mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-13 12:53:53 +00:00
Estimated hours taken: 0.2 Branches: main runtime/mercury_calls.h: runtime/mercury_prof.h: runtime/mercury_signal.h: runtime/mercury_string.h: runtime/mercury_thread.c: runtime/mercury_thread.h: Fix some layout issues in these files. There are no algorithmic changes.
190 lines
5.9 KiB
C
190 lines
5.9 KiB
C
/*
|
|
** Copyright (C) 1997-1998, 2000, 2003, 2005 The University of Melbourne.
|
|
** This file may only be copied under the terms of the GNU Library General
|
|
** Public License - see the file COPYING.LIB in the Mercury distribution.
|
|
*/
|
|
#ifndef MERCURY_THREAD_H
|
|
#define MERCURY_THREAD_H
|
|
|
|
#include "mercury_std.h"
|
|
|
|
#ifdef MR_THREAD_SAFE
|
|
|
|
#include <signal.h> /* for sigset_t on the SPARC */
|
|
#include <pthread.h>
|
|
|
|
#if defined(MR_DIGITAL_UNIX_PTHREADS)
|
|
#define MR_MUTEX_ATTR pthread_mutexattr_default
|
|
#define MR_COND_ATTR pthread_condattr_default
|
|
#define MR_THREAD_ATTR pthread_attr_default
|
|
#else
|
|
#define MR_MUTEX_ATTR NULL
|
|
#define MR_COND_ATTR NULL
|
|
#define MR_THREAD_ATTR NULL
|
|
#endif
|
|
|
|
typedef pthread_t MercuryThread;
|
|
typedef pthread_key_t MercuryThreadKey;
|
|
typedef pthread_mutex_t MercuryLock;
|
|
typedef pthread_cond_t MercuryCond;
|
|
|
|
void MR_mutex_lock(MercuryLock *lock, const char *from);
|
|
void MR_mutex_unlock(MercuryLock *lock, const char *from);
|
|
void MR_cond_signal(MercuryCond *cond);
|
|
void MR_cond_wait(MercuryCond *cond, MercuryLock *lock);
|
|
|
|
extern MR_bool MR_debug_threads;
|
|
|
|
#ifndef MR_DEBUG_THREADS
|
|
/*
|
|
** The following macros should be used once the
|
|
** use of locking in the generated code is considered
|
|
** stable, since the alternative versions do the
|
|
** same thing, but with debugging support.
|
|
*/
|
|
#define MR_LOCK(lck, from) pthread_mutex_lock((lck))
|
|
#define MR_UNLOCK(lck, from) pthread_mutex_unlock((lck))
|
|
|
|
#define MR_SIGNAL(cnd) pthread_cond_signal((cnd))
|
|
#define MR_WAIT(cnd, mtx) pthread_cond_wait((cnd), (mtx))
|
|
#else
|
|
#define MR_LOCK(lck, from) \
|
|
( MR_debug_threads ? \
|
|
MR_mutex_lock((lck), (from)) \
|
|
: \
|
|
pthread_mutex_lock((lck)) \
|
|
)
|
|
#define MR_UNLOCK(lck, from) \
|
|
( MR_debug_threads ? \
|
|
MR_mutex_unlock((lck), (from)) \
|
|
: \
|
|
pthread_mutex_unlock((lck)) \
|
|
)
|
|
|
|
#define MR_SIGNAL(cnd) \
|
|
( MR_debug_threads ? \
|
|
MR_cond_signal((cnd)) \
|
|
: \
|
|
pthread_cond_signal((cnd)) \
|
|
)
|
|
#define MR_WAIT(cnd, mtx) \
|
|
( MR_debug_threads ? \
|
|
MR_cond_wait((cnd), (mtx)) \
|
|
: \
|
|
pthread_cond_wait((cnd), (mtx)) \
|
|
)
|
|
|
|
#endif
|
|
|
|
/*
|
|
** The following two macros are used to protect pragma c_code
|
|
** predicates which are not thread-safe.
|
|
** See the comments below.
|
|
*/
|
|
#define MR_OBTAIN_GLOBAL_LOCK(where) MR_LOCK(&MR_global_lock, (where))
|
|
#define MR_RELEASE_GLOBAL_LOCK(where) MR_UNLOCK(&MR_global_lock, (where))
|
|
|
|
#if defined(MR_DIGITAL_UNIX_PTHREADS)
|
|
#define MR_GETSPECIFIC(key) ({ \
|
|
pthread_addr_t gstmp; \
|
|
pthread_getspecific((key), &gstmp); \
|
|
(void *) gstmp; \
|
|
})
|
|
#define MR_KEY_CREATE pthread_keycreate
|
|
#else
|
|
#define MR_GETSPECIFIC(key) pthread_getspecific((key))
|
|
#define MR_KEY_CREATE pthread_key_create
|
|
#endif
|
|
|
|
typedef struct {
|
|
void (*func)(void *);
|
|
void *arg;
|
|
} MR_ThreadGoal;
|
|
|
|
/*
|
|
** create_thread(Goal) creates a new POSIX thread, and creates and
|
|
** initializes a new Mercury engine to run in that thread. If Goal
|
|
** is a NULL pointer, that thread will suspend on the global Mercury
|
|
** runqueue. If Goal is non-NULL, it is a pointer to a MR_ThreadGoal
|
|
** structure containing a function and an argument. The function will
|
|
** be called with the given argument in the new thread.
|
|
*/
|
|
|
|
MercuryThread *MR_create_thread(MR_ThreadGoal *);
|
|
void MR_destroy_thread(void *eng);
|
|
extern MR_bool MR_exit_now;
|
|
|
|
/*
|
|
** MR_global_lock is a mutex for ensuring that only one non-threadsafe
|
|
** piece of pragma c code executes at a time. If `not_threadsafe' is
|
|
** given or `threadsafe' is not given in the attributes of a pragma
|
|
** c code definition of a predicate, then the generated code will
|
|
** obtain this lock before executing the C code fragment, and then
|
|
** release it afterwards.
|
|
** XXX we should emit a warning if may_call_mercury and not_threadsafe
|
|
** (the defaults) are specified since if you obtain the lock then
|
|
** call back into Mercury deadlock could result.
|
|
*/
|
|
|
|
extern MercuryLock MR_global_lock;
|
|
|
|
/*
|
|
** MR_exception_handler_key stores a key which can be used to get
|
|
** the current exception handler for the current thread.
|
|
*/
|
|
|
|
extern MercuryThreadKey MR_exception_handler_key;
|
|
|
|
#else /* not MR_THREAD_SAFE */
|
|
|
|
#define MR_LOCK(nothing, from) do { } while (0)
|
|
#define MR_UNLOCK(nothing, from) do { } while (0)
|
|
|
|
#define MR_SIGNAL(nothing) do { } while (0)
|
|
#define MR_WAIT(no, thing) do { } while (0)
|
|
|
|
#define MR_OBTAIN_GLOBAL_LOCK(where) do { } while (0)
|
|
#define MR_RELEASE_GLOBAL_LOCK(where) do { } while (0)
|
|
|
|
#endif
|
|
|
|
/*
|
|
** The following enum is used as the argument to init_thread.
|
|
** MR_use_now should be passed to init_thread to indicate that
|
|
** it has been called in a context in which it should initialize
|
|
** the current thread's environment and return.
|
|
** MR_use_later should be passed to indicate that the thread should
|
|
** be initialized, then suspend waiting for work to appear in the
|
|
** runqueue. The engine is destroyed when the execution of work from
|
|
** the runqueue returns.
|
|
*/
|
|
|
|
typedef enum { MR_use_now, MR_use_later } MR_when_to_use;
|
|
|
|
/*
|
|
** Create and initialize a new Mercury engine running in the current
|
|
** POSIX thread.
|
|
**
|
|
** See the comments above for the meaning of the argument.
|
|
** If there is already a Mercury engine running in the current POSIX
|
|
** thread then init_thread is just a no-op.
|
|
**
|
|
** Returns MR_TRUE if a Mercury engine was created as a result of this
|
|
** call *and* it is the caller's responsibility to finalize it (it is
|
|
** intended that the caller can store the return value and call
|
|
** finalize_thread_engine if it is true).
|
|
*/
|
|
|
|
extern MR_bool MR_init_thread(MR_when_to_use);
|
|
|
|
/*
|
|
** Finalize the thread engine running in the current POSIX thread.
|
|
** This will release the resources used by this thread -- this is very
|
|
** important because the memory used for the det stack for each thread
|
|
** can be re-used by the next init_thread.
|
|
*/
|
|
|
|
extern void MR_finalize_thread_engine(void);
|
|
|
|
#endif
|