%-----------------------------------------------------------------------------% % Copyright (C) 1999-2005 The University of Melbourne. % This file may only be copied under the terms of the GNU Library General % Public License - see the file COPYING.LIB in the Mercury distribution. %-----------------------------------------------------------------------------% % File: declarative_debugger.m % Author: Mark Brown % % This module has two main purposes: % - to define the interface between the front and back ends of % a Mercury declarative debugger, and % - to implement a front end. % % The interface is defined by a procedure that can be called from % the back end to perform diagnosis, and a typeclass which represents % a declarative view of execution used by the front end. % % The front end implemented in this module analyses the EDT it is % passed to diagnose a bug. % % Because Mercury modules are able to be compiled with different levels % of tracing, the trace sequences generated by the back end, and passed % to the front end as "annotated traces", can include or exclude certain % types of events. This front end is able to cope with some variation in % the trace events produced, but there are some basic requirements on % trace sequences which the back end must meet: % % 1) if there are any events from a certain class (e.g. interface % events, negation events, disj events) then we require all events % of that class; % % 2) if there are any disj events, we require all negation events % and if-then-else events. % % 3) the sub-term dependency tracking algorithm requires the proc % representation and all the internal events for any call through % which it must track a sub-term. Child interface events however % may be omitted (as long as each CALL which is present has all its % corresponding REDOs, EXIT, FAIL or EXCP event(s) and vica versa). % % The backend will only build a portion of the annotated trace at a time % (down to a specified depth limit). The front end can request that more % of the annotated trace be built so it can be analysed. The front end can % either request that the subtree rooted at a particular node whose children % haven't been materialized be built (down to a certain depth limit), or that % nodes above the topmost materialized node be materialized. In the first case % the require_subtree response is sent to the backend and in the latter case % the require_supertree response is sent to the backend. We use the term % "supertree" to mean a tree which strictly contains the currently materialized % portion of the annotated trace, although the backend will not materialize % nodes which already exist in the current annotated trace when materializing % a supertree. % %-----------------------------------------------------------------------------% :- module mdb__declarative_debugger. :- interface. :- import_module mdb__declarative_execution. :- import_module mdb__io_action. :- import_module mdbcomp__program_representation. :- import_module mdb.browser_info. :- import_module io, list, std_util, string. % This type represents the possible truth values for nodes % in the EDT. % :- type decl_truth ---> correct ; erroneous ; inadmissible. % This type represents the possible responses to being % asked to confirm that a node is a bug. % :- type decl_confirmation ---> confirm_bug ; overrule_bug ; abort_diagnosis. % This type represents the bugs which can be diagnosed. % The parameter of the constructor is the type of EDT nodes. % :- type decl_bug % An EDT whose root node is incorrect, % but whose children are all correct. % ---> e_bug(decl_e_bug) % An EDT whose root node is incorrect, and % which has no incorrect children but at % least one inadmissible one. % ; i_bug(decl_i_bug). :- type decl_e_bug ---> incorrect_contour( final_decl_atom,% The head of the clause, in its % final state of instantiation. decl_contour, % The path taken through the body. event_number % The exit event. ) ; partially_uncovered_atom( init_decl_atom, % The called atom, in its initial % state. event_number % The fail event. ) ; unhandled_exception( init_decl_atom, % The called atom, in its initial % state. decl_exception, % The exception thrown. event_number % The excp event. ). :- type decl_i_bug ---> inadmissible_call( init_decl_atom, % The parent atom, in its initial % state. decl_position, % The location of the call in the % parent's body. init_decl_atom, % The inadmissible child, in its % initial state. event_number % The call event. ). :- type decl_contour == list(final_decl_atom). % XXX not yet implemented. % :- type decl_position == unit. % Values of the following two types represent questions from the % analyser to the oracle about some aspect of program behaviour, % and responses from the oracle, respectively. In both cases the % type parameter is for the type of EDT nodes -- each question and % answer keeps a reference to the node which generated it, so that % the analyser is able to figure out what to do when the answer % arrives back from the oracle. % :- type decl_question(T) % The node is a suspected wrong answer. The first % argument is the EDT node the question came from. % The second argument is the atom in its final % state of instantiatedness (ie. at the EXIT event). % ---> wrong_answer(T, final_decl_atom) % The node is a suspected missing answer. The % first argument is the EDT node the question came % from. The second argument is the atom in its % initial state of instantiatedness (ie. at the % CALL event), and the third argument is the list % of solutions. % ; missing_answer(T, init_decl_atom, list(final_decl_atom)) % The node is a possibly unexpected exception. % The first argument is the EDT node the question % came from. The second argument is the atom in % its initial state of instantiation, and the third % argument is the exception thrown. % ; unexpected_exception(T, init_decl_atom, decl_exception). :- type decl_answer(T) % The oracle knows the truth value of this node. % ---> truth_value(T, decl_truth) % The oracle does not say anything about the truth % value, but is suspicious of the subterm at the % given term_path and arg_pos. % ; suspicious_subterm(T, arg_pos, term_path) % This node should be ignored. It cannot contain a bug % but it's children may or may not contain a bug. % ; ignore(T) % The oracle has deferred answering this question. ; skip(T). % The evidence that a certain node is a bug. This consists of the % smallest set of questions whose answers are sufficient to % diagnose that bug. % :- type decl_evidence(T) == list(decl_question(T)). % Extract the EDT node from a question. % :- func get_decl_question_node(decl_question(T)) = T. % Get the atom the question relates to. % :- func get_decl_question_atom(decl_question(_)) = trace_atom. :- type some_decl_atom ---> init(init_decl_atom) ; final(final_decl_atom). :- type init_decl_atom ---> init_decl_atom( init_atom :: trace_atom ). :- type final_decl_atom ---> final_decl_atom( final_atom :: trace_atom, final_io_actions :: list(io_action) ). :- type decl_exception == univ. % The diagnoser eventually responds with a value of this type % after it is called. % :- type diagnoser_response(R) % There was a bug found and confirmed. The % event number is for a call port (inadmissible % call), an exit port (incorrect contour), % a fail port (partially uncovered atom), % or an exception port (unhandled exception). % ---> bug_found(event_number) % There was another symptom of incorrect behaviour % found; this symptom will be closer, in a sense, % to the location of a bug. % ; symptom_found(event_number) % There was no symptom found, or the diagnoser % aborted before finding a bug. % ; no_bug_found % The analyser requires the back end to reproduce % part of the annotated trace, with a greater % depth bound. The event number and sequence % number are for the final event required (the % first event required is the call event with % the same sequence number). % R is the node preceeding the call node. This is % needed so the root of the new tree can have the % correct preceding node. % ; require_subtree(event_number, sequence_number, R) % The analyser requires events before and after the % current set of materialized events to be generated. % The given event should be the topmost final event % of the currently materialized portion of the EDT. % ; require_supertree(event_number, sequence_number). :- type diagnoser_state(R). :- pred diagnoser_state_init(io_action_map::in, io__input_stream::in, io__output_stream::in, browser_info.browser_persistent_state::in, diagnoser_state(R)::out) is det. :- pred diagnosis(S::in, R::in, int::in, int::in, int::in, diagnoser_response(R)::out, diagnoser_state(R)::in, diagnoser_state(R)::out, browser_info.browser_persistent_state::in, browser_info.browser_persistent_state::out, io__state::di, io__state::uo) is cc_multi <= annotated_trace(S, R). :- pred unravel_decl_atom(some_decl_atom::in, trace_atom::out, list(io_action)::out) is det. %-----------------------------------------------------------------------------% % The diagnoser generates exceptions of the following type. % :- type diagnoser_exception ---> internal_error( string, % predicate/function name string % error message ) ; io_error( string, % predicate/function name string % error message ) ; unimplemented_feature( string % feature that is NYI ). %-----------------------------------------------------------------------------% :- implementation. :- import_module mdb__declarative_analyser. :- import_module mdb__declarative_edt. :- import_module mdb__declarative_oracle. :- import_module mdb__declarative_tree. :- import_module mdb__util. :- import_module exception, int, map, bool. unravel_decl_atom(DeclAtom, TraceAtom, IoActions) :- ( DeclAtom = init(init_decl_atom(TraceAtom)), IoActions = [] ; DeclAtom = final(final_decl_atom(TraceAtom, IoActions)) ). get_decl_question_node(wrong_answer(Node, _)) = Node. get_decl_question_node(missing_answer(Node, _, _)) = Node. get_decl_question_node(unexpected_exception(Node, _, _)) = Node. get_decl_question_atom(wrong_answer(_, final_decl_atom(Atom, _))) = Atom. get_decl_question_atom(missing_answer(_, init_decl_atom(Atom), _)) = Atom. get_decl_question_atom(unexpected_exception(_, init_decl_atom(Atom), _)) = Atom. %-----------------------------------------------------------------------------% :- type diagnoser_state(R) ---> diagnoser( analyser_state :: analyser_state(edt_node(R)), oracle_state :: oracle_state ). :- pred diagnoser_get_analyser(diagnoser_state(R), analyser_state(edt_node(R))). :- mode diagnoser_get_analyser(in, out) is det. diagnoser_get_analyser(diagnoser(Analyser, _), Analyser). :- pred diagnoser_set_analyser(analyser_state(edt_node(R))::in, diagnoser_state(R)::in, diagnoser_state(R)::out) is det. diagnoser_set_analyser(Analyser, diagnoser(_, Oracle), diagnoser(Analyser, Oracle)). :- pred diagnoser_get_oracle(diagnoser_state(R), oracle_state). :- mode diagnoser_get_oracle(in, out) is det. diagnoser_get_oracle(diagnoser(_, Oracle), Oracle). :- pred diagnoser_set_oracle(oracle_state::in, diagnoser_state(R)::in, diagnoser_state(R)::out) is det. diagnoser_set_oracle(Oracle, diagnoser(Analyser, _), diagnoser(Analyser, Oracle)). diagnoser_state_init(IoActionMap, InStr, OutStr, Browser, Diagnoser) :- analyser_state_init(IoActionMap, Analyser), oracle_state_init(InStr, OutStr, Browser, Oracle), Diagnoser = diagnoser(Analyser, Oracle). diagnosis(Store, NodeId, UseOldIoActionMap, IoActionStart, IoActionEnd, Response, !Diagnoser, !Browser, !IO) :- mdb.declarative_oracle.set_browser_state(!.Browser, !.Diagnoser ^ oracle_state, Oracle), !:Diagnoser = !.Diagnoser ^ oracle_state := Oracle, ( UseOldIoActionMap > 0 -> true ; make_io_action_map(IoActionStart, IoActionEnd, IoActionMap, !IO), Analyser0 = !.Diagnoser ^ analyser_state, analyser_state_replace_io_map(IoActionMap, Analyser0, Analyser1), !:Diagnoser = !.Diagnoser ^ analyser_state := Analyser1 ), try_io(diagnosis_2(Store, NodeId, !.Diagnoser), Result, !IO), ( Result = succeeded({Response, !:Diagnoser}) ; Result = exception(UnivException), ( univ_to_type(UnivException, DiagnoserException) -> handle_diagnoser_exception(DiagnoserException, Response, !Diagnoser, !IO) ; rethrow(Result) ) ), !:Browser = mdb.declarative_oracle.get_browser_state( !.Diagnoser ^ oracle_state). :- pred diagnosis_2(S::in, R::in, diagnoser_state(R)::in, {diagnoser_response(R), diagnoser_state(R)}::out, io__state::di, io__state::uo) is cc_multi <= annotated_trace(S, R). diagnosis_2(Store, NodeId, Diagnoser0, {Response, Diagnoser}, !IO) :- Analyser0 = Diagnoser0 ^ analyser_state, start_or_resume_analysis(wrap(Store), dynamic(NodeId), AnalyserResponse, Analyser0, Analyser), diagnoser_set_analyser(Analyser, Diagnoser0, Diagnoser1), debug_analyser_state(Analyser, MaybeOrigin), handle_analyser_response(Store, AnalyserResponse, MaybeOrigin, Response, Diagnoser1, Diagnoser, !IO). :- pred handle_analyser_response(S::in, analyser_response(edt_node(R))::in, maybe(subterm_origin(edt_node(R)))::in, diagnoser_response(R)::out, diagnoser_state(R)::in, diagnoser_state(R)::out, io__state::di, io__state::uo) is cc_multi <= annotated_trace(S, R). handle_analyser_response(_, no_suspects, _, no_bug_found, !Diagnoser, !IO) :- io__write_string("No bug found.\n", !IO). handle_analyser_response(Store, bug_found(Bug, Evidence), _, Response, !Diagnoser, !IO) :- confirm_bug(Store, Bug, Evidence, Response, !Diagnoser, !IO). handle_analyser_response(Store, oracle_question(Question), MaybeOrigin, Response, !Diagnoser, !IO) :- diagnoser_get_oracle(!.Diagnoser, Oracle0), debug_origin(Flag, !IO), ( MaybeOrigin = yes(Origin), Flag > 0 -> io__write_string("Origin: ", !IO), write_origin(wrap(Store), Origin, !IO), io__nl(!IO) ; true ), query_oracle(Question, OracleResponse, Oracle0, Oracle, !IO), diagnoser_set_oracle(Oracle, !Diagnoser), handle_oracle_response(Store, OracleResponse, Response, !Diagnoser, !IO). handle_analyser_response(Store, require_explicit_subtree(Node), _, Response, Diagnoser, Diagnoser, !IO) :- edt_subtree_details(Store, Node, Event, Seqno, CallPreceding), Response = require_subtree(Event, Seqno, CallPreceding). handle_analyser_response(Store, require_explicit_supertree(Node), _, Response, Diagnoser, Diagnoser, !IO) :- edt_subtree_details(Store, Node, Event, Seqno, _), Response = require_supertree(Event, Seqno). handle_analyser_response(Store, revise(Question), _, Response, !Diagnoser, !IO) :- Oracle0 = !.Diagnoser ^ oracle_state, revise_oracle(Question, Oracle0, Oracle), !:Diagnoser = !.Diagnoser ^ oracle_state := Oracle, handle_analyser_response(Store, oracle_question(Question), no, Response, !Diagnoser, !IO). :- pred handle_oracle_response(S::in, oracle_response(edt_node(R))::in, diagnoser_response(R)::out, diagnoser_state(R)::in, diagnoser_state(R)::out, io__state::di, io__state::uo) is cc_multi <= annotated_trace(S, R). handle_oracle_response(Store, oracle_answer(Answer), Response, !Diagnoser, !IO) :- diagnoser_get_analyser(!.Diagnoser, Analyser0), continue_analysis(wrap(Store), Answer, AnalyserResponse, Analyser0, Analyser), diagnoser_set_analyser(Analyser, !Diagnoser), debug_analyser_state(Analyser, MaybeOrigin), handle_analyser_response(Store, AnalyserResponse, MaybeOrigin, Response, !Diagnoser, !IO). handle_oracle_response(Store, exit_diagnosis(Node), Response, !Diagnoser, !IO) :- edt_subtree_details(Store, Node, Event, _, _), Response = symptom_found(Event). handle_oracle_response(_, abort_diagnosis, no_bug_found, !Diagnoser, !IO) :- io__write_string("Diagnosis aborted.\n", !IO). :- pred confirm_bug(S::in, decl_bug::in, decl_evidence(T)::in, diagnoser_response(R)::out, diagnoser_state(R)::in, diagnoser_state(R)::out, io__state::di, io__state::uo) is cc_multi <= annotated_trace(S, R). confirm_bug(Store, Bug, Evidence, Response, !Diagnoser, !IO) :- diagnoser_get_oracle(!.Diagnoser, Oracle0), oracle_confirm_bug(Bug, Evidence, Confirmation, Oracle0, Oracle, !IO), diagnoser_set_oracle(Oracle, !Diagnoser), ( Confirmation = confirm_bug, decl_bug_get_event_number(Bug, Event), Response = bug_found(Event) ; Confirmation = overrule_bug, overrule_bug(Store, Response, !Diagnoser, !IO) ; Confirmation = abort_diagnosis, Response = no_bug_found ). :- pred overrule_bug(S::in, diagnoser_response(R)::out, diagnoser_state(R)::in, diagnoser_state(R)::out, io__state::di, io__state::uo) is cc_multi <= annotated_trace(S, R). overrule_bug(Store, Response, Diagnoser0, Diagnoser) --> { Analyser0 = Diagnoser0 ^ analyser_state }, { revise_analysis(wrap(Store), AnalyserResponse, Analyser0, Analyser) }, { Diagnoser1 = Diagnoser0 ^ analyser_state := Analyser }, { debug_analyser_state(Analyser, MaybeOrigin) }, handle_analyser_response(Store, AnalyserResponse, MaybeOrigin, Response, Diagnoser1, Diagnoser). %-----------------------------------------------------------------------------% % Export a monomorphic version of diagnosis_state_init/4, to % make it easier to call from C code. % :- pred diagnoser_state_init_store(io__input_stream::in, io__output_stream::in, browser_info.browser_persistent_state::in, diagnoser_state(trace_node_id)::out) is det. :- pragma export(diagnoser_state_init_store(in, in, in, out), "MR_DD_decl_diagnosis_state_init"). diagnoser_state_init_store(InStr, OutStr, Browser, Diagnoser) :- diagnoser_state_init(map__init, InStr, OutStr, Browser, Diagnoser). % Export a monomorphic version of diagnosis/10, to make it % easier to call from C code. % :- pred diagnosis_store(trace_node_store::in, trace_node_id::in, int::in, int::in, int::in, diagnoser_response(trace_node_id)::out, diagnoser_state(trace_node_id)::in, diagnoser_state(trace_node_id)::out, browser_info.browser_persistent_state::in, browser_info.browser_persistent_state::out, io__state::di, io__state::uo) is cc_multi. :- pragma export(diagnosis_store(in, in, in, in, in, out, in, out, in, out, di, uo), "MR_DD_decl_diagnosis"). diagnosis_store(Store, Node, UseOldIoActionMap, IoActionStart, IoActionEnd, Response, !State, !Browser, !IO) :- diagnosis(Store, Node, UseOldIoActionMap, IoActionStart, IoActionEnd, Response, !State, !Browser, !IO). % Export some predicates so that C code can interpret the % diagnoser response. % :- pred diagnoser_bug_found(diagnoser_response(trace_node_id), event_number). :- mode diagnoser_bug_found(in, out) is semidet. :- pragma export(diagnoser_bug_found(in, out), "MR_DD_diagnoser_bug_found"). diagnoser_bug_found(bug_found(Event), Event). :- pred diagnoser_symptom_found(diagnoser_response(trace_node_id), event_number). :- mode diagnoser_symptom_found(in, out) is semidet. :- pragma export(diagnoser_symptom_found(in, out), "MR_DD_diagnoser_symptom_found"). diagnoser_symptom_found(symptom_found(Event), Event). :- pred diagnoser_no_bug_found(diagnoser_response(trace_node_id)). :- mode diagnoser_no_bug_found(in) is semidet. :- pragma export(diagnoser_no_bug_found(in), "MR_DD_diagnoser_no_bug_found"). diagnoser_no_bug_found(no_bug_found). :- pred diagnoser_require_subtree(diagnoser_response(trace_node_id), event_number, sequence_number, trace_node_id). :- mode diagnoser_require_subtree(in, out, out, out) is semidet. :- pragma export(diagnoser_require_subtree(in, out, out, out), "MR_DD_diagnoser_require_subtree"). diagnoser_require_subtree(require_subtree(Event, SeqNo, CallPreceding), Event, SeqNo, CallPreceding). :- pred diagnoser_require_supertree(diagnoser_response(trace_node_id), event_number, sequence_number). :- mode diagnoser_require_supertree(in, out, out) is semidet. :- pragma export(diagnoser_require_supertree(in, out, out), "MR_DD_diagnoser_require_supertree"). diagnoser_require_supertree(require_supertree(Event, SeqNo), Event, SeqNo). %-----------------------------------------------------------------------------% % Adds a trusted module to the given diagnoser. % :- pred add_trusted_module(string::in, diagnoser_state(trace_node_id)::in, diagnoser_state(trace_node_id)::out) is det. :- pragma export(mdb.declarative_debugger.add_trusted_module(in, in, out), "MR_DD_decl_add_trusted_module"). add_trusted_module(ModuleName, Diagnoser0, Diagnoser) :- add_trusted_module(ModuleName, Diagnoser0 ^ oracle_state, Oracle), Diagnoser = Diagnoser0 ^ oracle_state := Oracle. % Adds a trusted predicate/function to the given diagnoser. % :- pred add_trusted_pred_or_func(proc_layout::in, diagnoser_state(trace_node_id)::in, diagnoser_state(trace_node_id)::out) is det. :- pragma export(mdb.declarative_debugger.add_trusted_pred_or_func(in, in, out), "MR_DD_decl_add_trusted_pred_or_func"). add_trusted_pred_or_func(ProcLayout, !Diagnoser) :- add_trusted_pred_or_func(ProcLayout, !.Diagnoser ^ oracle_state, Oracle), !:Diagnoser = !.Diagnoser ^ oracle_state := Oracle. :- pred trust_standard_library(diagnoser_state(trace_node_id)::in, diagnoser_state(trace_node_id)::out) is det. :- pragma export(mdb.declarative_debugger.trust_standard_library(in, out), "MR_DD_decl_trust_standard_library"). trust_standard_library(!Diagnoser) :- declarative_oracle.trust_standard_library(!.Diagnoser ^ oracle_state, Oracle), !:Diagnoser = !.Diagnoser ^ oracle_state := Oracle. :- pred remove_trusted(int::in, diagnoser_state(trace_node_id)::in, diagnoser_state(trace_node_id)::out) is semidet. :- pragma export(mdb.declarative_debugger.remove_trusted(in, in, out), "MR_DD_decl_remove_trusted"). remove_trusted(N, !Diagnoser) :- remove_trusted(N, !.Diagnoser ^ oracle_state, Oracle), !:Diagnoser = !.Diagnoser ^ oracle_state := Oracle. % get_trusted_list(Diagnoser, MDBCommandFormat, String). % Return a string listing the trusted objects for Diagnoser. % If MDBCommandFormat is true then returns the list so that it can be % run as a series of mdb `trust' commands. Otherwise returns them % in a format suitable for display only. % :- pred get_trusted_list(diagnoser_state(trace_node_id)::in, bool::in, string::out) is det. :- pragma export(mdb.declarative_debugger.get_trusted_list(in, in, out), "MR_DD_decl_get_trusted_list"). get_trusted_list(Diagnoser, MDBCommandFormat, List) :- get_trusted_list(Diagnoser ^ oracle_state, MDBCommandFormat, List). %-----------------------------------------------------------------------------% :- pred handle_diagnoser_exception(diagnoser_exception::in, diagnoser_response(R)::out, diagnoser_state(R)::in, diagnoser_state(R)::out, io__state::di, io__state::uo) is det. handle_diagnoser_exception(internal_error(Loc, Msg), Response, !Diagnoser, !IO) :- io__stderr_stream(StdErr, !IO), io__write_string(StdErr, "An internal error has occurred; " ++ "diagnosis will be aborted. Debugging\n" ++ "message follows:\n" ++ Loc ++ ": " ++ Msg ++ "\n" ++ "Please report bugs to mercury-bugs@cs.mu.oz.au.\n", !IO), % Reset the analyser, in case it was left in an inconsistent state. reset_analyser(!.Diagnoser ^ analyser_state, Analyser), !:Diagnoser = !.Diagnoser ^ analyser_state := Analyser, Response = no_bug_found. handle_diagnoser_exception(io_error(Loc, Msg), Response, !Diagnoser, !IO) :- io__stderr_stream(StdErr, !IO), io__write_string(StdErr, "I/O error: "++Loc++": "++Msg++".\n"++ "Diagnosis will be aborted.\n", !IO), % Reset the analyser, in case it was left in an inconsistent state. reset_analyser(!.Diagnoser ^ analyser_state, Analyser), !:Diagnoser = !.Diagnoser ^ analyser_state := Analyser, Response = no_bug_found. handle_diagnoser_exception(unimplemented_feature(Feature), Response, !Diagnoser, !IO) :- io__write_string("Sorry, the diagnosis cannot continue because "++ "it requires support for\n"++ "the following: "++Feature++".\n"++ "The debugger is a work in progress, and this is not "++ "supported in the\ncurrent version.\n", !IO), % Reset the analyser, in case it was left in an inconsistent state. reset_analyser(!.Diagnoser ^ analyser_state, Analyser), !:Diagnoser = !.Diagnoser ^ analyser_state := Analyser, Response = no_bug_found. %-----------------------------------------------------------------------------% :- pred decl_bug_get_event_number(decl_bug, event_number). :- mode decl_bug_get_event_number(in, out) is det. decl_bug_get_event_number(e_bug(EBug), Event) :- ( EBug = incorrect_contour(_, _, Event) ; EBug = partially_uncovered_atom(_, Event) ; EBug = unhandled_exception(_, _, Event) ). decl_bug_get_event_number(i_bug(IBug), Event) :- IBug = inadmissible_call(_, _, _, Event). %-----------------------------------------------------------------------------% :- pred write_origin(wrap(S)::in, subterm_origin(edt_node(R))::in, io__state::di, io__state::uo) is det <= annotated_trace(S, R). write_origin(wrap(Store), Origin, !IO) :- (Origin = output(dynamic(NodeId), ArgPos, TermPath) -> exit_node_from_id(Store, NodeId, ExitNode), ProcId = get_proc_id_from_layout( ExitNode ^ exit_atom ^ proc_layout), ProcName = get_proc_name(ProcId), io__write_string("output(", !IO), io__write_string(ProcName, !IO), io__write_string(", ", !IO), io__write(ArgPos, !IO), io__write_string(", ", !IO), io__write(TermPath, !IO), io__write_string(")", !IO) ; io__write(Origin, !IO) ). :- pragma foreign_code("C", " /* ** The declarative debugger will print diagnostic information about the origins ** computed by dependency tracking if this flag has a positive value. */ int MR_DD_debug_origin = 0; "). :- pragma foreign_decl("C", " extern int MR_DD_debug_origin; "). :- pred debug_origin(int::out, io__state::di, io__state::uo) is det. :- pragma foreign_proc("C", debug_origin(Flag::out, IO0::di, IO::uo), [will_not_call_mercury, promise_pure, tabled_for_io], " Flag = MR_DD_debug_origin; IO = IO0; "). debug_origin(_) --> { private_builtin__sorry("declarative_debugger.debug_origin") }.