Files
mercury/library/float.m
Simon Taylor 24e3960b4e Uncomment some `:- pragma obsolete' declarations, since the
Estimated hours taken: 1

library/float.m:
	Uncomment some `:- pragma obsolete' declarations, since the
	bug that caused them to be commented out was fixed years ago.

	Add `:- pragma obsolete' declarations for some predicate versions
	of functions, and move them out of the Library Reference Manual.

	Define obselete predicates in terms of non-obsolete functions
	rather than the other way around.

NEWS:
	Document the obsolete predicates.
1999-03-18 01:27:50 +00:00

564 lines
15 KiB
Mathematica

%---------------------------------------------------------------------------%
% Copyright (C) 1994-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: float.m.
% Main author: fjh.
% Stability: medium.
%
% Floating point support.
%
% Note that implementations which support IEEE floating point
% should ensure that in cases where the only valid answer is a "NaN"
% (the IEEE float representation for "not a number"), the det
% functions here will halt with a runtime error (or throw an exception)
% rather than returning a NaN. Quiet (non-signalling) NaNs have a
% semantics which is not valid in Mercury, since they don't obey the
% axiom "all [X] X = X".
%
% XXX Unfortunately the current Mercury implementation does not
% do that on all platforms, since neither ANSI C nor POSIX provide
% any portable way of ensuring that floating point operations
% whose result is not representable will raise a signal rather
% than returning a NaN. (Maybe C9X will help...?)
% The behaviour is correct on Linux and Digital Unix,
% but not on Solaris, for example.
%
% IEEE floating point also specifies that some functions should
% return different results for +0.0 and -0.0, but that +0.0 and -0.0
% should compare equal. This semantics is not valid in Mercury,
% since it doesn't obey the axiom `all [F, X, Y] X = Y => F(X) = F(Y)'.
% Again, the resolution is that in Mercury, functions which would
% return different results for +0.0 and -0.0 should instead halt
% execution with a run-time error (or throw an exception).
%
% XXX Here too the current Mercury implementation does not
% implement the intended semantics correctly on all platforms.
%
%---------------------------------------------------------------------------%
:- module float.
:- interface.
%
% Arithmetic functions
%
% addition
:- func float + float = float.
:- mode in + in = uo is det.
:- mode uo + in = in is det.
:- mode in + uo = in is det.
% subtraction
:- func float - float = float.
:- mode in - in = uo is det.
:- mode uo - in = in is det.
:- mode in - uo = in is det.
% multiplication
:- func float * float = float.
:- mode in * in = uo is det.
:- mode uo * in = in is det.
:- mode in * uo = in is det.
% division
:- func float / float = float.
:- mode in / in = uo is det.
:- mode uo / in = in is det.
:- mode in / uo = in is det.
% unary plus
:- func + float = float.
:- mode + in = uo is det.
% unary minus
:- func - float = float.
:- mode - in = uo is det.
%
% Comparison predicates
%
% less than
:- pred <(float, float).
:- mode <(in, in) is semidet.
% greater than
:- pred >(float, float).
:- mode >(in, in) is semidet.
% less than or equal
:- pred =<(float, float).
:- mode =<(in, in) is semidet.
% greater than or equal
:- pred >=(float, float).
:- mode >=(in, in) is semidet.
%
% Conversion functions
%
% Convert int to float
:- func float(int) = float.
% ceiling_to_int(X) returns the
% smallest integer not less than X.
:- func ceiling_to_int(float) = int.
% floor_to_int(X) returns the
% largest integer not greater than X.
:- func floor_to_int(float) = int.
% round_to_int(X) returns the integer closest to X.
% If X has a fractional value of 0.5, it is rounded up.
:- func round_to_int(float) = int.
% truncate_to_int(X) returns
% the integer closest to X such that |truncate_to_int(X)| =< |X|.
:- func truncate_to_int(float) = int.
%
% Miscellaneous functions
%
% absolute value
:- func abs(float) = float.
% maximum
:- func max(float, float) = float.
% minimum
:- func min(float, float) = float.
% pow(Base, Exponent) returns Base raised to the power Exponent.
% The exponent must be an integer greater or equal to 0.
% Currently this function runs at O(n), where n is the value
% of the exponent.
:- func pow(float, int) = float.
% Compute a non-negative integer hash value for a float.
:- func hash(float) = int.
%
% System constants
%
% Maximum floating-point number
%
% max = (1 - radix ** mantissa_digits) * radix ** max_exponent
%
:- func float__max = float.
% Minimum normalised floating-point number
%
% min = radix ** (min_exponent - 1)
%
:- func float__min = float.
% Smallest number x such that 1.0 + x \= 1.0
% This represents the largest relative spacing of two
% consecutive floating point numbers.
%
% epsilon = radix ** (1 - mantissa_digits)
:- func float__epsilon = float.
% Radix of the floating-point representation.
% In the literature, this is sometimes referred to as `b'.
%
:- func float__radix = int.
% The number of base-radix digits in the mantissa. In the
% literature, this is sometimes referred to as `p' or `t'.
%
:- func float__mantissa_digits = int.
% Minimum negative integer such that:
% radix ** (min_exponent - 1)
% is a normalised floating-point number. In the literature,
% this is sometimes referred to as `e_min'.
%
:- func float__min_exponent = int.
% Maximum integer such that:
% radix ** (max_exponent - 1)
% is a normalised floating-point number. In the literature,
% this is sometimes referred to as `e_max'.
%
:- func float__max_exponent = int.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- interface.
% Everything below here will not appear in the
% Mercury Library Reference Manual.
%---------------------------------------------------------------------------%
%
% Obsolete predicate versions of the functions declared above.
% These were intended for use in programs that need to work
% in both Prolog and Mercury. Running Mercury programs using
% Prolog is no longer supported.
%
%
% Conversion predicates
%
% float__ceiling_to_int(X, Ceil) is true if Ceil is the
% smallest integer not less than X.
:- pragma obsolete(float__ceiling_to_int/2).
:- pred float__ceiling_to_int(float, int).
:- mode float__ceiling_to_int(in, out) is det.
% float__floor_to_int(X, Ceil) is true if Ceil is the
% largest integer not greater than X.
:- pragma obsolete(float__floor_to_int/2).
:- pred float__floor_to_int(float, int).
:- mode float__floor_to_int(in, out) is det.
% float__round_to_int(X, Round) is true if Round is the
% integer closest to X. If X has a fractional value of
% 0.5, it is rounded up.
:- pragma obsolete(float__round_to_int/2).
:- pred float__round_to_int(float, int).
:- mode float__round_to_int(in, out) is det.
% float__truncate_to_int(X, Trunc) is true if Trunc is
% the integer closest to X such that |Trunc| =< |X|.
:- pragma obsolete(float__truncate_to_int/2).
:- pred float__truncate_to_int(float, int).
:- mode float__truncate_to_int(in, out) is det.
%
% Miscellaneous predicates
%
% absolute value
:- pragma obsolete(float__abs/2).
:- pred float__abs(float, float).
:- mode float__abs(in, out) is det.
% maximum
:- pragma obsolete(float__max/3).
:- pred float__max(float, float, float).
:- mode float__max(in, in, out) is det.
% minimum
:- pragma obsolete(float__min/3).
:- pred float__min(float, float, float).
:- mode float__min(in, in, out) is det.
% float__pow(Base, Exponent, Answer) is true iff Answer is
% Base raised to the power Exponent. The exponent must be an
% integer greater or equal to 0. Currently this function runs
% at O(n), where n is the value of the exponent.
:- pragma obsolete(float__pow/3).
:- pred float__pow(float, int, float).
:- mode float__pow(in, in, out) is det.
% Compute a non-negative integer hash value for a float.
:- pragma obsolete(float__hash/2).
:- pred float__hash(float, int).
:- mode float__hash(in, out) is det.
%
% System constant predicates
%
% Maximum floating-point number
:- pragma obsolete(float__max/1).
:- pred float__max(float).
:- mode float__max(out) is det.
% Minimum normalised floating-point number
:- pragma obsolete(float__min/1).
:- pred float__min(float).
:- mode float__min(out) is det.
% Smallest number x such that 1.0 + x \= 1.0
:- pragma obsolete(float__epsilon/1).
:- pred float__epsilon(float).
:- mode float__epsilon(out) is det.
% Radix of the floating-point representation.
:- pragma obsolete(float__radix/1).
:- pred float__radix(int).
:- mode float__radix(out) is det.
% The number of base-radix digits in the mantissa.
:- pragma obsolete(float__mantissa_digits/1).
:- pred float__mantissa_digits(int).
:- mode float__mantissa_digits(out) is det.
% Smallest exponent of a normalised floating-point number.
:- pragma obsolete(float__min_exponent/1).
:- pred float__min_exponent(int).
:- mode float__min_exponent(out) is det.
% Largest exponent of a normalised floating-point number.
:- pragma obsolete(float__max_exponent/1).
:- pred float__max_exponent(int).
:- mode float__max_exponent(out) is det.
%
% Synonyms for the builtin arithmetic functions.
%
:- pragma obsolete(builtin_float_plus/3).
:- pred builtin_float_plus(float, float, float).
:- mode builtin_float_plus(in, in, uo) is det.
:- pragma obsolete(builtin_float_minus/3).
:- pred builtin_float_minus(float, float, float).
:- mode builtin_float_minus(in, in, uo) is det.
:- pragma obsolete(builtin_float_times/3).
:- pred builtin_float_times(float, float, float).
:- mode builtin_float_times(in, in, uo) is det.
:- pragma obsolete(builtin_float_divide/3).
:- pred builtin_float_divide(float, float, float).
:- mode builtin_float_divide(in, in, uo) is det.
:- pragma obsolete(builtin_float_gt/2).
:- pred builtin_float_gt(float, float).
:- mode builtin_float_gt(in, in) is semidet.
:- pragma obsolete(builtin_float_lt/2).
:- pred builtin_float_lt(float, float).
:- mode builtin_float_lt(in, in) is semidet.
:- pragma obsolete(builtin_float_ge/2).
:- pred builtin_float_ge(float, float).
:- mode builtin_float_ge(in, in) is semidet.
:- pragma obsolete(builtin_float_le/2).
:- pred builtin_float_le(float, float).
:- mode builtin_float_le(in, in) is semidet.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- import_module int, require.
%
% Header files of mathematical significance.
%
:- pragma c_header_code("
#include <float.h>
#include <math.h>
").
%---------------------------------------------------------------------------%
% The arithmetic and comparison operators are builtins,
% which the compiler expands inline. We don't need to define them here.
%---------------------------------------------------------------------------%
%
% Conversion functions
%
float(Int) = Float :-
int__to_float(Int, Float).
% float__ceiling_to_int(X) returns the
% smallest integer not less than X.
:- pragma c_code(float__ceiling_to_int(X :: in) = (Ceil :: out),
[will_not_call_mercury, thread_safe],
"
Ceil = (Integer) ceil(X);
").
float__ceiling_to_int(X, float__ceiling_to_int(X)).
% float__floor_to_int(X) returns the
% largest integer not greater than X.
:- pragma c_code(float__floor_to_int(X :: in) = (Floor :: out),
[will_not_call_mercury, thread_safe],
"
Floor = (Integer) floor(X);
").
float__floor_to_int(X, float__floor_to_int(X)).
% float__round_to_int(X) returns the integer closest to X.
% If X has a fractional value of 0.5, it is rounded up.
:- pragma c_code(float__round_to_int(X :: in) = (Round :: out),
[will_not_call_mercury, thread_safe],
"
Round = (Integer) floor(X + 0.5);
").
float__round_to_int(X, float__round_to_int(X)).
% float__truncate_to_int(X) returns the integer closest
% to X such that |float__truncate_to_int(X)| =< |X|.
:- pragma c_code(float__truncate_to_int(X :: in) = (Trunc :: out),
[will_not_call_mercury, thread_safe],
"
Trunc = (Integer) X;
").
float__truncate_to_int(X, float__truncate_to_int(X)).
%---------------------------------------------------------------------------%
%
% Miscellaneous functions
%
float__abs(Num) = Abs :-
(
Num =< 0.0
->
Abs = - Num
;
Abs = Num
).
float__abs(Num, float__abs(Num)).
float__max(X, Y) = Max :-
(
X >= Y
->
Max = X
;
Max = Y
).
float__max(X, Y, float__max(X, Y)).
float__min(X, Y) = Min :-
(
X =< Y
->
Min = X
;
Min = Y
).
float__min(X, Y, float__min(X, Y)).
% float_pow(Base, Exponent) = Answer.
% XXXX This function could be more efficient, with an int_mod pred, to
% reduce O(N) to O(logN) of the exponent.
float__pow(X, Exp) = Ans :-
( Exp < 0 ->
error("float__pow taken with exponent < 0\n")
; Exp = 1 ->
Ans = X
; Exp = 0 ->
Ans = 1.0
;
New_e is Exp - 1,
Ans is X * float__pow(X, New_e)
).
float__pow(X, Exp, float__pow(X, Exp)).
:- pragma c_code(float__hash(F::in) = (H::out),
[will_not_call_mercury, thread_safe],
"
H = hash_float(F);
").
float__hash(F, float__hash(F)).
%---------------------------------------------------------------------------%
%
% System constants
%
% The floating-point system constants are derived from <float.h> and
% implemented using the C interface.
:- pragma c_header_code("
#define ML_FLOAT_RADIX FLT_RADIX /* There is no DBL_RADIX. */
#if defined USE_SINGLE_PREC_FLOAT
#define ML_FLOAT_MAX FLT_MAX
#define ML_FLOAT_MIN FLT_MIN
#define ML_FLOAT_EPSILON FLT_EPSILON
#define ML_FLOAT_MANT_DIG FLT_MANT_DIG
#define ML_FLOAT_MIN_EXP FLT_MIN_EXP
#define ML_FLOAT_MAX_EXP FLT_MAX_EXP
#else
#define ML_FLOAT_MAX DBL_MAX
#define ML_FLOAT_MIN DBL_MIN
#define ML_FLOAT_EPSILON DBL_EPSILON
#define ML_FLOAT_MANT_DIG DBL_MANT_DIG
#define ML_FLOAT_MIN_EXP DBL_MIN_EXP
#define ML_FLOAT_MAX_EXP DBL_MAX_EXP
#endif
").
% Maximum floating-point number
:- pragma c_code(float__max = (Max::out),
[will_not_call_mercury, thread_safe],
"Max = ML_FLOAT_MAX;").
float__max(float__max).
% Minimum normalised floating-point number */
:- pragma c_code(float__min = (Min::out),
[will_not_call_mercury, thread_safe],
"Min = ML_FLOAT_MIN;").
float__min(float__min).
% Smallest x such that x \= 1.0 + x
:- pragma c_code(float__epsilon = (Eps::out),
[will_not_call_mercury, thread_safe],
"Eps = ML_FLOAT_EPSILON;").
float__epsilon(float__epsilon).
% Radix of the floating-point representation.
:- pragma c_code(float__radix = (Radix::out),
[will_not_call_mercury, thread_safe],
"Radix = ML_FLOAT_RADIX;").
float__radix(float__radix).
% The number of base-radix digits in the mantissa.
:- pragma c_code(float__mantissa_digits = (MantDig::out),
[will_not_call_mercury, thread_safe],
"MantDig = ML_FLOAT_MANT_DIG;").
float__mantissa_digits(float__mantissa_digits).
% Minimum negative integer such that:
% radix ** (min_exponent - 1)
% is a normalised floating-point number.
:- pragma c_code(float__min_exponent = (MinExp::out),
[will_not_call_mercury, thread_safe],
"MinExp = ML_FLOAT_MIN_EXP;").
float__min_exponent(float__min_exponent).
% Maximum integer such that:
% radix ** (max_exponent - 1)
% is a normalised floating-point number.
:- pragma c_code(float__max_exponent = (MaxExp::out),
[will_not_call_mercury, thread_safe],
"MaxExp = ML_FLOAT_MIN_EXP;").
float__max_exponent(float__max_exponent).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%