Files
mercury/compiler/prog_data.m
Zoltan Somogyi 3cc05d4aa6 Add field names to the main types defined here, and use them to
Estimated hours taken: 0.2
Branches: main

compiler/hlds_data.m:
	Add field names to the main types defined here, and use them to
	implement get and set predicates where they exist.

	Indent some type definitions by one less tab, to make it easier
	to write comments on the fields.

	Comment out the condition fields in these types, since we don't use
	them, and they can be added back later trivially.

compiler/prog_data,m:
	Add field names to the various kinds of items.

	Leave the condition fields in items as they are, since if we deleted
	them, adding them back later would be a bit more than trivial.

compiler/intermod.m:
compiler/make_hlds.m:
compiler/mode_util.m:
compiler/recompilation.usage.m:
	Ignore condition fields where relevant.
2003-05-08 03:39:56 +00:00

1300 lines
37 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2003 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_data.m.
% Main author: fjh.
%
% This module defines a data structure for representing Mercury programs.
%
% This data structure specifies basically the same information as is
% contained in the source code, but in a parse tree rather than a flat file.
% Simplifications are done only by make_hlds.m, which transforms
% the parse tree which we built here into the HLDS.
:- module parse_tree__prog_data.
:- interface.
% This module should NOT import hlds*.m, either directly or indirectly.
% Any types which are needed in both the parse tree and in the HLDS
% should be defined here, rather than in hlds*.m.
:- import_module libs__globals.
:- import_module libs__options.
:- import_module parse_tree__inst.
:- import_module recompilation.
:- import_module bool, list, assoc_list, map, set, varset, term, std_util.
%-----------------------------------------------------------------------------%
% This is how programs (and parse errors) are represented.
:- type message_list == list(pair(string, term)).
% the error/warning message, and the
% term to which it relates
:- type compilation_unit
---> module(
module_name,
item_list
).
:- type item_list == list(item_and_context).
:- type item_and_context == pair(item, prog_context).
:- type item
---> clause(
cl_varset :: prog_varset,
cl_pred_or_func :: pred_or_func,
cl_predname :: sym_name,
cl_head_args :: list(prog_term),
cl_body :: goal
)
; type_defn(
td_tvarset :: tvarset,
td_ctor_name :: sym_name,
td_ctor_args :: list(type_param),
td_ctor_defn :: type_defn,
td_cond :: condition
)
; inst_defn(
id_varset :: inst_varset,
id_inst_name :: sym_name,
id_inst_args :: list(inst_var),
id_inst_defn :: inst_defn,
id_cond :: condition
)
; mode_defn(
md_varset :: inst_varset,
md_mode_name :: sym_name,
md_mode_args :: list(inst_var),
md_mode_defn :: mode_defn,
md_cond :: condition
)
; module_defn(
module_defn_varset :: prog_varset,
module_defn_module_defn :: module_defn
)
; pred_or_func(
pf_tvarset :: tvarset,
pf_instvarset :: inst_varset,
pf_existqvars :: existq_tvars,
pf_which :: pred_or_func,
pf_name :: sym_name,
pf_arg_decls :: list(type_and_mode),
pf_maybe_with_type :: maybe(type),
pf_maybe_with_inst :: maybe(inst),
pf_maybe_detism :: maybe(determinism),
pf_cond :: condition,
pf_purity :: purity,
pf_class_context :: class_constraints
)
% The WithType and WithInst fields hold the `with_type`
% and `with_inst` annotations, which are syntactic
% sugar that is expanded by equiv_type.m
% equiv_type.m will set these fields to `no'.
; pred_or_func_mode(
pfm_instvarset :: inst_varset,
pfm_which :: maybe(pred_or_func),
pfm_name :: sym_name,
pfm_arg_modes :: list(mode),
pfm_maybe_with_inst :: maybe(inst),
pfm_maybe_detism :: maybe(determinism),
pfm_cond :: condition
)
% The WithInst field holds the `with_inst` annotation,
% which is syntactic sugar that is expanded by
% equiv_type.m. equiv_type.m will set the field to `no'.
; pragma(
pragma_type :: pragma_type
)
; promise(
prom_type :: promise_type,
prom_clause :: goal,
prom_varset :: prog_varset,
prom_univ_quant_vars :: prog_vars
)
; typeclass(
tc_constraints :: list(class_constraint),
tc_class_name :: class_name,
tc_class_params :: list(tvar),
tc_class_methods :: class_interface,
tc_varset :: tvarset
)
; instance(
ci_deriving_class :: list(class_constraint),
ci_class_name :: class_name,
ci_types :: list(type),
ci_method_instances :: instance_body,
ci_varset :: tvarset,
ci_module_containing_instance :: module_name
)
; nothing(
nothing_maybe_warning :: maybe(item_warning)
).
% used for items that should be ignored (e.g.
% NU-Prolog `when' declarations, which are silently
% ignored for backwards compatibility).
% indicates the type of information the compiler should get from the
% declaration's clause
:- type promise_type
% promise ex declarations
---> exclusive % each disjunct is mutually exclusive
; exhaustive % disjunction cannot fail
; exclusive_exhaustive % both of the above
% assertions
; true. % promise goal is true
:- type type_and_mode
---> type_only(type)
; type_and_mode(type, mode).
:- type pred_or_func
---> predicate
; function.
% Purity indicates whether a goal can have side effects or can
% depend on global state. See purity.m and the "Purity" section
% of the Mercury language reference manual.
:- type purity ---> pure
; (semipure)
; (impure).
% The `determinism' type specifies how many solutions a given
% procedure may have. Procedures for manipulating this type
% are defined in det_analysis.m and hlds_data.m.
:- type determinism
---> det
; semidet
; nondet
; multidet
; cc_nondet
; cc_multidet
; erroneous
; failure.
:- type item_warning
---> item_warning(
maybe(option), % Option controlling whether the
% warning should be reported.
string, % The warning.
term % The term to which it relates.
).
%-----------------------------------------------------------------------------%
%
% Pragmas
%
:- type pragma_type
%
% Foreign language interfacing pragmas
%
% a foreign language declaration, such as C
% header code.
---> foreign_decl(foreign_language, string)
; foreign_code(foreign_language, string)
; foreign_proc(pragma_foreign_proc_attributes,
sym_name, pred_or_func, list(pragma_var),
prog_varset, pragma_foreign_code_impl)
% Set of foreign proc attributes, eg.:
% what language this code is in
% whether or not the code may call Mercury,
% whether or not the code is thread-safe
% PredName, Predicate or Function, Vars/Mode,
% VarNames, Foreign Code Implementation Info
; foreign_type(foreign_language_type, tvarset,
sym_name, list(type_param), maybe(unify_compare))
% ForeignType, TVarSet, MercuryTypeName,
% MercuryTypeParams, UnifyAndCompare
; foreign_import_module(foreign_language, module_name)
% Equivalent to
% `:- pragma foreign_decl(Lang, "#include <module>.h").'
% except that the name of the header file is not
% hard-coded, and mmake can use the dependency
% information.
; export(sym_name, pred_or_func, list(mode),
string)
% Predname, Predicate/function, Modes,
% C function name.
; import(sym_name, pred_or_func, list(mode),
pragma_foreign_proc_attributes, string)
% Predname, Predicate/function, Modes,
% Set of foreign proc attributes, eg.:
% whether or not the foreign code may call Mercury,
% whether or not the foreign code is thread-safe
% foreign function name.
%
% Optimization pragmas
%
; type_spec(sym_name, sym_name, arity, maybe(pred_or_func),
maybe(list(mode)), type_subst, tvarset, set(item_id))
% PredName, SpecializedPredName, Arity,
% PredOrFunc, Modes if a specific procedure was
% specified, type substitution (using the variable
% names from the pred declaration), TVarSet,
% Equivalence types used
; inline(sym_name, arity)
% Predname, Arity
; no_inline(sym_name, arity)
% Predname, Arity
; unused_args(pred_or_func, sym_name, arity,
mode_num, list(int))
% PredName, Arity, Mode number, Optimized pred name,
% Removed arguments.
% Used for inter-module unused argument
% removal, should only appear in .opt files.
%
% Diagnostics pragmas (pragmas related to compiler warnings/errors)
%
; obsolete(sym_name, arity)
% Predname, Arity
; source_file(string)
% Source file name.
%
% Evaluation method pragmas
%
; tabled(eval_method, sym_name, int, maybe(pred_or_func),
maybe(list(mode)))
% Tabling type, Predname, Arity, PredOrFunc?, Mode?
; fact_table(sym_name, arity, string)
% Predname, Arity, Fact file name.
; reserve_tag(sym_name, arity)
% Typename, Arity
%
% Aditi pragmas
%
; aditi(sym_name, arity)
% Predname, Arity
; base_relation(sym_name, arity)
% Predname, Arity
%
% Eventually, these should only occur in
% automatically generated database interface
% files, but for now there's no such thing,
% so they can occur in user programs.
; aditi_index(sym_name, arity, index_spec)
% PredName, Arity, IndexType, Attributes
%
% Specify an index on a base relation.
; naive(sym_name, arity)
% Predname, Arity
% Use naive evaluation.
; psn(sym_name, arity)
% Predname, Arity
% Use predicate semi-naive evaluation.
; aditi_memo(sym_name, arity)
% Predname, Arity
; aditi_no_memo(sym_name, arity)
% Predname, Arity
; supp_magic(sym_name, arity)
% Predname, Arity
; context(sym_name, arity)
% Predname, Arity
; owner(sym_name, arity, string)
% PredName, Arity, String.
%
% Purity pragmas
%
; promise_pure(sym_name, arity)
% Predname, Arity
; promise_semipure(sym_name, arity)
% Predname, Arity
%
% Termination analysis pragmas
%
; termination_info(pred_or_func, sym_name, list(mode),
maybe(pragma_arg_size_info),
maybe(pragma_termination_info))
% the list(mode) is the declared argmodes of the
% procedure, unless there are no declared argmodes,
% in which case the inferred argmodes are used.
% This pragma is used to define information about a
% predicates termination properties. It is most
% useful where the compiler has insufficient
% information to be able to analyse the predicate.
% This includes c_code, and imported predicates.
% termination_info pragmas are used in opt and
% trans_opt files.
; terminates(sym_name, arity)
% Predname, Arity
; does_not_terminate(sym_name, arity)
% Predname, Arity
; check_termination(sym_name, arity)
% Predname, Arity
.
%
% Stuff for the foreign interfacing pragmas.
%
%
% A foreign_language_type represents a type that is defined in a
% foreign language and accessed in Mercury (most likely through
% pragma foreign_type).
% Currently we only support foreign_language_types for IL.
%
%
% It is important to distinguish between IL value types and
% reference types, the compiler may need to generate different code
% for each of these cases.
%
:- type foreign_language_type
---> il(il_foreign_type)
; c(c_foreign_type)
; java(java_foreign_type)
.
:- type il_foreign_type
---> il(
ref_or_val, % An indicator of whether the type is a
% reference of value type.
string, % The location of the .NET name (the
% assembly)
sym_name % The .NET type name
).
:- type c_foreign_type
---> c(
string % The C type name
).
:- type java_foreign_type
---> java(
string % The Java type name
).
:- type ref_or_val
---> reference
; value.
%
% Stuff for tabling pragmas
%
% The evaluation method that should be used for a procedure.
% Ignored for Aditi procedures.
:- type eval_method
---> eval_normal % normal mercury
% evaluation
; eval_loop_check % loop check only
; eval_memo % memoing + loop check
; eval_table_io( % memoing I/O actions for debugging
table_io_is_decl,
table_io_is_unitize
)
; eval_minimal. % minimal model
% evaluation
:- type table_io_is_decl
---> table_io_decl % The procedure is tabled for
% declarative debugging.
; table_io_proc. % The procedure is tabled only for
% procedural debugging.
:- type table_io_is_unitize
---> table_io_unitize % The procedure is tabled for I/O
% together with its Mercury
% descendants.
; table_io_alone. % The procedure is tabled for I/O
% by itself; it can have no Mercury
% descendants.
%
% Stuff for the `aditi_index' pragma
%
% For Aditi base relations, an index_spec specifies how the base
% relation is indexed.
:- type index_spec
---> index_spec(
index_type,
list(int) % which attributes are being indexed on
% (attribute numbers start at 1)
).
% Hash indexes?
:- type index_type
---> unique_B_tree
; non_unique_B_tree.
%
% Stuff for the `termination_info' pragma.
% See term_util.m.
%
:- type pragma_arg_size_info
---> finite(int, list(bool))
% The termination constant is a finite integer.
% The list of bool has a 1:1 correspondence
% with the input arguments of the procedure.
% It stores whether the argument contributes
% to the size of the output arguments.
; infinite.
% There is no finite integer for which the
% above equation is true.
:- type pragma_termination_info
---> cannot_loop % This procedure definitely terminates for all
% possible inputs.
; can_loop. % This procedure might not terminate.
%
% Stuff for the `unused_args' pragma.
%
% This `mode_num' type is only used for mode numbers written out in
% automatically-generateed `pragma unused_args' pragmas in `.opt'
% files.
% The mode_num gets converted to an HLDS proc_id by make_hlds.m.
% We don't want to use the `proc_id' type here since the parse tree
% (prog_data.m) should not depend on the HLDS.
:- type mode_num == int.
%
% Stuff for the `type_spec' pragma.
%
% The type substitution for a `pragma type_spec' declaration.
% Elsewhere in the compiler we generally use the `tsubst' type
% which is a map rather than an assoc_list.
:- type type_subst == assoc_list(tvar, type).
%
% Stuff for `foreign_code' pragma.
%
% This type holds information about the implementation details
% of procedures defined via `pragma foreign_code'.
%
% All the strings in this type may be accompanied by the context
% of their appearance in the source code. These contexts are
% used to tell the foreign language compiler where the included
% code comes from, to allow it to generate error messages that
% refer to the original appearance of the code in the Mercury
% program.
% The context is missing if the foreign code was constructed by
% the compiler.
% Note that nondet pragma foreign definitions might not be
% possible in all foreign languages.
:- type pragma_foreign_code_impl
---> ordinary( % This is a foreign language
% definition of a model_det
% or model_semi procedure. (We
% also allow model_non, until
% everyone has had time to adapt
% to the new way
% of handling model_non pragmas.)
string, % The code of the procedure.
maybe(prog_context)
)
; nondet( % This is a foreign language
% definition of a model_non
% procedure.
string,
maybe(prog_context),
% The info saved for the time when
% backtracking reenters this procedure
% is stored in a data structure.
% This arg contains the field
% declarations.
string,
maybe(prog_context),
% Gives the code to be executed when
% the procedure is called for the first
% time. This code may access the input
% variables.
string,
maybe(prog_context),
% Gives the code to be executed when
% control backtracks into the procedure.
% This code may not access the input
% variables.
pragma_shared_code_treatment,
% How should the shared code be
% treated during code generation.
string,
maybe(prog_context)
% Shared code that is executed after
% both the previous code fragments.
% May not access the input variables.
)
; import(
string, % Pragma imported C func name
string, % Code to handle return value
string, % Comma seperated variables which
% the import function is called
% with.
maybe(prog_context)
).
% The use of this type is explained in the comment at the top of
% pragma_c_gen.m.
:- type pragma_shared_code_treatment
---> duplicate
; share
; automatic.
%-----------------------------------------------------------------------------%
%
% Stuff for type classes
%
% A class constraint represents a constraint that a given
% list of types is a member of the specified type class.
% It is an invariant of this data structure that
% the types in a class constraint do not contain any
% information in their prog_context fields.
% This invariant is needed to ensure that we can do
% unifications, map__lookups, etc., and get the
% expected semantics.
% (This invariant now applies to all types, but is
% especially important here.)
:- type class_constraint
---> constraint(class_name, list(type)).
:- type class_constraints
---> constraints(
list(class_constraint), % ordinary (universally quantified)
list(class_constraint) % existentially quantified constraints
).
:- type class_name == sym_name.
:- type class_interface
---> abstract
; concrete(list(class_method)).
:- type class_method
---> pred_or_func(tvarset, inst_varset, existq_tvars, pred_or_func,
sym_name, list(type_and_mode), maybe(type),
maybe(inst), maybe(determinism),
condition, purity, class_constraints, prog_context)
% TypeVarNames, InstVarNames,
% ExistentiallyQuantifiedTypeVars,
% PredOrFunc, PredName, ArgTypes, WithType, Determinism,
% Cond, Purity, ClassContext, Context
; pred_or_func_mode(inst_varset, maybe(pred_or_func), sym_name,
list(mode), maybe(inst), maybe(determinism),
condition, prog_context)
% InstVarNames, MaybePredOrFunc, PredName, ArgModes,
% Determinism, WithInst, Cond
% Context
%
% For mode declarations using `with_inst` we don't
% know whether it's a predicate or function until
% we've expanded the inst.
.
:- type instance_method
---> instance_method(pred_or_func, sym_name, instance_proc_def,
arity, prog_context).
% PredOrFunc, Method, Instance, Arity,
% Line number of declaration
:- type instance_proc_def
% defined using the `pred(...) is <Name>' syntax
---> name(sym_name)
% defined using clauses
; clauses(
list(item) % the items must be either
% pred_clause or func_clause items
)
.
:- type instance_body
---> abstract
; concrete(instance_methods).
:- type instance_methods == list(instance_method).
%-----------------------------------------------------------------------------%
%
% Some more stuff for `pragma c_code'.
%
% an abstract type for representing a set of
% `pragma_c_code_attribute's.
:- type pragma_foreign_proc_attributes.
:- pred default_attributes(foreign_language, pragma_foreign_proc_attributes).
:- mode default_attributes(in, out) is det.
:- pred may_call_mercury(pragma_foreign_proc_attributes, may_call_mercury).
:- mode may_call_mercury(in, out) is det.
:- pred set_may_call_mercury(pragma_foreign_proc_attributes, may_call_mercury,
pragma_foreign_proc_attributes).
:- mode set_may_call_mercury(in, in, out) is det.
:- pred thread_safe(pragma_foreign_proc_attributes, thread_safe).
:- mode thread_safe(in, out) is det.
:- pred purity(pragma_foreign_proc_attributes, purity).
:- mode purity(in, out) is det.
:- pred legacy_purity_behaviour(pragma_foreign_proc_attributes, bool).
:- mode legacy_purity_behaviour(in, out) is det.
:- pred set_thread_safe(pragma_foreign_proc_attributes, thread_safe,
pragma_foreign_proc_attributes).
:- mode set_thread_safe(in, in, out) is det.
:- pred foreign_language(pragma_foreign_proc_attributes, foreign_language).
:- mode foreign_language(in, out) is det.
:- pred set_foreign_language(pragma_foreign_proc_attributes, foreign_language,
pragma_foreign_proc_attributes).
:- mode set_foreign_language(in, in, out) is det.
:- pred tabled_for_io(pragma_foreign_proc_attributes, tabled_for_io).
:- mode tabled_for_io(in, out) is det.
:- pred set_tabled_for_io(pragma_foreign_proc_attributes, tabled_for_io,
pragma_foreign_proc_attributes).
:- mode set_tabled_for_io(in, in, out) is det.
:- pred set_purity(pragma_foreign_proc_attributes, purity,
pragma_foreign_proc_attributes).
:- mode set_purity(in, in, out) is det.
:- pred set_legacy_purity_behaviour(pragma_foreign_proc_attributes, bool,
pragma_foreign_proc_attributes).
:- mode set_legacy_purity_behaviour(in, in, out) is det.
:- pred add_extra_attribute(pragma_foreign_proc_attributes,
pragma_foreign_proc_extra_attribute,
pragma_foreign_proc_attributes).
:- mode add_extra_attribute(in, in, out) is det.
:- func extra_attributes(pragma_foreign_proc_attributes)
= pragma_foreign_proc_extra_attributes.
% For pragma c_code, there are two different calling conventions,
% one for C code that may recursively call Mercury code, and another
% more efficient one for the case when we know that the C code will
% not recursively invoke Mercury code.
:- type may_call_mercury
---> may_call_mercury
; will_not_call_mercury.
% If thread_safe execution is enabled, then we need to put a mutex
% around the C code for each `pragma c_code' declaration, unless
% it's declared to be thread_safe.
:- type thread_safe
---> not_thread_safe
; thread_safe.
:- type tabled_for_io
---> not_tabled_for_io
; tabled_for_io
; tabled_for_io_unitize
; tabled_for_descendant_io.
:- type pragma_var
---> pragma_var(prog_var, string, mode).
% variable, name, mode
% we explicitly store the name because we need the real
% name in code_gen
:- type pragma_foreign_proc_extra_attribute
---> max_stack_size(int).
:- type pragma_foreign_proc_extra_attributes ==
list(pragma_foreign_proc_extra_attribute).
% Convert the foreign code attributes to their source code
% representations suitable for placing in the attributes list of
% the pragma (not all attributes have one).
% In particular, the foreign language attribute needs to be
% handled separately as it belongs at the start of the pragma.
:- pred attributes_to_strings(pragma_foreign_proc_attributes::in,
list(string)::out) is det.
%-----------------------------------------------------------------------------%
%
% Goals
%
% Here's how clauses and goals are represented.
% a => b --> implies(a, b)
% a <= b --> implies(b, a) [just flips the goals around!]
% a <=> b --> equivalent(a, b)
% clause/4 defined above
:- type goal == pair(goal_expr, prog_context).
:- type goal_expr
% conjunctions
---> (goal , goal) % (non-empty) conjunction
; true % empty conjunction
; {goal & goal} % parallel conjunction
% (The curly braces just quote the '&'/2.)
% disjunctions
; {goal ; goal} % (non-empty) disjunction
% (The curly braces just quote the ';'/2.)
; fail % empty disjunction
% quantifiers
; { some(prog_vars, goal) }
% existential quantification
% (The curly braces just quote the 'some'/2.)
; all(prog_vars, goal) % universal quantification
; some_state_vars(prog_vars, goal)
; all_state_vars(prog_vars, goal)
% state variables extracted from
% some/2 and all/2 quantifiers.
% implications
; implies(goal, goal) % A => B
; equivalent(goal, goal) % A <=> B
% negation and if-then-else
; not(goal)
; if_then(prog_vars, prog_vars, goal, goal)
% if_then(SomeVars, StateVars, If, Then)
; if_then_else(prog_vars, prog_vars, goal, goal, goal)
% if_then_else(SomeVars, StateVars,
% If, Then, Else)
% atomic goals
; call(sym_name, list(prog_term), purity)
; unify(prog_term, prog_term, purity).
:- type goals == list(goal).
% These type equivalences are for the type of program variables
% and associated structures.
:- type prog_var_type ---> prog_var_type.
:- type prog_var == var(prog_var_type).
:- type prog_varset == varset(prog_var_type).
:- type prog_substitution == substitution(prog_var_type).
:- type prog_term == term(prog_var_type).
:- type prog_vars == list(prog_var).
% A prog_context is just a term__context.
:- type prog_context == term__context.
% Describe how a lambda expression is to be evaluated.
%
% `normal' is the top-down Mercury execution algorithm.
%
% `lambda_eval_method's other than `normal' are used for lambda
% expressions constructed for arguments of the builtin Aditi
% update constructs.
%
% `aditi_top_down' expressions are used by `aditi_delete'
% goals (see hlds_goal.m) to determine whether a tuple
% should be deleted.
%
% `aditi_bottom_up' expressions are used as database queries to
% produce a set of tuples to be inserted or deleted.
:- type lambda_eval_method
---> normal
; (aditi_top_down)
; (aditi_bottom_up)
.
%-----------------------------------------------------------------------------%
%
% Types
%
% This is how types are represented.
% one day we might allow types to take
% value parameters as well as type parameters.
% type_defn/3 is defined above as a constructor for item/0
:- type type_defn
---> du_type(list(constructor), maybe(unify_compare))
; eqv_type(type)
; abstract_type.
:- type constructor
---> ctor(
existq_tvars,
list(class_constraint), % existential constraints
sym_name,
list(constructor_arg)
).
:- type constructor_arg ==
pair(
maybe(ctor_field_name),
type
).
:- type ctor_field_name == sym_name.
:- type unify_compare
---> unify_compare(
unify :: maybe(equality_pred),
compare :: maybe(comparison_pred)
).
% An equality_pred specifies the name of a user-defined predicate
% used for equality on a type. See the chapter on them in the
% Mercury Language Reference Manual.
:- type equality_pred == sym_name.
% The name of a user-defined comparison predicate.
:- type comparison_pred == sym_name.
% probably type parameters should be variables not terms.
:- type type_param == term(tvar_type).
% Module qualified types are represented as ':'/2 terms.
% Use type_util:type_to_ctor_and_args to convert a type to a qualified
% type_ctor and a list of arguments.
% type_util:construct_type to construct a type from a type_ctor
% and a list of arguments.
%
% The `term__context's of the type terms must be empty (as
% returned by term__context_init). prog_io_util__convert_type
% ensures this is the case. There are at least two reasons that this
% is required:
% - Various parts of the code to handle typeclasses creates maps
% indexed by `class_constraint's, which contain types.
% - Smart recompilation requires that the items which occur in
% interface files can be unified using the builtin unification
% operation.
:- type (type) == term(tvar_type).
:- type type_term == term(tvar_type).
:- type tvar_type ---> type_var.
:- type tvar == var(tvar_type).
% used for type variables
:- type tvarset == varset(tvar_type).
% used for sets of type variables
:- type tsubst == map(tvar, type). % used for type substitutions
:- type type_ctor == pair(sym_name, arity).
% existq_tvars is used to record the set of type variables which are
% existentially quantified
:- type existq_tvars == list(tvar).
% Types may have arbitrary assertions associated with them
% (eg. you can define a type which represents sorted lists).
% Similarly, pred declarations can have assertions attached.
% The compiler will ignore these assertions - they are intended
% to be used by other tools, such as the debugger.
:- type condition
---> true
; where(term).
%-----------------------------------------------------------------------------%
%
% insts and modes
%
% This is how instantiatednesses and modes are represented.
% Note that while we use the normal term data structure to represent
% type terms (see above), we need a separate data structure for inst
% terms.
% The `inst' data type itself is defined in the module `inst.m'.
:- type inst_var_type ---> inst_var_type.
:- type inst_var == var(inst_var_type).
:- type inst_term == term(inst_var_type).
:- type inst_varset == varset(inst_var_type).
% inst_defn/3 defined above
:- type inst_defn
---> eqv_inst(inst)
; abstract_inst.
% An `inst_name' is used as a key for the inst_table.
% It is either a user-defined inst `user_inst(Name, Args)',
% or some sort of compiler-generated inst, whose name
% is a representation of it's meaning.
%
% For example, `merge_inst(InstA, InstB)' is the name used for the
% inst that results from merging InstA and InstB using `merge_inst'.
% Similarly `unify_inst(IsLive, InstA, InstB, IsReal)' is
% the name for the inst that results from a call to
% `abstractly_unify_inst(IsLive, InstA, InstB, IsReal)'.
% And `ground_inst' and `any_inst' are insts that result
% from unifying an inst with `ground' or `any', respectively.
% `typed_inst' is an inst with added type information.
% `typed_ground(Uniq, Type)' a equivalent to
% `typed_inst(ground(Uniq, no), Type)'.
% Note that `typed_ground' is a special case of `typed_inst',
% and `ground_inst' and `any_inst' are special cases of `unify_inst'.
% The reason for having the special cases is efficiency.
:- type inst_name
---> user_inst(sym_name, list(inst))
; merge_inst(inst, inst)
; unify_inst(is_live, inst, inst, unify_is_real)
; ground_inst(inst_name, is_live, uniqueness, unify_is_real)
; any_inst(inst_name, is_live, uniqueness, unify_is_real)
; shared_inst(inst_name)
; mostly_uniq_inst(inst_name)
; typed_ground(uniqueness, type)
; typed_inst(type, inst_name).
% Note: `is_live' records liveness in the sense used by
% mode analysis. This is not the same thing as the notion of liveness
% used by code generation. See compiler/notes/glossary.html.
:- type is_live ---> live ; dead.
% Unifications of insts fall into two categories, "real" and "fake".
% The "real" inst unifications correspond to real unifications,
% and are not allowed to unify with `clobbered' insts (unless
% the unification would be `det').
% Any inst unification which is associated with some code that
% will actually examine the contents of the variables in question
% must be "real". Inst unifications that are not associated with
% some real code that examines the variables' values are "fake".
% "Fake" inst unifications are used for procedure calls in implied
% modes, where the final inst of the var must be computed by
% unifying its initial inst with the procedure's final inst,
% so that if you pass a ground var to a procedure whose mode
% is `free -> list_skeleton', the result is ground, not list_skeleton.
% But these fake unifications must be allowed to unify with `clobbered'
% insts. Hence we pass down a flag to `abstractly_unify_inst' which
% specifies whether or not to allow unifications with clobbered values.
:- type unify_is_real
---> real_unify
; fake_unify.
% mode_defn/3 defined above
:- type mode_defn
---> eqv_mode(mode).
:- type (mode)
---> ((inst) -> (inst))
; user_defined_mode(sym_name, list(inst)).
% mode/4 defined above
%-----------------------------------------------------------------------------%
%
% Module system
%
% This is how module-system declarations (such as imports
% and exports) are represented.
:- type module_defn
---> module(module_name)
; end_module(module_name)
; interface
; implementation
; private_interface
% This is used internally by the compiler,
% to identify items which originally
% came from an implementation section
% for a module that contains sub-modules;
% such items need to be exported to the
% sub-modules.
; imported(import_locn)
% This is used internally by the compiler,
% to identify declarations which originally
% came from some other module imported with
% a `:- import_module' declaration, and which
% section the module was imported.
; used(import_locn)
% This is used internally by the compiler,
% to identify declarations which originally
% came from some other module and for which
% all uses must be module qualified. This
% applies to items from modules imported using
% `:- use_module', and items from `.opt'
% and `.int2' files. It also records from which
% section the module was imported.
; opt_imported
% This is used internally by the compiler,
% to identify items which originally
% came from a .opt file.
; transitively_imported
% This is used internally by the compiler,
% to identify items which originally
% came from a `.opt' or `.int2' file.
% These should not be allowed to
% match items in the current module.
% Note that unlike `:- interface', `:- implementation'
% and the other pseudo-declarations `:- imported(interface)',
% etc., a `:- transitively_imported' declaration
% applies to all of the following items in the list,
% not just up to the next pseudo-declaration.
; external(sym_name_specifier)
; export(sym_list)
; import(sym_list)
; use(sym_list)
; include_module(list(module_name))
% This is used to represent the version numbers
% of items in an interface file for use in
% smart recompilation.
; version_numbers(module_name, recompilation__version_numbers).
:- type section
---> implementation
; interface.
:- type import_locn
---> implementation
; interface
; ancestor.
:- type sym_list
---> sym(list(sym_specifier))
; pred(list(pred_specifier))
; func(list(func_specifier))
; cons(list(cons_specifier))
; op(list(op_specifier))
; adt(list(adt_specifier))
; type(list(type_specifier))
; module(list(module_specifier)).
:- type sym_specifier
---> sym(sym_name_specifier)
; typed_sym(typed_cons_specifier)
; pred(pred_specifier)
; func(func_specifier)
; cons(cons_specifier)
; op(op_specifier)
; adt(adt_specifier)
; type(type_specifier)
; module(module_specifier).
:- type pred_specifier
---> sym(sym_name_specifier)
; name_args(sym_name, list(type)).
:- type func_specifier == cons_specifier.
:- type cons_specifier
---> sym(sym_name_specifier)
; typed(typed_cons_specifier).
:- type typed_cons_specifier
---> name_args(sym_name, list(type))
; name_res(sym_name_specifier, type)
; name_args_res(sym_name, list(type), type).
:- type adt_specifier == sym_name_specifier.
:- type type_specifier == sym_name_specifier.
:- type op_specifier
---> sym(sym_name_specifier)
% operator fixity specifiers not yet implemented
; fixity(sym_name_specifier, fixity).
:- type fixity
---> infix
; prefix
; postfix
; binary_prefix
; binary_postfix.
:- type sym_name_specifier
---> name(sym_name)
; name_arity(sym_name, arity).
:- type sym_name
---> unqualified(string)
; qualified(module_specifier, string).
:- type sym_name_and_arity
---> sym_name / arity.
:- type module_specifier == sym_name.
:- type module_name == sym_name.
:- type arity == int.
% Describes whether an item can be used without an
% explicit module qualifier.
:- type need_qualifier
---> must_be_qualified
; may_be_unqualified.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds__purity.
:- import_module string.
:- type pragma_foreign_proc_attributes
---> attributes(
foreign_language :: foreign_language,
may_call_mercury :: may_call_mercury,
thread_safe :: thread_safe,
tabled_for_io :: tabled_for_io,
purity :: purity,
% there is some special case behaviour for
% pragma c_code and pragma import purity
% if legacy_purity_behaviour is `yes'
legacy_purity_behaviour :: bool,
extra_attributes ::
list(pragma_foreign_proc_extra_attribute)
).
default_attributes(Language,
attributes(Language, may_call_mercury, not_thread_safe,
not_tabled_for_io, impure, no, [])).
may_call_mercury(Attrs, Attrs ^ may_call_mercury).
thread_safe(Attrs, Attrs ^ thread_safe).
foreign_language(Attrs, Attrs ^ foreign_language).
tabled_for_io(Attrs, Attrs ^ tabled_for_io).
purity(Attrs, Attrs ^ purity).
legacy_purity_behaviour(Attrs, Attrs ^ legacy_purity_behaviour).
set_may_call_mercury(Attrs0, MayCallMercury, Attrs) :-
Attrs = Attrs0 ^ may_call_mercury := MayCallMercury.
set_thread_safe(Attrs0, ThreadSafe, Attrs) :-
Attrs = Attrs0 ^ thread_safe := ThreadSafe.
set_foreign_language(Attrs0, ForeignLanguage, Attrs) :-
Attrs = Attrs0 ^ foreign_language := ForeignLanguage.
set_tabled_for_io(Attrs0, TabledForIo, Attrs) :-
Attrs = Attrs0 ^ tabled_for_io := TabledForIo.
set_purity(Attrs0, Purity, Attrs) :-
Attrs = Attrs0 ^ purity := Purity.
set_legacy_purity_behaviour(Attrs0, Legacy, Attrs) :-
Attrs = Attrs0 ^ legacy_purity_behaviour := Legacy.
attributes_to_strings(Attrs, StringList) :-
% We ignore Lang because it isn't an attribute that you can put
% in the attribute list -- the foreign language specifier string
% is at the start of the pragma.
Attrs = attributes(_Lang, MayCallMercury, ThreadSafe, TabledForIO,
Purity, _LegacyBehaviour, ExtraAttributes),
(
MayCallMercury = may_call_mercury,
MayCallMercuryStr = "may_call_mercury"
;
MayCallMercury = will_not_call_mercury,
MayCallMercuryStr = "will_not_call_mercury"
),
(
ThreadSafe = not_thread_safe,
ThreadSafeStr = "not_thread_safe"
;
ThreadSafe = thread_safe,
ThreadSafeStr = "thread_safe"
),
(
TabledForIO = tabled_for_io,
TabledForIOStr = "tabled_for_io"
;
TabledForIO = tabled_for_io_unitize,
TabledForIOStr = "tabled_for_io_unitize"
;
TabledForIO = tabled_for_descendant_io,
TabledForIOStr = "tabled_for_descendant_io"
;
TabledForIO = not_tabled_for_io,
TabledForIOStr = "not_tabled_for_io"
),
(
Purity = pure,
PurityStrList = ["promise_pure"]
;
Purity = (semipure),
PurityStrList = ["promise_semipure"]
;
Purity = (impure),
PurityStrList = []
),
StringList = [MayCallMercuryStr, ThreadSafeStr, TabledForIOStr |
PurityStrList] ++
list__map(extra_attribute_to_string, ExtraAttributes).
add_extra_attribute(Attributes0, NewAttribute,
Attributes0 ^ extra_attributes :=
[NewAttribute | Attributes0 ^ extra_attributes]).
:- func extra_attribute_to_string(pragma_foreign_proc_extra_attribute)
= string.
extra_attribute_to_string(max_stack_size(Size)) =
"max_stack_size(" ++ string__int_to_string(Size) ++ ")".
%-----------------------------------------------------------------------------%