mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-21 00:39:37 +00:00
Estimated hours taken: 1 library/float.m: Uncomment some `:- pragma obsolete' declarations, since the bug that caused them to be commented out was fixed years ago. Add `:- pragma obsolete' declarations for some predicate versions of functions, and move them out of the Library Reference Manual. Define obselete predicates in terms of non-obsolete functions rather than the other way around. NEWS: Document the obsolete predicates.
564 lines
15 KiB
Mathematica
564 lines
15 KiB
Mathematica
%---------------------------------------------------------------------------%
|
|
% Copyright (C) 1994-1998 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU Library General
|
|
% Public License - see the file COPYING.LIB in the Mercury distribution.
|
|
%---------------------------------------------------------------------------%
|
|
%
|
|
% File: float.m.
|
|
% Main author: fjh.
|
|
% Stability: medium.
|
|
%
|
|
% Floating point support.
|
|
%
|
|
% Note that implementations which support IEEE floating point
|
|
% should ensure that in cases where the only valid answer is a "NaN"
|
|
% (the IEEE float representation for "not a number"), the det
|
|
% functions here will halt with a runtime error (or throw an exception)
|
|
% rather than returning a NaN. Quiet (non-signalling) NaNs have a
|
|
% semantics which is not valid in Mercury, since they don't obey the
|
|
% axiom "all [X] X = X".
|
|
%
|
|
% XXX Unfortunately the current Mercury implementation does not
|
|
% do that on all platforms, since neither ANSI C nor POSIX provide
|
|
% any portable way of ensuring that floating point operations
|
|
% whose result is not representable will raise a signal rather
|
|
% than returning a NaN. (Maybe C9X will help...?)
|
|
% The behaviour is correct on Linux and Digital Unix,
|
|
% but not on Solaris, for example.
|
|
%
|
|
% IEEE floating point also specifies that some functions should
|
|
% return different results for +0.0 and -0.0, but that +0.0 and -0.0
|
|
% should compare equal. This semantics is not valid in Mercury,
|
|
% since it doesn't obey the axiom `all [F, X, Y] X = Y => F(X) = F(Y)'.
|
|
% Again, the resolution is that in Mercury, functions which would
|
|
% return different results for +0.0 and -0.0 should instead halt
|
|
% execution with a run-time error (or throw an exception).
|
|
%
|
|
% XXX Here too the current Mercury implementation does not
|
|
% implement the intended semantics correctly on all platforms.
|
|
%
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- module float.
|
|
:- interface.
|
|
|
|
%
|
|
% Arithmetic functions
|
|
%
|
|
|
|
% addition
|
|
:- func float + float = float.
|
|
:- mode in + in = uo is det.
|
|
:- mode uo + in = in is det.
|
|
:- mode in + uo = in is det.
|
|
|
|
% subtraction
|
|
:- func float - float = float.
|
|
:- mode in - in = uo is det.
|
|
:- mode uo - in = in is det.
|
|
:- mode in - uo = in is det.
|
|
|
|
% multiplication
|
|
:- func float * float = float.
|
|
:- mode in * in = uo is det.
|
|
:- mode uo * in = in is det.
|
|
:- mode in * uo = in is det.
|
|
|
|
% division
|
|
:- func float / float = float.
|
|
:- mode in / in = uo is det.
|
|
:- mode uo / in = in is det.
|
|
:- mode in / uo = in is det.
|
|
|
|
% unary plus
|
|
:- func + float = float.
|
|
:- mode + in = uo is det.
|
|
|
|
% unary minus
|
|
:- func - float = float.
|
|
:- mode - in = uo is det.
|
|
|
|
%
|
|
% Comparison predicates
|
|
%
|
|
|
|
% less than
|
|
:- pred <(float, float).
|
|
:- mode <(in, in) is semidet.
|
|
|
|
% greater than
|
|
:- pred >(float, float).
|
|
:- mode >(in, in) is semidet.
|
|
|
|
% less than or equal
|
|
:- pred =<(float, float).
|
|
:- mode =<(in, in) is semidet.
|
|
|
|
% greater than or equal
|
|
:- pred >=(float, float).
|
|
:- mode >=(in, in) is semidet.
|
|
|
|
%
|
|
% Conversion functions
|
|
%
|
|
|
|
% Convert int to float
|
|
:- func float(int) = float.
|
|
|
|
% ceiling_to_int(X) returns the
|
|
% smallest integer not less than X.
|
|
:- func ceiling_to_int(float) = int.
|
|
|
|
% floor_to_int(X) returns the
|
|
% largest integer not greater than X.
|
|
:- func floor_to_int(float) = int.
|
|
|
|
% round_to_int(X) returns the integer closest to X.
|
|
% If X has a fractional value of 0.5, it is rounded up.
|
|
:- func round_to_int(float) = int.
|
|
|
|
% truncate_to_int(X) returns
|
|
% the integer closest to X such that |truncate_to_int(X)| =< |X|.
|
|
:- func truncate_to_int(float) = int.
|
|
|
|
%
|
|
% Miscellaneous functions
|
|
%
|
|
|
|
% absolute value
|
|
:- func abs(float) = float.
|
|
|
|
% maximum
|
|
:- func max(float, float) = float.
|
|
|
|
% minimum
|
|
:- func min(float, float) = float.
|
|
|
|
% pow(Base, Exponent) returns Base raised to the power Exponent.
|
|
% The exponent must be an integer greater or equal to 0.
|
|
% Currently this function runs at O(n), where n is the value
|
|
% of the exponent.
|
|
:- func pow(float, int) = float.
|
|
|
|
% Compute a non-negative integer hash value for a float.
|
|
:- func hash(float) = int.
|
|
|
|
%
|
|
% System constants
|
|
%
|
|
|
|
% Maximum floating-point number
|
|
%
|
|
% max = (1 - radix ** mantissa_digits) * radix ** max_exponent
|
|
%
|
|
:- func float__max = float.
|
|
|
|
% Minimum normalised floating-point number
|
|
%
|
|
% min = radix ** (min_exponent - 1)
|
|
%
|
|
:- func float__min = float.
|
|
|
|
% Smallest number x such that 1.0 + x \= 1.0
|
|
% This represents the largest relative spacing of two
|
|
% consecutive floating point numbers.
|
|
%
|
|
% epsilon = radix ** (1 - mantissa_digits)
|
|
:- func float__epsilon = float.
|
|
|
|
% Radix of the floating-point representation.
|
|
% In the literature, this is sometimes referred to as `b'.
|
|
%
|
|
:- func float__radix = int.
|
|
|
|
% The number of base-radix digits in the mantissa. In the
|
|
% literature, this is sometimes referred to as `p' or `t'.
|
|
%
|
|
:- func float__mantissa_digits = int.
|
|
|
|
% Minimum negative integer such that:
|
|
% radix ** (min_exponent - 1)
|
|
% is a normalised floating-point number. In the literature,
|
|
% this is sometimes referred to as `e_min'.
|
|
%
|
|
:- func float__min_exponent = int.
|
|
|
|
% Maximum integer such that:
|
|
% radix ** (max_exponent - 1)
|
|
% is a normalised floating-point number. In the literature,
|
|
% this is sometimes referred to as `e_max'.
|
|
%
|
|
:- func float__max_exponent = int.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
:- interface.
|
|
|
|
% Everything below here will not appear in the
|
|
% Mercury Library Reference Manual.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
%
|
|
% Obsolete predicate versions of the functions declared above.
|
|
% These were intended for use in programs that need to work
|
|
% in both Prolog and Mercury. Running Mercury programs using
|
|
% Prolog is no longer supported.
|
|
%
|
|
|
|
%
|
|
% Conversion predicates
|
|
%
|
|
|
|
% float__ceiling_to_int(X, Ceil) is true if Ceil is the
|
|
% smallest integer not less than X.
|
|
:- pragma obsolete(float__ceiling_to_int/2).
|
|
:- pred float__ceiling_to_int(float, int).
|
|
:- mode float__ceiling_to_int(in, out) is det.
|
|
|
|
% float__floor_to_int(X, Ceil) is true if Ceil is the
|
|
% largest integer not greater than X.
|
|
:- pragma obsolete(float__floor_to_int/2).
|
|
:- pred float__floor_to_int(float, int).
|
|
:- mode float__floor_to_int(in, out) is det.
|
|
|
|
% float__round_to_int(X, Round) is true if Round is the
|
|
% integer closest to X. If X has a fractional value of
|
|
% 0.5, it is rounded up.
|
|
:- pragma obsolete(float__round_to_int/2).
|
|
:- pred float__round_to_int(float, int).
|
|
:- mode float__round_to_int(in, out) is det.
|
|
|
|
% float__truncate_to_int(X, Trunc) is true if Trunc is
|
|
% the integer closest to X such that |Trunc| =< |X|.
|
|
:- pragma obsolete(float__truncate_to_int/2).
|
|
:- pred float__truncate_to_int(float, int).
|
|
:- mode float__truncate_to_int(in, out) is det.
|
|
|
|
%
|
|
% Miscellaneous predicates
|
|
%
|
|
|
|
% absolute value
|
|
:- pragma obsolete(float__abs/2).
|
|
:- pred float__abs(float, float).
|
|
:- mode float__abs(in, out) is det.
|
|
|
|
% maximum
|
|
:- pragma obsolete(float__max/3).
|
|
:- pred float__max(float, float, float).
|
|
:- mode float__max(in, in, out) is det.
|
|
|
|
% minimum
|
|
:- pragma obsolete(float__min/3).
|
|
:- pred float__min(float, float, float).
|
|
:- mode float__min(in, in, out) is det.
|
|
|
|
% float__pow(Base, Exponent, Answer) is true iff Answer is
|
|
% Base raised to the power Exponent. The exponent must be an
|
|
% integer greater or equal to 0. Currently this function runs
|
|
% at O(n), where n is the value of the exponent.
|
|
:- pragma obsolete(float__pow/3).
|
|
:- pred float__pow(float, int, float).
|
|
:- mode float__pow(in, in, out) is det.
|
|
|
|
% Compute a non-negative integer hash value for a float.
|
|
:- pragma obsolete(float__hash/2).
|
|
:- pred float__hash(float, int).
|
|
:- mode float__hash(in, out) is det.
|
|
|
|
%
|
|
% System constant predicates
|
|
%
|
|
|
|
% Maximum floating-point number
|
|
:- pragma obsolete(float__max/1).
|
|
:- pred float__max(float).
|
|
:- mode float__max(out) is det.
|
|
|
|
% Minimum normalised floating-point number
|
|
:- pragma obsolete(float__min/1).
|
|
:- pred float__min(float).
|
|
:- mode float__min(out) is det.
|
|
|
|
% Smallest number x such that 1.0 + x \= 1.0
|
|
:- pragma obsolete(float__epsilon/1).
|
|
:- pred float__epsilon(float).
|
|
:- mode float__epsilon(out) is det.
|
|
|
|
% Radix of the floating-point representation.
|
|
:- pragma obsolete(float__radix/1).
|
|
:- pred float__radix(int).
|
|
:- mode float__radix(out) is det.
|
|
|
|
% The number of base-radix digits in the mantissa.
|
|
:- pragma obsolete(float__mantissa_digits/1).
|
|
:- pred float__mantissa_digits(int).
|
|
:- mode float__mantissa_digits(out) is det.
|
|
|
|
% Smallest exponent of a normalised floating-point number.
|
|
:- pragma obsolete(float__min_exponent/1).
|
|
:- pred float__min_exponent(int).
|
|
:- mode float__min_exponent(out) is det.
|
|
|
|
% Largest exponent of a normalised floating-point number.
|
|
:- pragma obsolete(float__max_exponent/1).
|
|
:- pred float__max_exponent(int).
|
|
:- mode float__max_exponent(out) is det.
|
|
|
|
%
|
|
% Synonyms for the builtin arithmetic functions.
|
|
%
|
|
|
|
:- pragma obsolete(builtin_float_plus/3).
|
|
:- pred builtin_float_plus(float, float, float).
|
|
:- mode builtin_float_plus(in, in, uo) is det.
|
|
|
|
:- pragma obsolete(builtin_float_minus/3).
|
|
:- pred builtin_float_minus(float, float, float).
|
|
:- mode builtin_float_minus(in, in, uo) is det.
|
|
|
|
:- pragma obsolete(builtin_float_times/3).
|
|
:- pred builtin_float_times(float, float, float).
|
|
:- mode builtin_float_times(in, in, uo) is det.
|
|
|
|
:- pragma obsolete(builtin_float_divide/3).
|
|
:- pred builtin_float_divide(float, float, float).
|
|
:- mode builtin_float_divide(in, in, uo) is det.
|
|
|
|
:- pragma obsolete(builtin_float_gt/2).
|
|
:- pred builtin_float_gt(float, float).
|
|
:- mode builtin_float_gt(in, in) is semidet.
|
|
|
|
:- pragma obsolete(builtin_float_lt/2).
|
|
:- pred builtin_float_lt(float, float).
|
|
:- mode builtin_float_lt(in, in) is semidet.
|
|
|
|
:- pragma obsolete(builtin_float_ge/2).
|
|
:- pred builtin_float_ge(float, float).
|
|
:- mode builtin_float_ge(in, in) is semidet.
|
|
|
|
:- pragma obsolete(builtin_float_le/2).
|
|
:- pred builtin_float_le(float, float).
|
|
:- mode builtin_float_le(in, in) is semidet.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
:- import_module int, require.
|
|
|
|
%
|
|
% Header files of mathematical significance.
|
|
%
|
|
|
|
:- pragma c_header_code("
|
|
|
|
#include <float.h>
|
|
#include <math.h>
|
|
|
|
").
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% The arithmetic and comparison operators are builtins,
|
|
% which the compiler expands inline. We don't need to define them here.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
%
|
|
% Conversion functions
|
|
%
|
|
|
|
float(Int) = Float :-
|
|
int__to_float(Int, Float).
|
|
|
|
% float__ceiling_to_int(X) returns the
|
|
% smallest integer not less than X.
|
|
:- pragma c_code(float__ceiling_to_int(X :: in) = (Ceil :: out),
|
|
[will_not_call_mercury, thread_safe],
|
|
"
|
|
Ceil = (Integer) ceil(X);
|
|
").
|
|
|
|
float__ceiling_to_int(X, float__ceiling_to_int(X)).
|
|
|
|
% float__floor_to_int(X) returns the
|
|
% largest integer not greater than X.
|
|
:- pragma c_code(float__floor_to_int(X :: in) = (Floor :: out),
|
|
[will_not_call_mercury, thread_safe],
|
|
"
|
|
Floor = (Integer) floor(X);
|
|
").
|
|
|
|
float__floor_to_int(X, float__floor_to_int(X)).
|
|
|
|
% float__round_to_int(X) returns the integer closest to X.
|
|
% If X has a fractional value of 0.5, it is rounded up.
|
|
:- pragma c_code(float__round_to_int(X :: in) = (Round :: out),
|
|
[will_not_call_mercury, thread_safe],
|
|
"
|
|
Round = (Integer) floor(X + 0.5);
|
|
").
|
|
|
|
float__round_to_int(X, float__round_to_int(X)).
|
|
|
|
% float__truncate_to_int(X) returns the integer closest
|
|
% to X such that |float__truncate_to_int(X)| =< |X|.
|
|
:- pragma c_code(float__truncate_to_int(X :: in) = (Trunc :: out),
|
|
[will_not_call_mercury, thread_safe],
|
|
"
|
|
Trunc = (Integer) X;
|
|
").
|
|
|
|
float__truncate_to_int(X, float__truncate_to_int(X)).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
%
|
|
% Miscellaneous functions
|
|
%
|
|
|
|
float__abs(Num) = Abs :-
|
|
(
|
|
Num =< 0.0
|
|
->
|
|
Abs = - Num
|
|
;
|
|
Abs = Num
|
|
).
|
|
|
|
float__abs(Num, float__abs(Num)).
|
|
|
|
float__max(X, Y) = Max :-
|
|
(
|
|
X >= Y
|
|
->
|
|
Max = X
|
|
;
|
|
Max = Y
|
|
).
|
|
|
|
float__max(X, Y, float__max(X, Y)).
|
|
|
|
float__min(X, Y) = Min :-
|
|
(
|
|
X =< Y
|
|
->
|
|
Min = X
|
|
;
|
|
Min = Y
|
|
).
|
|
|
|
float__min(X, Y, float__min(X, Y)).
|
|
|
|
% float_pow(Base, Exponent) = Answer.
|
|
% XXXX This function could be more efficient, with an int_mod pred, to
|
|
% reduce O(N) to O(logN) of the exponent.
|
|
float__pow(X, Exp) = Ans :-
|
|
( Exp < 0 ->
|
|
error("float__pow taken with exponent < 0\n")
|
|
; Exp = 1 ->
|
|
Ans = X
|
|
; Exp = 0 ->
|
|
Ans = 1.0
|
|
;
|
|
New_e is Exp - 1,
|
|
Ans is X * float__pow(X, New_e)
|
|
).
|
|
|
|
float__pow(X, Exp, float__pow(X, Exp)).
|
|
|
|
:- pragma c_code(float__hash(F::in) = (H::out),
|
|
[will_not_call_mercury, thread_safe],
|
|
"
|
|
H = hash_float(F);
|
|
").
|
|
|
|
float__hash(F, float__hash(F)).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
%
|
|
% System constants
|
|
%
|
|
% The floating-point system constants are derived from <float.h> and
|
|
% implemented using the C interface.
|
|
|
|
:- pragma c_header_code("
|
|
|
|
#define ML_FLOAT_RADIX FLT_RADIX /* There is no DBL_RADIX. */
|
|
|
|
#if defined USE_SINGLE_PREC_FLOAT
|
|
#define ML_FLOAT_MAX FLT_MAX
|
|
#define ML_FLOAT_MIN FLT_MIN
|
|
#define ML_FLOAT_EPSILON FLT_EPSILON
|
|
#define ML_FLOAT_MANT_DIG FLT_MANT_DIG
|
|
#define ML_FLOAT_MIN_EXP FLT_MIN_EXP
|
|
#define ML_FLOAT_MAX_EXP FLT_MAX_EXP
|
|
#else
|
|
#define ML_FLOAT_MAX DBL_MAX
|
|
#define ML_FLOAT_MIN DBL_MIN
|
|
#define ML_FLOAT_EPSILON DBL_EPSILON
|
|
#define ML_FLOAT_MANT_DIG DBL_MANT_DIG
|
|
#define ML_FLOAT_MIN_EXP DBL_MIN_EXP
|
|
#define ML_FLOAT_MAX_EXP DBL_MAX_EXP
|
|
#endif
|
|
|
|
").
|
|
|
|
% Maximum floating-point number
|
|
:- pragma c_code(float__max = (Max::out),
|
|
[will_not_call_mercury, thread_safe],
|
|
"Max = ML_FLOAT_MAX;").
|
|
|
|
float__max(float__max).
|
|
|
|
% Minimum normalised floating-point number */
|
|
:- pragma c_code(float__min = (Min::out),
|
|
[will_not_call_mercury, thread_safe],
|
|
"Min = ML_FLOAT_MIN;").
|
|
|
|
float__min(float__min).
|
|
|
|
% Smallest x such that x \= 1.0 + x
|
|
:- pragma c_code(float__epsilon = (Eps::out),
|
|
[will_not_call_mercury, thread_safe],
|
|
"Eps = ML_FLOAT_EPSILON;").
|
|
|
|
float__epsilon(float__epsilon).
|
|
|
|
% Radix of the floating-point representation.
|
|
:- pragma c_code(float__radix = (Radix::out),
|
|
[will_not_call_mercury, thread_safe],
|
|
"Radix = ML_FLOAT_RADIX;").
|
|
|
|
float__radix(float__radix).
|
|
|
|
% The number of base-radix digits in the mantissa.
|
|
:- pragma c_code(float__mantissa_digits = (MantDig::out),
|
|
[will_not_call_mercury, thread_safe],
|
|
"MantDig = ML_FLOAT_MANT_DIG;").
|
|
|
|
float__mantissa_digits(float__mantissa_digits).
|
|
|
|
% Minimum negative integer such that:
|
|
% radix ** (min_exponent - 1)
|
|
% is a normalised floating-point number.
|
|
:- pragma c_code(float__min_exponent = (MinExp::out),
|
|
[will_not_call_mercury, thread_safe],
|
|
"MinExp = ML_FLOAT_MIN_EXP;").
|
|
|
|
float__min_exponent(float__min_exponent).
|
|
|
|
% Maximum integer such that:
|
|
% radix ** (max_exponent - 1)
|
|
% is a normalised floating-point number.
|
|
:- pragma c_code(float__max_exponent = (MaxExp::out),
|
|
[will_not_call_mercury, thread_safe],
|
|
"MaxExp = ML_FLOAT_MIN_EXP;").
|
|
|
|
float__max_exponent(float__max_exponent).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
%---------------------------------------------------------------------------%
|