeInfoMap0, VarSet0, VarTypes0,
Var, TypeInfoMap, ExtraGoals, VarSet, VarTypes)
;
Type = term__variable(TypeVar1),
map__search(TypeInfoMap0, TypeVar1, TypeInfoVar)
->
% This occurs for code where a predicate calls a polymorphic
% predicate with a bound but unknown value of the type variable.
% For example, in
%
% :- pred p(T1).
% :- pred q(T2).
%
% p(X) :- q(X).
%
% we know that `T2' is bound to `T1', and we translate it into
%
% :- pred p(TypeInfo(T1), T1).
% :- pred q(TypeInfo(T2), T2).
%
% p(TypeInfo, X) :- q(TypeInfo, X).
Var = TypeInfoVar,
ExtraGoals = [],
VarSet = VarSet0,
VarTypes = VarTypes0,
TypeInfoMap = TypeInfoMap0
;
Type = term__variable(TypeVar1)
->
% This occurs for code where a predicate calls a polymorphic
% predicate with an unbound type variable, for example
%
% :- pred p.
% :- pred q(list(T)).
% p :- q([]).
%
% In this case T is unbound, so there cannot be any objects
% of type T, and so q/1 cannot possibly use the unification
% predicate for type T. We pass the type-info for the
% type `void'/0.
%
% :- pred p.
% :- pred q(type_info(T), list(T)).
% p :- q(<void/0>, []).
%
% Passing `void'/0 should ensure that we get a runtime
% error if the special predicates for this type are
% ever used (void has its special predicates set to
% `unused'/0).
%
% XXX what about io__read_anything/3?
% e.g.
% foo --> io__read_anything(_).
% ?
% introduce a new variable, and
% create a construction unification which initializes the
% variable to zero
TypeId = unqualified("void") - 0,
polymorphism__construct_type_info(Type, TypeId, [],
no, ModuleInfo, TypeInfoMap0, VarSet0, VarTypes0,
Var, TypeInfoMap1, ExtraGoals, VarSet, VarTypes),
map__det_insert(TypeInfoMap1, TypeVar1, Var, TypeInfoMap)
;
error("polymorphism__make_var: unknown type")
).
:- pred polymorphism__construct_type_info(type, type_id, list(type),
bool, module_info, map(tvar, var), varset, map(var, type),
var, map(tvar, var), list(hlds_goal), varset, map(var, type)).
:- mode polymorphism__construct_type_info(in, in, in, in, in, in, in, in,
out, out, out, out, out) is det.
polymorphism__construct_type_info(Type, TypeId, TypeArgs, IsHigherOrder,
ModuleInfo, TypeInfoMap0, VarSet0, VarTypes0,
Var, TypeInfoMap, ExtraGoals, VarSet, VarTypes) :-
% Create the typeinfo vars for the arguments
polymorphism__make_vars(TypeArgs, ModuleInfo, TypeInfoMap0,
VarSet0, VarTypes0, ArgTypeInfoVars, TypeInfoMap,
ArgTypeInfoGoals, VarSet1, VarTypes1),
module_info_globals(ModuleInfo, Globals),
globals__get_type_info_method(Globals, TypeInfoMethod),
(
TypeInfoMethod = shared_one_or_two_cell,
polymorphism__init_const_base_type_info_var(Type,
TypeId, ModuleInfo, VarSet1, VarTypes1,
BaseVar, BaseGoal, VarSet2, VarTypes2),
polymorphism__maybe_init_second_cell(ArgTypeInfoVars,
ArgTypeInfoGoals, Type, IsHigherOrder,
BaseVar, VarSet2, VarTypes2, [BaseGoal],
Var, VarSet, VarTypes, ExtraGoals)
).
% Create a unification for the two-cell type_info
% variable for this type if the type arity is not zero:
% TypeInfoVar = type_info(BaseVar,
% ArgTypeInfoVars...).
% For closures, we add the actual arity before the
% arguments, because all closures have a BaseVar
% of "pred/0".
% TypeInfoVar = type_info(BaseVar, Arity,
% ArgTypeInfoVars...).
:- pred polymorphism__maybe_init_second_cell(list(var), list(hlds_goal), type,
bool, var, varset, map(var, type), list(hlds_goal),
var, varset, map(var, type), list(hlds_goal)).
:- mode polymorphism__maybe_init_second_cell(in, in, in, in, in, in, in, in,
out, out, out, out) is det.
polymorphism__maybe_init_second_cell(ArgTypeInfoVars, ArgTypeInfoGoals, Type,
IsHigherOrder, BaseVar, VarSet0, VarTypes0, ExtraGoals0,
Var, VarSet, VarTypes, ExtraGoals) :-
(
ArgTypeInfoVars = [],
IsHigherOrder = no
->
Var = BaseVar,
VarSet = VarSet0,
VarTypes = VarTypes0,
ExtraGoals = ExtraGoals0
;
% Unfortunately, if we have higher order terms, we
% can no longer just optimise them to be the actual
% base_type_info
(
IsHigherOrder = yes
->
list__length(ArgTypeInfoVars, PredArity),
polymorphism__make_count_var(PredArity, VarSet0,
VarTypes0, ArityVar, ArityGoal, VarSet1,
VarTypes1),
TypeInfoArgVars = [BaseVar, ArityVar | ArgTypeInfoVars],
TypeInfoArgGoals = [ArityGoal | ArgTypeInfoGoals]
;
TypeInfoArgVars = [BaseVar | ArgTypeInfoVars],
TypeInfoArgGoals = ArgTypeInfoGoals,
VarTypes1 = VarTypes0,
VarSet1 = VarSet0
),
polymorphism__init_type_info_var(Type,
TypeInfoArgVars, "type_info",
VarSet1, VarTypes1, Var, TypeInfoGoal,
VarSet, VarTypes),
list__append(TypeInfoArgGoals, [TypeInfoGoal], ExtraGoals1),
list__append(ExtraGoals0, ExtraGoals1, ExtraGoals)
).
% Create a unification `CountVar = <NumTypeArgs>'
:- pred polymorphism__make_count_var(int, varset, map(var, type),
var, hlds_goal, varset, map(var, type)).
:- mode polymorphism__make_count_var(in, in, in, out, out, out, out) is det.
polymorphism__make_count_var(NumTypeArgs, VarSet0, VarTypes0,
CountVar, CountGoal, VarSet, VarTypes) :-
varset__new_var(VarSet0, CountVar, VarSet1),
varset__name_var(VarSet1, CountVar, "TypeArity", VarSet),
term__context_init(Context),
IntType = term__functor(term__atom("int"), [], Context),
map__set(VarTypes0, CountVar, IntType, VarTypes),
polymorphism__init_with_int_constant(CountVar, NumTypeArgs, CountGoal).
% Create a construction unification `Var = <Num>'
% where Var is a freshly introduced variable and Num is an
% integer constant.
:- pred polymorphism__init_with_int_constant(var, int, hlds_goal).
:- mode polymorphism__init_with_int_constant(in, in, out) is det.
polymorphism__init_with_int_constant(CountVar, Num, CountUnifyGoal) :-
CountConsId = int_const(Num),
CountUnification = construct(CountVar, CountConsId, [], []),
CountTerm = functor(CountConsId, []),
CountInst = bound(unique, [functor(int_const(Num), [])]),
CountUnifyMode = (free -> CountInst) - (CountInst -> CountInst),
CountUnifyContext = unify_context(explicit, []),
% XXX the UnifyContext is wrong
CountUnify = unify(CountVar, CountTerm, CountUnifyMode,
CountUnification, CountUnifyContext),
% create a goal_info for the unification
set__singleton_set(CountNonLocals, CountVar),
instmap_delta_from_assoc_list([CountVar - CountInst], InstmapDelta),
goal_info_init(CountNonLocals, InstmapDelta, det, CountGoalInfo),
CountUnifyGoal = CountUnify - CountGoalInfo.
% Create the unifications to initialize the special pred
% variables for this type:
%
% SpecialPred1 = __Unify__<type>,
% SpecialPred2 = __Index__<type>,
% SpecialPred3 = __Compare__<type>.
:- pred polymorphism__get_special_proc_list(
type, module_info, varset, map(var, type),
list(var), list(hlds_goal), varset, map(var, type)).
:- mode polymorphism__get_special_proc_list(in, in, in, in,
out, out, out, out) is det.
polymorphism__get_special_proc_list(Type, ModuleInfo, VarSet0, VarTypes0,
SpecialPredVars, SpecialPredGoals, VarSet, VarTypes) :-
special_pred_list(SpecialPreds),
polymorphism__get_special_proc_list_2(SpecialPreds,
Type, ModuleInfo, VarSet0, VarTypes0,
SpecialPredVars, SpecialPredGoals, VarSet, VarTypes).
:- pred polymorphism__get_special_proc_list_2(list(special_pred_id),
type, module_info, varset, map(var, type),
list(var), list(hlds_goal), varset, map(var, type)).
:- mode polymorphism__get_special_proc_list_2(in, in, in, in, in,
out, out, out, out) is det.
polymorphism__get_special_proc_list_2([],
_Type, _ModuleInfo, VarSet, VarTypes,
[], [], VarSet, VarTypes).
polymorphism__get_special_proc_list_2([Id | Ids],
Type, ModuleInfo, VarSet0, VarTypes0,
[Var | Vars], [Goal | Goals], VarSet, VarTypes) :-
% introduce a fresh variable of the appropriate higher-order pred type
special_pred_info(Id, Type, PredName, TypeArgs, _Modes, _Det),
varset__new_var(VarSet0, Var, VarSet1a),
string__append("Var__", PredName, VarName),
varset__name_var(VarSet1a, Var, VarName, VarSet1),
term__context_init(Context),
PredType = term__functor(term__atom("pred"), TypeArgs, Context),
map__set(VarTypes0, Var, PredType, VarTypes1),
% get the ConsId for the address of the appropriate pred
% for the operation specified by Id applied to Type.
classify_type(Type, ModuleInfo, TypeCategory),
polymorphism__get_special_proc(TypeCategory, Id, ModuleInfo,
PredName2, PredId, ProcId),
ConsId = code_addr_const(PredId, ProcId),
% create a construction unification which unifies the fresh
% variable with the address constant obtained above
Unification = construct(Var, ConsId, [], []),
Term = functor(cons(PredName2, 0), []),
Inst = bound(unique, [functor(cons(PredName2, 0), [])]),
UnifyMode = (free -> Inst) - (Inst -> Inst),
UnifyContext = unify_context(explicit, []),
% XXX the UnifyContext is wrong
Unify = unify(Var, Term, UnifyMode, Unification, UnifyContext),
% create a goal_info for the unification
set__singleton_set(NonLocals, Var),
instmap_delta_from_assoc_list([Var - Inst], InstMapDelta),
goal_info_init(NonLocals, InstMapDelta, det, GoalInfo),
Goal = Unify - GoalInfo,
polymorphism__get_special_proc_list_2(Ids,
Type, ModuleInfo, VarSet1, VarTypes1,
Vars, Goals, VarSet, VarTypes).
:- pred polymorphism__get_special_proc(builtin_type, special_pred_id,
module_info, sym_name, pred_id, proc_id).
:- mode polymorphism__get_special_proc(in, in, in, out, out, out) is det.
polymorphism__get_special_proc(TypeCategory, SpecialPredId, ModuleInfo,
PredName, PredId, ProcId) :-
( TypeCategory = user_type(Type) ->
module_info_get_special_pred_map(ModuleInfo, SpecialPredMap),
( type_to_type_id(Type, TypeId, _TypeArgs) ->
map__lookup(SpecialPredMap, SpecialPredId - TypeId,
PredId)
;
error(
"polymorphism__get_special_proc: type_to_type_id failed")
),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_module(PredInfo, Module),
pred_info_name(PredInfo, Name),
PredName = qualified(Module, Name)
;
polymorphism__get_category_name(TypeCategory, CategoryName),
special_pred_name_arity(SpecialPredId, SpecialName, _, Arity),
string__append_list(
["builtin_", SpecialName, "_", CategoryName], Name),
polymorphism__get_builtin_pred_id(Name, Arity, ModuleInfo,
PredId),
PredName = unqualified(Name)
),
special_pred_mode_num(SpecialPredId, ProcInt),
proc_id_to_int(ProcId, ProcInt).
:- pred polymorphism__get_category_name(builtin_type, string).
:- mode polymorphism__get_category_name(in, out) is det.
polymorphism__get_category_name(int_type, "int").
polymorphism__get_category_name(char_type, "int").
polymorphism__get_category_name(enum_type, "int").
polymorphism__get_category_name(float_type, "float").
polymorphism__get_category_name(str_type, "string").
polymorphism__get_category_name(pred_type, "pred").
polymorphism__get_category_name(polymorphic_type, _) :-
error("polymorphism__get_category_name: polymorphic type").
polymorphism__get_category_name(user_type(_), _) :-
error("polymorphism__get_category_name: user_type").
% find the builtin predicate with the specified name
:- pred polymorphism__get_builtin_pred_id(string, int, module_info, pred_id).
:- mode polymorphism__get_builtin_pred_id(in, in, in, out) is det.
polymorphism__get_builtin_pred_id(Name, Arity, ModuleInfo, PredId) :-
module_info_get_predicate_table(ModuleInfo, PredicateTable),
(
predicate_table_search_pred_m_n_a(PredicateTable,
"mercury_builtin", Name, Arity, [PredId1])
->
PredId = PredId1
;
error("polymorphism__get_pred_id: pred_id lookup failed")
).
% Create a unification for a type_info or base_type_info variable:
%
% TypeInfoVar = type_info(CountVar,
% SpecialPredVars...,
% ArgTypeInfoVars...)
%
% or
%
% BaseTypeInfoVar = base_type_type_info(CountVar,
% SpecialPredVars...)
%
% These unifications WILL lead to the creation of cells on the
% heap at runtime.
:- pred polymorphism__init_type_info_var(type, list(var), string,
varset, map(var, type), var, hlds_goal, varset, map(var, type)).
:- mode polymorphism__init_type_info_var(in, in, in, in, in, out, out, out, out)
is det.
polymorphism__init_type_info_var(Type, ArgVars, Symbol, VarSet0, VarTypes0,
TypeInfoVar, TypeInfoGoal, VarSet, VarTypes) :-
ConsId = cons(qualified("mercury_builtin", Symbol), 1),
TypeInfoTerm = functor(ConsId, ArgVars),
% introduce a new variable
polymorphism__new_type_info_var(Type, Symbol, VarSet0, VarTypes0,
TypeInfoVar, VarSet, VarTypes),
% create the construction unification to initialize the variable
UniMode = (free - ground(shared, no) ->
ground(shared, no) - ground(shared, no)),
list__length(ArgVars, NumArgVars),
list__duplicate(NumArgVars, UniMode, UniModes),
Unification = construct(TypeInfoVar, ConsId, ArgVars, UniModes),
UnifyMode = (free -> ground(shared, no)) -
(ground(shared, no) -> ground(shared, no)),
UnifyContext = unify_context(explicit, []),
% XXX the UnifyContext is wrong
Unify = unify(TypeInfoVar, TypeInfoTerm, UnifyMode,
Unification, UnifyContext),
% create a goal_info for the unification
set__list_to_set([TypeInfoVar | ArgVars], NonLocals),
list__duplicate(NumArgVars, ground(shared, no), ArgInsts),
% note that we could perhaps be more accurate than
% `ground(shared)', but it shouldn't make any
% difference.
InstConsId = cons(qualified("mercury_builtin", Symbol), NumArgVars),
instmap_delta_from_assoc_list(
[TypeInfoVar - bound(unique, [functor(InstConsId, ArgInsts)])],
InstMapDelta),
goal_info_init(NonLocals, InstMapDelta, det, GoalInfo),
TypeInfoGoal = Unify - GoalInfo.
% Create a unification for a type_info or base_type_info variable:
%
% BaseTypeInfoVar = base_type_type_info(CountVar,
% SpecialPredVars...)
%
% This unification will NOT lead to the creation of a cell on the
% heap at runtime; it will cause BaseTypeInfoVar to refer to the
% statically allocated base_type_info cell for the type, allocated
% in the module that defines the type.
:- pred polymorphism__init_const_base_type_info_var(type, type_id,
module_info, varset, map(var, type), var, hlds_goal,
varset, map(var, type)).
:- mode polymorphism__init_const_base_type_info_var(in, in, in, in, in,
out, out, out, out) is det.
polymorphism__init_const_base_type_info_var(Type, TypeId,
ModuleInfo, VarSet0, VarTypes0, BaseTypeInfoVar,
BaseTypeInfoGoal, VarSet, VarTypes) :-
type_util__type_id_module(ModuleInfo, TypeId, ModuleName),
type_util__type_id_name(ModuleInfo, TypeId, TypeName),
TypeId = _ - Arity,
ConsId = base_type_info_const(ModuleName, TypeName, Arity),
TypeInfoTerm = functor(ConsId, []),
% introduce a new variable
polymorphism__new_type_info_var(Type, "base_type_info",
VarSet0, VarTypes0, BaseTypeInfoVar, VarSet, VarTypes),
% create the construction unification to initialize the variable
Unification = construct(BaseTypeInfoVar, ConsId, [], []),
UnifyMode = (free -> ground(shared, no)) -
(ground(shared, no) -> ground(shared, no)),
UnifyContext = unify_context(explicit, []),
% XXX the UnifyContext is wrong
Unify = unify(BaseTypeInfoVar, TypeInfoTerm, UnifyMode,
Unification, UnifyContext),
% create a goal_info for the unification
set__list_to_set([BaseTypeInfoVar], NonLocals),
instmap_delta_from_assoc_list([BaseTypeInfoVar - ground(shared, no)],
InstmapDelta),
goal_info_init(NonLocals, InstmapDelta, det, GoalInfo),
BaseTypeInfoGoal = Unify - GoalInfo.
:- pred polymorphism__make_head_vars(list(tvar), tvarset,
varset, map(var, type),
list(var), varset, map(var, type)).
:- mode polymorphism__make_head_vars(in, in, in, in, out, out, out) is det.
polymorphism__make_head_vars([], _, VarSet, VarTypes, [], VarSet, VarTypes).
polymorphism__make_head_vars([TypeVar|TypeVars], TypeVarSet,
VarSet0, VarTypes0,
TypeInfoVars, VarSet, VarTypes) :-
Type = term__variable(TypeVar),
polymorphism__new_type_info_var(Type, "type_info", VarSet0, VarTypes0,
Var, VarSet1, VarTypes1),
( varset__search_name(TypeVarSet, TypeVar, TypeVarName) ->
string__append("TypeInfo_for_", TypeVarName, VarName),
varset__name_var(VarSet1, Var, VarName, VarSet2)
;
VarSet2 = VarSet1
),
TypeInfoVars = [Var | TypeInfoVars1],
polymorphism__make_head_vars(TypeVars, TypeVarSet,
VarSet2, VarTypes1,
TypeInfoVars1, VarSet, VarTypes).
:- pred polymorphism__new_type_info_var(type, string, varset, map(var, type),
var, varset, map(var, type)).
:- mode polymorphism__new_type_info_var(in, in, in, in, out, out, out) is det.
polymorphism__new_type_info_var(Type, Symbol, VarSet0, VarTypes0,
Var, VarSet, VarTypes) :-
% introduce new variable
varset__new_var(VarSet0, Var, VarSet1),
term__var_to_int(Var, VarNum),
string__int_to_string(VarNum, VarNumStr),
string__append("TypeInfo_", VarNumStr, Name),
varset__name_var(VarSet1, Var, Name, VarSet),
construct_type(qualified("mercury_builtin", Symbol) - 1,
[Type], UnifyPredType),
map__set(VarTypes0, Var, UnifyPredType, VarTypes).
:- pred polymorphism__get_module_info(module_info, poly_info, poly_info).
:- mode polymorphism__get_module_info(out, in, out) is det.
polymorphism__get_module_info(ModuleInfo, PolyInfo, PolyInfo) :-
PolyInfo = poly_info(_, _, _, _, ModuleInfo).
:- pred polymorphism__set_module_info(module_info, poly_info, poly_info).
:- mode polymorphism__set_module_info(in, in, out) is det.
polymorphism__set_module_info(ModuleInfo, PolyInfo0, PolyInfo) :-
PolyInfo0 = poly_info(A, B, C, D, _),
PolyInfo = poly_info(A, B, C, D, ModuleInfo).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%