%-----------------------------------------------------------------------------% % Copyright (C) 1995 University of Melbourne. % This file may only be copied under the terms of the GNU General % Public License - see the file COPYING in the Mercury distribution. %-----------------------------------------------------------------------------% % % File: prog_io.m. % Main author: fjh. % % This module defines predicates for parsing Mercury programs. % % In some ways the representation of programs here is considerably % more complex than is necessary for the compiler. % The basic reason for this is that it was designed to preserve % as much information about the source code as possible, so that % this representation could also be used for other tools such % as Mercury-to-Goedel converters, pretty-printers, etc. % Currently the only information that is lost is that comments and % whitespace are stripped, any redundant parenthesization % are lost, distinctions between different spellings of the same % operator (eg "\+" vs "not") are lost, and DCG clauses get expanded. % It would be a good idea to preserve all those too (well, maybe not % the redundant parentheses), but right now it's not worth the effort. % % So that means that this phase of compilation is purely parsing. % No simplifications are done (other than DCG expansion). % The results of this phase specify % basically the same information as is contained in the source code, % but in a parse tree rather than a flat file. % Simplifications are done only by make_hlds.m, which transforms % the parse tree which we built here into the HLDS. % % Some of this code is a rather bad example of cut-and-paste style reuse. % It should be cleaned up to eliminate most of the duplication. % But that task really needs to wait until we implement higher-order % predicates. For the moment, just be careful that any changes % you make are reflected correctly in all similar parts of this % file. % % Implication and equivalence implemented by squirrel, who would also % like to get her hands on this file and give it a good clean up and % put it into good clean "mercury" style! % Wishlist: % % 1. implement importing/exporting operators with a particular fixity % eg. :- import_op prefix(+). % only prefix +, not infix % (not important, but should be there for reasons of symmetry.) % 2. improve the handling of type and inst parameters % 3. improve the error reporting (most of the semidet preds should % be det and should return a meaningful indication of where an % error occured). :- module prog_io. :- interface. :- import_module prog_data, hlds_data, globals, options. :- import_module string, int, list, varset, term, std_util, require. %-----------------------------------------------------------------------------% % This module (prog_io) exports the following predicates: % read_module(ModuleName, Error, Messages, Program) % reads and parses the module 'ModuleName'. Error is `fatal' % if the file coudn't be opened, `yes' % if a syntax error was detected, and `no' otherwise. % Messages is a list of warning/error messages. % Program is the parse tree. :- type module_error ---> no % no errors ; yes % some syntax errors ; fatal. % couldn't open the file :- pred prog_io__read_module(string, string, module_error, message_list, item_list, io__state, io__state). :- mode prog_io__read_module(in, in, out, out, out, di, uo) is det. % Convert a single term into a goal. % :- pred parse_goal(term, varset, goal, varset). :- mode parse_goal(in, in, out, out) is det. % Convert a term, possibly starting with `some [Vars]', into % a list of variables and a goal. (If the term doesn't start % with `some [Vars]', we return an empty list of variables.) % :- pred parse_some_vars_goal(term, varset, vars, goal, varset). :- mode parse_some_vars_goal(in, in, out, out, out) is det. % parse_lambda_expression/3 converts the first argument to a lambda/2 % expression into a list of variables, a list of their corresponding % modes, and a determinism. % The syntax of a lambda expression is % `lambda([Var1::Mode1, ..., VarN::ModeN] is Det, Goal)' % but this predicate just parses the first argument, i.e. the % `[Var1::Mode1, ..., VarN::ModeN] is Det' % part. % :- pred parse_lambda_expression(term, list(term), list(mode), determinism). :- mode parse_lambda_expression(in, out, out, out) is semidet. % parse_pred_expression/3 converts the first argument to a :-/2 % higher-order pred expression into a list of variables, a list % of their corresponding modes, and a determinism. This is just % a variant on parse_lambda_expression with a different syntax: % `(pred(Var1::Mode1, ..., VarN::ModeN) is Det :- Goal)'. % :- pred parse_pred_expression(term, list(term), list(mode), determinism). :- mode parse_pred_expression(in, out, out, out) is semidet. %-----------------------------------------------------------------------------% % The following /3, /4 and /5 predicates are to be used for reporting % warnings to stderr. This is preferable to using io__write_string, as % this checks the halt-at-warn option % % This predicate is best used by predicates that do not have access to % module_info for a particular module. It sets the exit status to error % when a warning is encountered in a module, and the --halt-at-warn % option is set. :- pred report_warning(string::in, io__state::di, io__state::uo) is det. :- pred report_warning(io__output_stream::in, string::in, io__state::di, io__state::uo) is det. :- pred report_warning(string::in, int::in, string::in, io__state::di, io__state::uo) is det. %-----------------------------------------------------------------------------% :- implementation. :- import_module bool, io, term_io, dir, require. %-----------------------------------------------------------------------------% % When actually reading in type declarations, we need to % check for errors. :- type maybe1(T) ---> error(string, term) ; ok(T). :- type maybe2(T1, T2) ---> error(string, term) ; ok(T1, T2). :- type maybe_functor == maybe2(sym_name, list(term)). :- type maybe_item_and_context == maybe2(item, term__context). % This implementation uses io__read_term to read in the program % term at a time, and then converts those terms into clauses and % declarations, checking for errors as it goes. % Note that rather than using difference lists, we just % build up the lists of items and messages in reverse order % and then reverse them afterwards. (Using difference lists would require % late-input modes.) prog_io__read_module(FileName, ModuleName, Error, Messages, Items) --> globals__io_lookup_accumulating_option(search_directories, Dirs), search_for_file(Dirs, FileName, R), ( { R = yes } -> read_all_items(ModuleName, RevMessages, RevItems0, Error0), { get_end_module(RevItems0, RevItems, EndModule), list__reverse(RevMessages, Messages0), list__reverse(RevItems, Items0), check_begin_module(ModuleName, Messages0, Items0, Error0, EndModule, FileName, Messages, Items, Error) }, io__seen ; io__progname_base("prog_io.m", Progname), { string__append(Progname, ": can't open file `", Message1), string__append(Message1, FileName, Message2), string__append(Message2, "'", Message), dummy_term(Term), Messages = [Message - Term], Error = fatal, Items = [] } ). :- pred search_for_file(list(string), string, bool, io__state, io__state). :- mode search_for_file(in, in, out, di, uo) is det. search_for_file([], _, no) --> []. search_for_file([Dir | Dirs], FileName, R) --> { dir__this_directory(Dir) -> ThisFileName = FileName ; dir__directory_separator(Separator), string__first_char(Tmp1, Separator, FileName), string__append(Dir, Tmp1, ThisFileName) }, io__see(ThisFileName, R0), ( { R0 = ok } -> { R = yes } ; search_for_file(Dirs, FileName, R) ). %-----------------------------------------------------------------------------% % extract the final `:- end_module' declaration if any :- type module_end ---> no ; yes(module_name, term__context). :- pred get_end_module(item_list, item_list, module_end). :- mode get_end_module(in, out, out) is det. get_end_module(RevItems0, RevItems, EndModule) :- ( RevItems0 = [ module_defn(_VarSet, end_module(ModuleName)) - Context | RevItems1] -> RevItems = RevItems1, EndModule = yes(ModuleName, Context) ; RevItems = RevItems0, EndModule = no ). %-----------------------------------------------------------------------------% % check that the module starts with a :- module declaration, % and that the end_module declaration (if any) is correct, % and construct the final parsing result. :- pred check_begin_module(string, message_list, item_list, module_error, module_end, string, message_list, item_list, module_error). :- mode check_begin_module(in, in, in, in, in, in, out, out, out) is det. check_begin_module(ModuleName, Messages0, Items0, Error0, EndModule, FileName, Messages, Items, Error) :- % check that the first item is a `:- module ModuleName' % declaration ( Items0 = [module_defn(_VarSet, module(ModuleName1)) - Context | Items1] -> % check that the end module declaration (if any) % matches the begin module declaration ( %%% some [ModuleName2, Context2] ( EndModule = yes(ModuleName2, Context2), ModuleName1 \= ModuleName2 ) -> dummy_term_with_context(Context2, Term), ThisError = "Error: `:- end_module' declaration doesn't match `:- module' declaration" - Term, list__append([ThisError], Messages0, Messages), Items = Items1, Error = yes ; % check that the begin module declaration matches the expected name % of the module ModuleName1 \= ModuleName -> dummy_term_with_context(Context, Term2), ThisError = "Warning: incorrect module name in `:- module' declaration" - Term2, Messages = [ThisError | Messages0], Items = Items1, Error = Error0 ; Messages = Messages0, Items = Items1, Error = Error0 ) ; term__context_init(FileName, 1, Context), dummy_term_with_context(Context, Term2), ThisError = "Error: module should start with a `:- module' declaration" - Term2, Messages = [ThisError | Messages0], Items = Items0, Error = yes ). % Create a dummy term. % Used for error messages that are not associated with any % particular term or context. :- pred dummy_term(term). :- mode dummy_term(out) is det. dummy_term(Term) :- term__context_init(Context), dummy_term_with_context(Context, Term). % Create a dummy term with the specified context. % Used for error messages that are associated with some specific % context, but for which we don't want to print out the term % (or for which the term isn't available to be printed out). :- pred dummy_term_with_context(term__context, term). :- mode dummy_term_with_context(in, out) is det. dummy_term_with_context(Context, Term) :- Term = term__functor(term__atom(""), [], Context). %-----------------------------------------------------------------------------% % Read a source file from standard in, first reading in % the input term by term and then parsing those terms and producing % a high-level representation. % Parsing is actually a 3-stage process instead of the % normal two-stage process: % lexical analysis (chars -> tokens), % parsing stage 1 (tokens -> terms), % parsing stage 2 (terms -> items). % The final stage produces a list of program items, each of % which may be a declaration or a clause. :- pred read_all_items(string, message_list, item_list, module_error, io__state, io__state). :- mode read_all_items(in, out, out, out, di, uo) is det. read_all_items(ModuleName, Messages, Items, Error) --> read_items_loop(ModuleName, [], [], no, Messages, Items, Error). %-----------------------------------------------------------------------------% % The loop is arranged somewhat carefully: we want it to % be tail recursive, and we want to do a small garbage collection % after we have read each item to minimize memory usage % and improve cache locality. So each iteration calls % read_item(MaybeItem) - which does all the work for a single item - % via io__gc_call/1, which calls the goal with garbage collection. % This manual garbage collection won't be strictly necessary % when (if) we implement automatic garbage collection, but % it will probably still improve performance. % % Note: the following will NOT be tail recursive with our % implementation unless the compiler is smart enough to inline % read_items_loop_2. :- pred read_items_loop(string, message_list, item_list, module_error, message_list, item_list, module_error, io__state, io__state). :- mode read_items_loop(in, in, in, in, out, out, out, di, uo) is det. read_items_loop(ModuleName, Msgs1, Items1, Error1, Msgs, Items, Error) --> io__gc_call(read_item(ModuleName, MaybeItem)), read_items_loop_2(ModuleName, MaybeItem, Msgs1, Items1, Error1, Msgs, Items, Error). %-----------------------------------------------------------------------------% :- pred read_items_loop_2(string, maybe_item_or_eof, message_list, item_list, module_error, message_list, item_list, module_error, io__state, io__state). :- mode read_items_loop_2(in, in, in, in, in, out, out, out, di, uo) is det. :- pragma(inline, read_items_loop_2/10). % do a switch on the type of the next item read_items_loop_2(_ModuleName, eof, Msgs, Items, Error, Msgs, Items, Error) --> []. % if the next item was end-of-file, then we're done. read_items_loop_2(ModuleName, syntax_error(ErrorMsg, LineNumber), Msgs0, Items0, _Error0, Msgs, Items, Error) --> % if the next item was a syntax error, then insert it in % the list of messages and continue looping io__input_stream(Stream), io__input_stream_name(Stream, StreamName), { term__context_init(StreamName, LineNumber, Context), dummy_term_with_context(Context, Term), ThisError = ErrorMsg - Term, Msgs1 = [ThisError | Msgs0], Items1 = Items0, Error1 = yes }, read_items_loop(ModuleName, Msgs1, Items1, Error1, Msgs, Items, Error). read_items_loop_2(ModuleName, error(M,T), Msgs0, Items0, _Error0, Msgs, Items, Error) --> % if the next item was a semantic error, then insert it in % the list of messages and continue looping { add_error(M, T, Msgs0, Msgs1), Items1 = Items0, Error1 = yes }, read_items_loop(ModuleName, Msgs1, Items1, Error1, Msgs, Items, Error). read_items_loop_2(ModuleName, ok(Item, Context), Msgs0, Items0, Error0, Msgs, Items, Error) --> % if the next item was a valid item, then insert it in % the list of items and continue looping { Msgs1 = Msgs0, Items1 = [Item - Context | Items0], Error1 = Error0 }, read_items_loop(ModuleName, Msgs1, Items1, Error1, Msgs, Items, Error). %-----------------------------------------------------------------------------% % read_item/1 reads a single item, and if it is a valid term % parses it. :- type maybe_item_or_eof ---> eof ; syntax_error(string, int) ; error(string, term) ; ok(item, term__context). :- pred read_item(string, maybe_item_or_eof, io__state, io__state). :- mode read_item(in, out, di, uo) is det. read_item(ModuleName, MaybeItem) --> term_io__read_term(MaybeTerm), { process_read_term(ModuleName, MaybeTerm, MaybeItem) }. :- pred process_read_term(string, read_term, maybe_item_or_eof). :- mode process_read_term(in, in, out) is det. process_read_term(_ModuleName, eof, eof). process_read_term(_ModuleName, error(ErrorMsg, LineNumber), syntax_error(ErrorMsg, LineNumber)). process_read_term(ModuleName, term(VarSet, Term), MaybeItemOrEof) :- parse_item(ModuleName, VarSet, Term, MaybeItem), convert_item(MaybeItem, MaybeItemOrEof). :- pred convert_item(maybe_item_and_context, maybe_item_or_eof). :- mode convert_item(in, out) is det. convert_item(ok(Item, Context), ok(Item, Context)). convert_item(error(M,T), error(M,T)). :- pred parse_item(string, varset, term, maybe_item_and_context). :- mode parse_item(in, in, in, out) is det. parse_item(ModuleName, VarSet, Term, Result) :- ( %%% some [Decl, DeclContext] Term = term__functor(term__atom(":-"), [Decl], DeclContext) -> % It's a declaration parse_decl(ModuleName, VarSet, Decl, R), add_context(R, DeclContext, Result) ; %%% some [DCG_H, DCG_B, DCG_Context] % It's a DCG clause Term = term__functor(term__atom("-->"), [DCG_H, DCG_B], DCG_Context) -> parse_dcg_clause(ModuleName, VarSet, DCG_H, DCG_B, DCG_Context, Result) ; % It's either a fact or a rule ( %%% some [H, B, TermContext] Term = term__functor(term__atom(":-"), [H,B], TermContext) -> % it's a rule Head = H, Body = B, TheContext = TermContext ; % it's a fact Head = Term, ( Head = term__functor(_Functor, _Args, HeadContext) -> TheContext = HeadContext ; % term consists of just a single % variable - the context has been lost term__context_init(TheContext) ), Body = term__functor(term__atom("true"), [], TheContext) ), parse_goal(Body, VarSet, Body2, VarSet2), ( Head = term__functor(term__atom("="), [FuncHead, FuncResult], _) -> parse_qualified_term(ModuleName, FuncHead, "equation head", R2), process_func_clause(R2, FuncResult, VarSet2, Body2, R3) ; parse_qualified_term(ModuleName, Head, "clause head", R2), process_pred_clause(R2, VarSet2, Body2, R3) ), add_context(R3, TheContext, Result) ). :- pred add_context(maybe1(item), term__context, maybe_item_and_context). :- mode add_context(in, in, out) is det. add_context(error(M, T), _, error(M, T)). add_context(ok(Item), Context, ok(Item, Context)). :- pred process_pred_clause(maybe_functor, varset, goal, maybe1(item)). :- mode process_pred_clause(in, in, in, out) is det. process_pred_clause(ok(Name, Args), VarSet, Body, ok(pred_clause(VarSet, Name, Args, Body))). process_pred_clause(error(ErrMessage, Term), _, _, error(ErrMessage, Term)). :- pred process_func_clause(maybe_functor, term, varset, goal, maybe1(item)). :- mode process_func_clause(in, in, in, in, out) is det. process_func_clause(ok(Name, Args), Result, VarSet, Body, ok(func_clause(VarSet, Name, Args, Result, Body))). process_func_clause(error(ErrMessage, Term), _, _, _, error(ErrMessage, Term)). %-----------------------------------------------------------------------------% % Parse a goal. % We just check if it matches the appropriate pattern % for one of the builtins. If it doesn't match any of the % builtins, then it's just a predicate call. % XXX we should do more parsing here - type qualification % should be parsed here. % % We could do some error-checking here, but all errors are picked up % in either the type-checker or parser anyway. parse_goal(Term, VarSet0, Goal, VarSet) :- ( Term = term__functor(term__atom(Name), Args, Context), parse_goal_2(Name, Args, VarSet0, GoalExpr, VarSet1) -> Goal = GoalExpr - Context, VarSet = VarSet1 ; ( Term = term__functor(term__atom(Name), Terms, Context) -> VarSet = VarSet0, ( Name = ":" -> ( Terms = [term__functor(term__atom( ModuleName), [], _), term__functor(term__atom( PredName), Args, _)] -> Goal = call(qualified(ModuleName, PredName), Args) - Context ; Term0 = term__functor(term__atom("call"), [Term], Context), Goal = call(unqualified("call"), [Term0]) - Context % Goal contains ill-formed qualified % predicate calls.. ) ; Goal = call(unqualified(Name), Terms) - Context ) ; ( Term = term__functor(_, _, Context) ; Term = term__variable(_), term__context_init(Context) ), Term0 = term__functor(term__atom("call"), [Term], Context), Goal = call(unqualified("call"), [Term0]) - Context, VarSet = VarSet0 % Term in Goal above is a term__constant or % term__variable that is definately not a function call. ) ). :- pred parse_goal_2(string, list(term), varset, goal_expr, varset). :- mode parse_goal_2(in, in, in, out, out) is semidet. parse_goal_2("true", [], V, true, V). parse_goal_2("fail", [], V, fail, V). parse_goal_2("=", [A,B], V, unify(A,B), V). /****** Since (A -> B) has different semantics in standard Prolog (A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true), for the moment we'll just disallow it. parse_goal_2("->", [A0,B0], V0, if_then(Vars,A,B), V) :- parse_some_vars_goal(A0, V0, Vars, A, V1), parse_goal(B0, V1, B, V). ******/ parse_goal_2(",", [A0,B0], V0, (A,B), V) :- parse_goal(A0, V0, A, V1), parse_goal(B0, V1, B, V). parse_goal_2(";", [A0,B0], V0, R, V) :- ( A0 = term__functor(term__atom("->"), [X0,Y0], _Context) -> parse_some_vars_goal(X0, V0, Vars, X, V1), parse_goal(Y0, V1, Y, V2), parse_goal(B0, V2, B, V), R = if_then_else(Vars, X, Y, B) ; parse_goal(A0, V0, A, V1), parse_goal(B0, V1, B, V), R = (A;B) ). /**** For consistency we also disallow if-then parse_goal_2("if", [term__functor(term__atom("then"),[A0,B0],_)], V0, if_then(Vars,A,B), V) :- parse_some_vars_goal(A0, V0, Vars, A, V1), parse_goal(B0, V1, B, V). ****/ parse_goal_2("else",[ term__functor(term__atom("if"),[ term__functor(term__atom("then"),[A0,B0],_) ],_), C0 ], V0, if_then_else(Vars,A,B,C), V) :- parse_some_vars_goal(A0, V0, Vars, A, V1), parse_goal(B0, V1, B, V2), parse_goal(C0, V2, C, V). parse_goal_2("not", [A0], V0, not(A), V) :- parse_goal(A0, V0, A, V). parse_goal_2("\\+", [A0], V0, not(A), V) :- parse_goal(A0, V0, A, V). parse_goal_2("all", [Vars0,A0], V0, all(Vars,A), V):- term__vars(Vars0, Vars), parse_goal(A0, V0, A, V). % handle implication parse_goal_2("<=", [A0,B0], V0, implies(B,A), V):- parse_goal(A0, V0, A, V1), parse_goal(B0, V1, B, V). parse_goal_2("=>", [A0,B0], V0, implies(A,B), V):- parse_goal(A0, V0, A, V1), parse_goal(B0, V1, B, V). % handle equivalence parse_goal_2("<=>", [A0,B0], V0, equivalent(A,B), V):- parse_goal(A0, V0, A, V1), parse_goal(B0, V1, B, V). parse_goal_2("some", [Vars0,A0], V0, some(Vars,A), V):- term__vars(Vars0, Vars), parse_goal(A0, V0, A, V). % The following is a temporary hack to handle `is' in % the parser - we ought to handle it in the code generation - % but then `is/2' itself is a bit of a hack % parse_goal_2("is", [A,B], V, unify(A,B), V). parse_some_vars_goal(A0, VarSet0, Vars, A, VarSet) :- ( A0 = term__functor(term__atom("some"), [Vars0,A1], _Context) -> term__vars(Vars0, Vars), parse_goal(A1, VarSet0, A, VarSet) ; Vars = [], parse_goal(A0, VarSet0, A, VarSet) ). %-----------------------------------------------------------------------------% parse_lambda_expression(LambdaExpressionTerm, Vars, Modes, Det) :- LambdaExpressionTerm = term__functor(term__atom("is"), [LambdaArgsTerm, DetTerm], _), DetTerm = term__functor(term__atom(DetString), [], _), standard_det(DetString, Det), parse_lambda_args(LambdaArgsTerm, Vars, Modes). :- pred parse_lambda_args(term, list(term), list(mode)). :- mode parse_lambda_args(in, out, out) is semidet. parse_lambda_args(Term, Vars, Modes) :- ( Term = term__functor(term__atom("."), [Head, Tail], _Context) -> parse_lambda_arg(Head, Var, Mode), Vars = [Var | Vars1], Modes = [Mode | Modes1], parse_lambda_args(Tail, Vars1, Modes1) ; Term = term__functor(term__atom("[]"), [], _) -> Vars = [], Modes = [] ; Vars = [Var], Modes = [Mode], parse_lambda_arg(Term, Var, Mode) ). :- pred parse_lambda_arg(term, term, mode). :- mode parse_lambda_arg(in, out, out) is semidet. parse_lambda_arg(Term, VarTerm, Mode) :- Term = term__functor(term__atom("::"), [VarTerm, ModeTerm], _), convert_mode(ModeTerm, Mode). %-----------------------------------------------------------------------------% parse_pred_expression(PredTerm, Vars, Modes, Det) :- PredTerm = term__functor(term__atom("is"), [PredArgsTerm, DetTerm], _), DetTerm = term__functor(term__atom(DetString), [], _), standard_det(DetString, Det), PredArgsTerm = term__functor(term__atom("pred"), PredArgsList, _), parse_pred_expr_args(PredArgsList, Vars, Modes). :- pred parse_pred_expr_args(list(term), list(term), list(mode)). :- mode parse_pred_expr_args(in, out, out) is semidet. parse_pred_expr_args([], [], []). parse_pred_expr_args([Term|Terms], [Arg|Args], [Mode|Modes]) :- parse_lambda_arg(Term, Arg, Mode), parse_pred_expr_args(Terms, Args, Modes). %-----------------------------------------------------------------------------% :- pred parse_dcg_clause(string, varset, term, term, term__context, maybe_item_and_context). :- mode parse_dcg_clause(in, in, in, in, in, out) is det. parse_dcg_clause(ModuleName, VarSet0, DCG_Head, DCG_Body, DCG_Context, Result) :- new_dcg_var(VarSet0, 0, VarSet1, N0, DCG_0_Var), parse_dcg_goal(DCG_Body, VarSet1, N0, DCG_0_Var, Body, VarSet, _N, DCG_Var), parse_qualified_term(ModuleName, DCG_Head, "DCG clause head", HeadResult), process_dcg_clause(HeadResult, VarSet, DCG_0_Var, DCG_Var, Body, R), add_context(R, DCG_Context, Result). %-----------------------------------------------------------------------------% % Used to allocate fresh variables needed for the DCG expansion. :- pred new_dcg_var(varset, int, varset, int, var). :- mode new_dcg_var(in, in, out, out, out) is det. new_dcg_var(VarSet0, N0, VarSet, N, DCG_0_Var) :- string__int_to_string(N0, StringN), string__append("DCG_", StringN, VarName), varset__new_var(VarSet0, DCG_0_Var, VarSet1), varset__name_var(VarSet1, DCG_0_Var, VarName, VarSet), N is N0 + 1. %-----------------------------------------------------------------------------% % Expand a DCG goal. :- pred parse_dcg_goal(term, varset, int, var, goal, varset, int, var). :- mode parse_dcg_goal(in, in, in, in, out, out, out, out) is det. parse_dcg_goal(Term0, VarSet0, N0, Var0, Goal, VarSet, N, Var) :- ( Term0 = term__functor(term__atom(Functor), Args0, Context) -> % First check for the special cases: ( parse_dcg_goal_2(Functor, Args0, Context, VarSet0, N0, Var0, Goal1, VarSet1, N1, Var1) -> Goal = Goal1, VarSet = VarSet1, N = N1, Var = Var1 ; % It's the ordinary case of non-terminal. % Create a fresh var as the DCG output var from this % goal, and append the DCG argument pair to the % non-terminal's argument list. new_dcg_var(VarSet0, N0, VarSet, N, Var), ( Functor = ":" , Args0 = [term__functor(term__atom(ModuleName), [], _), term__functor(term__atom(PredName), Args_of_pred0, _)] -> list__append(Args_of_pred0, [ term__variable(Var0), term__variable(Var) ], Args_of_pred), Goal = call(qualified(ModuleName, PredName), Args_of_pred) - Context ; list__append(Args0, [ term__variable(Var0), term__variable(Var) ], Args), Goal = call(unqualified(Functor), Args) - Context ) ) ; % A call to a free variable, or to a number or string. % Just translate it into a call to call/2 - the typecheck will % catch calls to numbers and strings. new_dcg_var(VarSet0, N0, VarSet, N, Var), term__context_init(CallContext), Term = term__functor(term__atom("call"), [ Term0, term__variable(Var0), term__variable(Var) ], CallContext), Goal = call(unqualified("call"), [Term]) - CallContext ). % parse_dcg_goal_2(Functor, Args, Context, VarSet0, N0, Var0, % Goal, VarSet, N, Var): % VarSet0/VarSet are an accumulator pair which we use to % allocate fresh DCG variables; N0 and N are an accumulator pair % we use to keep track of the number to give to the next DCG % variable (so that we can give it a semi-meaningful name "DCG_" % for use in error messages, debugging, etc.). % Var0 and Var are an accumulator pair we use to keep track of % the current DCG variable. :- pred parse_dcg_goal_2(string, list(term), term__context, varset, int, var, goal, varset, int, var). :- mode parse_dcg_goal_2(in, in, in, in, in, in, out, out, out, out) is semidet. % XXX if you uncomment the following line, even the stage 1 compiler bombs % :- pragma(inline, parse_dcg_goal_2/10). % The following is a temporary and gross hack to strip out % calls to `io__gc_call', since the mode checker can't handle % them yet. parse_dcg_goal_2("io__gc_call", [Goal0], _, VarSet0, N0, Var0, Goal, VarSet, N, Var) :- parse_dcg_goal(Goal0, VarSet0, N0, Var0, Goal, VarSet, N, Var). % Ordinary goal inside { curly braces }. parse_dcg_goal_2("{}", [G], _, VarSet0, N, Var, Goal, VarSet, N, Var) :- parse_goal(G, VarSet0, Goal, VarSet). % Empty list - just unify the input and output DCG args. parse_dcg_goal_2("[]", [], Context, VarSet0, N0, Var0, Goal, VarSet, N, Var) :- new_dcg_var(VarSet0, N0, VarSet, N, Var), Goal = unify(term__variable(Var0), term__variable(Var)) - Context. % Non-empty list of terminals. Append the DCG output arg % as the new tail of the list, and unify the result with % the DCG input arg. parse_dcg_goal_2(".", [X,Xs], Context, VarSet0, N0, Var0, Goal, VarSet, N, Var) :- new_dcg_var(VarSet0, N0, VarSet, N, Var), term_list_append_term(term__functor(term__atom("."), [X,Xs], Context), term__variable(Var), Term), Goal = unify(term__variable(Var0), Term) - Context. % Call to '='/1 - unify argument with DCG input arg. parse_dcg_goal_2("=", [A], Context, VarSet, N, Var, Goal, VarSet, N, Var) :- Goal = unify(A, term__variable(Var)) - Context. % If-then (Prolog syntax). % We need to add an else part to unify the DCG args. /****** Since (A -> B) has different semantics in standard Prolog (A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true), for the moment we'll just disallow it. parse_dcg_goal_2("->", [A0,B0], Context, VarSet0, N0, Var0, Goal, VarSet, N, Var) :- parse_dcg_if_then(A0, B0, Context, VarSet0, N0, Var0, SomeVars, A, B, VarSet, N, Var), ( Var = Var0 -> Goal = if_then(SomeVars, A, B) - Context ; Goal = if_then_else(SomeVars, A, B, unify(term__variable(Var), term__variable(Var0)) - Context) - Context ). ******/ % If-then (NU-Prolog syntax). parse_dcg_goal_2("if", [ term__functor(term__atom("then"),[A0,B0],_) ], Context, VarSet0, N0, Var0, Goal, VarSet, N, Var) :- parse_dcg_if_then(A0, B0, Context, VarSet0, N0, Var0, SomeVars, A, B, VarSet, N, Var), ( Var = Var0 -> Goal = if_then(SomeVars, A, B) - Context ; Goal = if_then_else(SomeVars, A, B, unify(term__variable(Var), term__variable(Var0)) - Context) - Context ). % Conjunction. parse_dcg_goal_2(",", [A0,B0], Context, VarSet0, N0, Var0, (A,B) - Context, VarSet, N, Var) :- parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet1, N1, Var1), parse_dcg_goal(B0, VarSet1, N1, Var1, B, VarSet, N, Var). % Disjunction or if-then-else (Prolog syntax). parse_dcg_goal_2(";", [A0,B0], Cx, VarSet0, N0, Var0, Goal, VarSet, N, Var) :- ( A0 = term__functor(term__atom("->"), [X0,Y0], _Context) -> parse_dcg_if_then(X0, Y0, Cx, VarSet0, N0, Var0, SomeVars, X, Y, VarSet1, N1, VarA), parse_dcg_goal(B0, VarSet1, N1, Var0, B, VarSet, N, VarB), ( VarA = Var0, VarB = Var0 -> Var = Var0, Goal = if_then_else(SomeVars, X, Y, B) - Cx ; VarA = Var0 -> Var = VarB, Goal = if_then_else(SomeVars, X, (Y, unify( term__variable(Var), term__variable(VarA) ) - Cx) - Cx, B ) - Cx ; Var = VarA, Goal = if_then_else(SomeVars, X, Y, (B, unify(term__variable(Var), term__variable(VarB)) - Cx) - Cx) - Cx ) ; parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet1, N1, VarA), parse_dcg_goal(B0, VarSet1, N1, Var0, B, VarSet, N, VarB), ( VarA = Var0, VarB = Var0 -> Var = Var0, Goal = (A ; B) - Cx ; VarA = Var0 -> Var = VarB, append_to_disjunct(A, unify(term__variable(Var), term__variable(VarA)), Cx, A1), Goal = (A1 ; B) - Cx ; Var = VarA, append_to_disjunct(B, unify(term__variable(Var), term__variable(VarB)), Cx, B1), Goal = (A ; B1) - Cx ) ). % If-then-else (NU-Prolog syntax). parse_dcg_goal_2( "else", [ term__functor(term__atom("if"),[ term__functor(term__atom("then"),[A0,B0],_) ], Context), C0 ], _, VarSet0, N0, Var0, Goal, VarSet, N, Var) :- parse_dcg_if_then(A0, B0, Context, VarSet0, N0, Var0, SomeVars, A, B, VarSet1, N1, VarAB), parse_dcg_goal(C0, VarSet1, N1, Var0, C, VarSet, N, VarC), ( VarAB = Var0, VarC = Var0 -> Var = Var0, Goal = if_then_else(SomeVars, A, B, C) - Context ; VarAB = Var0 -> Var = VarC, Goal = if_then_else(SomeVars, A, (B, unify(term__variable(Var), term__variable(VarAB)) - Context) - Context, C) - Context ; Var = VarAB, Goal = if_then_else(SomeVars, A, B, (C, unify(term__variable(Var), term__variable(VarC)) - Context) - Context) - Context ). % Negation (NU-Prolog syntax). parse_dcg_goal_2( "not", [A0], Context, VarSet0, N0, Var0, not(A) - Context, VarSet, N, Var ) :- parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, _), Var = Var0. % Negation (Prolog syntax). parse_dcg_goal_2( "\\+", [A0], Context, VarSet0, N0, Var0, not(A) - Context, VarSet, N, Var ) :- parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, _), Var = Var0. % Universal quantification. parse_dcg_goal_2("all", [Vars0,A0], Context, VarSet0, N0, Var0, all(Vars,A) - Context, VarSet, N, Var) :- term__vars(Vars0, Vars), parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, Var). % Existential quantification. parse_dcg_goal_2("some", [Vars0,A0], Context, VarSet0, N0, Var0, some(Vars,A) - Context, VarSet, N, Var) :- term__vars(Vars0, Vars), parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, Var). :- pred append_to_disjunct(goal, goal_expr, term__context, goal). :- mode append_to_disjunct(in, in, in, out) is det. append_to_disjunct(Disjunct0, Goal, Context, Disjunct) :- ( Disjunct0 = (A0 ; B0) - Context2 -> append_to_disjunct(A0, Goal, Context, A), append_to_disjunct(B0, Goal, Context, B), Disjunct = (A ; B) - Context2 ; Disjunct = (Disjunct0, Goal - Context) - Context ). :- pred parse_some_vars_dcg_goal(term, vars, varset, int, var, goal, varset, int, var). :- mode parse_some_vars_dcg_goal(in, out, in, in, in, out, out, out, out) is det. parse_some_vars_dcg_goal(A0, SomeVars, VarSet0, N0, Var0, A, VarSet, N, Var) :- ( A0 = term__functor(term__atom("some"), [SomeVars0,A1], _Context) -> term__vars(SomeVars0, SomeVars), parse_dcg_goal(A1, VarSet0, N0, Var0, A, VarSet, N, Var) ; SomeVars = [], parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, Var) ). % Parse the "if" and the "then" part of an if-then or an % if-then-else. % If the condition is a DCG goal, but then "then" part % is not, then we need to translate % ( a -> { b } ; c ) % as % ( a(DCG_1, DCG_2) -> % b, % DCG_3 = DCG_2 % ; % c(DCG_1, DCG_3) % ) % rather than % ( a(DCG_1, DCG_2) -> % b % ; % c(DCG_1, DCG_2) % ) % so that the implicit quantification of DCG_2 is correct. :- pred parse_dcg_if_then(term, term, term__context, varset, int, var, list(var), goal, goal, varset, int, var). :- mode parse_dcg_if_then(in, in, in, in, in, in, out, out, out, out, out, out) is det. parse_dcg_if_then(A0, B0, Context, VarSet0, N0, Var0, SomeVars, A, B, VarSet, N, Var) :- parse_some_vars_dcg_goal(A0, SomeVars, VarSet0, N0, Var0, A, VarSet1, N1, Var1), parse_dcg_goal(B0, VarSet1, N1, Var1, B1, VarSet2, N2, Var2), ( Var0 \= Var1, Var1 = Var2 -> new_dcg_var(VarSet2, N2, VarSet, N, Var), B = (B1, unify( term__variable(Var), term__variable(Var2) ) - Context) - Context ; B = B1, N = N2, Var = Var2, VarSet = VarSet2 ). % term_list_append_term(ListTerm, Term, Result): % if ListTerm is a term representing a proper list, % this predicate will append the term Term % onto the end of the list :- pred term_list_append_term(term, term, term). :- mode term_list_append_term(in, in, out) is semidet. term_list_append_term(List0, Term, List) :- ( List0 = term__functor(term__atom("[]"), [], _Context) -> List = Term ; List0 = term__functor(term__atom("."), [Head, Tail0], Context2), List = term__functor(term__atom("."), [Head, Tail], Context2), term_list_append_term(Tail0, Term, Tail) ). :- pred process_dcg_clause(maybe_functor, varset, var, var, goal, maybe1(item)). :- mode process_dcg_clause(in, in, in, in, in, out) is det. process_dcg_clause(ok(Name, Args0), VarSet, Var0, Var, Body, ok(pred_clause(VarSet, Name, Args, Body))) :- list__append(Args0, [term__variable(Var0), term__variable(Var)], Args). process_dcg_clause(error(ErrMessage, Term), _, _, _, _, error(ErrMessage, Term)). %-----------------------------------------------------------------------------% % parse a declaration :- pred parse_decl(string, varset, term, maybe1(item)). :- mode parse_decl(in, in, in, out) is det. parse_decl(ModuleName, VarSet, F, Result) :- ( F = term__functor(term__atom(Atom), As, _Context) -> ( process_decl(ModuleName, VarSet, Atom, As, R) -> Result = R ; Result = error("Unrecognized declaration", F) ) ; Result = error("Atom expected after `:-'", F) ). % process_decl(VarSet, Atom, Args, Result) succeeds if Atom(Args) % is a declaration and binds Result to a representation of that % declaration. :- pred process_decl(string, varset, string, list(term), maybe1(item)). :- mode process_decl(in, in, in, in, out) is semidet. process_decl(_ModuleName, VarSet, "type", [TypeDecl], Result) :- parse_type_decl(VarSet, TypeDecl, Result). process_decl(ModuleName, VarSet, "pred", [PredDecl], Result) :- parse_type_decl_pred(ModuleName, VarSet, PredDecl, Result). process_decl(ModuleName, VarSet, "func", [FuncDecl], Result) :- parse_type_decl_func(ModuleName, VarSet, FuncDecl, Result). process_decl(ModuleName, VarSet, "mode", [ModeDecl], Result) :- parse_mode_decl(ModuleName, VarSet, ModeDecl, Result). process_decl(_ModuleName, VarSet, "inst", [InstDecl], Result) :- parse_inst_decl(VarSet, InstDecl, Result). process_decl(_ModuleName, VarSet, "import_module", [ModuleSpec], Result) :- parse_symlist_decl(parse_module_specifier, make_module, make_import, ModuleSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "use_module", [ModuleSpec], Result) :- parse_symlist_decl(parse_module_specifier, make_module, make_use, ModuleSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "export_module", [ModuleSpec], Result) :- parse_symlist_decl(parse_module_specifier, make_module, make_export, ModuleSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "import_sym", [SymSpec], Result) :- parse_symlist_decl(parse_symbol_specifier, make_sym, make_import, SymSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "use_sym", [SymSpec], Result) :- parse_symlist_decl(parse_symbol_specifier, make_sym, make_use, SymSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "export_sym", [SymSpec], Result) :- parse_symlist_decl(parse_symbol_specifier, make_sym, make_export, SymSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "import_pred", [PredSpec], Result) :- parse_symlist_decl(parse_predicate_specifier, make_pred, make_import, PredSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "use_pred", [PredSpec], Result) :- parse_symlist_decl(parse_predicate_specifier, make_pred, make_use, PredSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "export_pred", [PredSpec], Result) :- parse_symlist_decl(parse_predicate_specifier, make_pred, make_export, PredSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "import_func", [FuncSpec], Result) :- parse_symlist_decl(parse_function_specifier, make_func, make_import, FuncSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "use_func", [FuncSpec], Result) :- parse_symlist_decl(parse_function_specifier, make_func, make_use, FuncSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "export_func", [FuncSpec], Result) :- parse_symlist_decl(parse_function_specifier, make_func, make_export, FuncSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "import_cons", [ConsSpec], Result) :- parse_symlist_decl(parse_constructor_specifier, make_cons, make_import, ConsSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "use_cons", [ConsSpec], Result) :- parse_symlist_decl(parse_constructor_specifier, make_cons, make_use, ConsSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "export_cons", [ConsSpec], Result) :- parse_symlist_decl(parse_constructor_specifier, make_cons, make_export, ConsSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "import_type", [TypeSpec], Result) :- parse_symlist_decl(parse_type_specifier, make_type, make_import, TypeSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "use_type", [TypeSpec], Result) :- parse_symlist_decl(parse_type_specifier, make_type, make_use, TypeSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "export_type", [TypeSpec], Result) :- parse_symlist_decl(parse_type_specifier, make_type, make_export, TypeSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "import_adt", [ADT_Spec], Result) :- parse_symlist_decl(parse_adt_specifier, make_adt, make_import, ADT_Spec, VarSet, Result). process_decl(_ModuleName, VarSet, "use_adt", [ADT_Spec], Result) :- parse_symlist_decl(parse_adt_specifier, make_adt, make_use, ADT_Spec, VarSet, Result). process_decl(_ModuleName, VarSet, "export_adt", [ADT_Spec], Result) :- parse_symlist_decl(parse_adt_specifier, make_adt, make_export, ADT_Spec, VarSet, Result). process_decl(_ModuleName, VarSet, "import_op", [OpSpec], Result) :- parse_symlist_decl(parse_op_specifier, make_op, make_import, OpSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "use_op", [OpSpec], Result) :- parse_symlist_decl(parse_op_specifier, make_op, make_use, OpSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "export_op", [OpSpec], Result) :- parse_symlist_decl(parse_op_specifier, make_op, make_export, OpSpec, VarSet, Result). process_decl(_ModuleName, VarSet, "interface", [], ok(module_defn(VarSet, interface))). process_decl(_ModuleName, VarSet, "implementation", [], ok(module_defn(VarSet, implementation))). process_decl(_ModuleName, VarSet, "external", [PredSpec], Result) :- parse_symbol_name_specifier(PredSpec, Result0), process_maybe1(make_external(VarSet), Result0, Result). process_decl(_ModuleName0, VarSet, "module", [ModuleName], Result) :- ( ModuleName = term__functor(term__atom(Module), [], _Context) -> Result = ok(module_defn(VarSet, module(Module))) ; ModuleName = term__variable(_) -> dummy_term(ErrorContext), Result = error("Module names starting with capital letters must be quoted using single quotes (e.g. "":- module 'Foo'."")", ErrorContext) ; Result = error("Module name expected", ModuleName) ). process_decl(_ModuleName0, VarSet, "end_module", [ModuleName], Result) :- ( ModuleName = term__functor(term__atom(Module), [], _Context) -> Result = ok(module_defn(VarSet, end_module(Module))) ; Result = error("Module name expected", ModuleName) ). % NU-Prolog `when' declarations are silently ignored for % backwards compatibility. process_decl(_ModuleName, _VarSet, "when", [_Goal, _Cond], Result) :- Result = ok(nothing). process_decl(_ModuleName, VarSet, "pragma", Pragma, Result):- parse_pragma(VarSet, Pragma, Result). :- pred parse_type_decl(varset, term, maybe1(item)). :- mode parse_type_decl(in, in, out) is det. parse_type_decl(VarSet, TypeDecl, Result) :- ( TypeDecl = term__functor(term__atom(Name), Args, _), parse_type_decl_type(Name, Args, Cond, R) -> R1 = R, Cond1 = Cond ; process_abstract_type(TypeDecl, R1), Cond1 = true ), process_maybe1(make_type_defn(VarSet, Cond1), R1, Result). % we should check the condition for errs % (don't bother at the moment, since we ignore % conditions anyhow :-) :- pred make_type_defn(varset, condition, type_defn, item). :- mode make_type_defn(in, in, in, out) is det. make_type_defn(VarSet, Cond, TypeDefn, type_defn(VarSet, TypeDefn, Cond)). :- pred make_external(varset, sym_name_specifier, item). :- mode make_external(in, in, out) is det. make_external(VarSet, SymSpec, module_defn(VarSet, external(SymSpec))). %-----------------------------------------------------------------------------% % add a warning message to the list of messages :- pred add_warning(string, term, message_list, message_list). :- mode add_warning(in, in, out, in) is det. add_warning(Warning, Term, [Msg - Term | Msgs], Msgs) :- string__append("Warning: ", Warning, Msg). % add an error message to the list of messages :- pred add_error(string, term, message_list, message_list). :- mode add_error(in, in, in, out) is det. add_error(Error, Term, Msgs, [Msg - Term | Msgs]) :- string__append("Error: ", Error, Msg). %-----------------------------------------------------------------------------% % parse_type_decl_type(Term, Condition, Result) succeeds % if Term is a "type" type declaration, and binds Condition % to the condition for that declaration (if any), and Result to % a representation of the declaration. :- pred parse_type_decl_type(string, list(term), condition, maybe1(type_defn)). :- mode parse_type_decl_type(in, in, out, out) is semidet. :- parse_type_decl_type([A|B], _, _, _) when A and B. parse_type_decl_type("--->", [H,B], Condition, R) :- get_condition(B, Body, Condition), process_du_type(H, Body, R). parse_type_decl_type("=", [H,B], Condition, R) :- get_condition(B, Body, Condition), process_uu_type(H, Body, R). parse_type_decl_type("==", [H,B], Condition, R) :- get_condition(B, Body, Condition), process_eqv_type(H, Body, R). %-----------------------------------------------------------------------------% % parse_type_decl_pred(Pred, Condition, Result) succeeds % if Pred is a predicate type declaration, and binds Condition % to the condition for that declaration (if any), and Result to % a representation of the declaration. :- pred parse_type_decl_pred(string, varset, term, maybe1(item)). :- mode parse_type_decl_pred(in, in, in, out) is det. parse_type_decl_pred(ModuleName, VarSet, Pred, R) :- get_condition(Pred, Body, Condition), get_determinism(Body, Body2, MaybeDeterminism), process_type_decl_pred(ModuleName, MaybeDeterminism, VarSet, Body2, Condition, R). :- pred process_type_decl_pred(string, maybe1(maybe(determinism)), varset, term, condition, maybe1(item)). :- mode process_type_decl_pred(in, in, in, in, in, out) is det. process_type_decl_pred(_MNm, error(Term, Reason), _, _, _, error(Term, Reason)). process_type_decl_pred(ModuleName, ok(MaybeDeterminism), VarSet, Body, Condition, R) :- process_pred(ModuleName, VarSet, Body, Condition, MaybeDeterminism, R). %-----------------------------------------------------------------------------% % parse_type_decl_func(Func, Condition, Result) succeeds % if Func is a function type declaration, and binds Condition % to the condition for that declaration (if any), and Result to % a representation of the declaration. :- pred parse_type_decl_func(string, varset, term, maybe1(item)). :- mode parse_type_decl_func(in, in, in, out) is det. parse_type_decl_func(ModuleName, VarSet, Func, R) :- get_condition(Func, Body, Condition), get_determinism(Body, Body2, MaybeDeterminism), process_maybe1_to_t(process_func(ModuleName, VarSet, Body2, Condition), MaybeDeterminism, R). %-----------------------------------------------------------------------------% % parse_mode_decl_pred(ModuleName, Pred, Condition, Result) succeeds % if Pred is a predicate mode declaration, and binds Condition % to the condition for that declaration (if any), and Result to % a representation of the declaration. :- pred parse_mode_decl_pred(string, varset, term, maybe1(item)). :- mode parse_mode_decl_pred(in, in, in, out) is det. parse_mode_decl_pred(ModuleName, VarSet, Pred, Result) :- get_condition(Pred, Body, Condition), get_determinism(Body, Body2, MaybeDeterminism), process_maybe1_to_t(process_mode(ModuleName, VarSet, Body2, Condition), MaybeDeterminism, Result). %-----------------------------------------------------------------------------% % parse the pragma declaration. % It fails if the arguments % to the declaration were empty (ie. a pragma dec. with arity 0). :- pred parse_pragma(varset, list(term), maybe1(item)). :- mode parse_pragma(in, in, out) is semidet. parse_pragma(VarSet, Pragma, Result) :- Pragma = [PragmaType | PragmaTerms], ( PragmaType = term__functor(term__atom("c_header_code"),[], _) -> ( PragmaTerms = [HeaderTerm] -> ( HeaderTerm = term__functor(term__string(HeaderCode), [], _) -> Result = ok(pragma(c_header_code(HeaderCode))) ; Result = error("Expected string for C header code", HeaderTerm) ) ; Result = error("wrong number of arguments in pragma(c_header_code, ...) declaration.", PragmaType) ) ; PragmaType = term__functor(term__atom("c_code"), [], _) -> ( PragmaTerms = [Just_C_Code_Term] -> ( Just_C_Code_Term = term__functor(term__string(Just_C_Code), [], _) -> Result = ok(pragma(c_code(Just_C_Code))) ; Result = error("Expected string for C code", Just_C_Code_Term) ) ; PragmaTerms = [PredAndVarsTerm, C_CodeTerm] -> ( PredAndVarsTerm = term__functor(term__atom(PredName), VarList, _) -> ( C_CodeTerm = term__functor(term__string(C_Code), [], _) -> parse_pragma_c_code_varlist(VarSet, VarList, PragmaVars, Error), ( Error = no, Result = ok(pragma(c_code(unqualified(PredName), PragmaVars, VarSet, C_Code))) ; Error = yes(ErrorMessage), Result = error(ErrorMessage, PredAndVarsTerm) ) ; Result = error("Expected string for C code", C_CodeTerm) ) ; Result = error("Term is not a predicate", PredAndVarsTerm) ) ; Result = error("wrong number of arguments in pragma(c_code, ...) declaration.", PragmaType) ) ; PragmaType = term__functor(term__atom("inline"),[], _) -> ( PragmaTerms = [PredAndArityTerm] -> ( PredAndArityTerm = term__functor(term__atom("/"), [PredNameTerm, ArityTerm], _) -> ( ( PredNameTerm = term__functor(term__atom(PredName), [], _), ArityTerm = term__functor(term__integer(Arity), [], _) ) -> Result = ok(pragma(inline(unqualified(PredName), Arity))) ; Result = error("Expected predname/arity for pragma(inline, ...)", PredAndArityTerm) ) ; Result = error("Expected predname/arity for pragma(inline, ...)", PredAndArityTerm) ) ; Result = error( "wrong number of arguments in pragma(inline, ...) declaration.", PragmaType) ) ; PragmaType = term__functor(term__atom("export"),[], _) -> ( PragmaTerms = [PredAndModesTerm, C_FunctionTerm] -> ( ( PredAndModesTerm = term__functor(term__atom(PredName), ModeTerms, _), C_FunctionTerm = term__functor(term__string(C_Function), [], _) ) -> ( convert_mode_list(ModeTerms, Modes) -> Result = ok(pragma(export(unqualified(PredName), Modes, C_Function))) ; Result = error("Expected pragma(export, PredName(ModeList), C_Function).", PredAndModesTerm) ) ; Result = error( "Expected pragma(export, PredName(ModeList), C_Function).", PredAndModesTerm) ) ; Result = error( "wrong number of arguments in pragma(export, ...) declaration.", PragmaType) ) ; PragmaType = term__functor(term__atom("memo"),[], _) -> ( PragmaTerms = [PredAndArityTerm] -> ( PredAndArityTerm = term__functor(term__atom("/"), [PredNameTerm, ArityTerm], _) -> ( ( PredNameTerm = term__functor(term__atom(PredName), [], _), ArityTerm = term__functor(term__integer(Arity), [], _) ) -> Result = ok(pragma(memo(unqualified(PredName), Arity))) ; Result = error("Expected predname/arity for pragma(memo, ...)", PredAndArityTerm) ) ; Result = error("Expected predname/arity for pragma(memo, ...)", PredAndArityTerm) ) ; Result = error( "wrong number of arguments in pragma(memo, ...) declaration.", PragmaType) ) ; Result = error("Unknown pragma declaration type", PragmaType) ). %-----------------------------------------------------------------------------% % parse the variable list in the pragma c code declaration. % The final argument is 'no' for no error, or 'yes(ErrorMessage)'. :- pred parse_pragma_c_code_varlist(varset, list(term), list(pragma_var), maybe(string)). :- mode parse_pragma_c_code_varlist(in, in, out, out) is det. parse_pragma_c_code_varlist(_, [], [], no). parse_pragma_c_code_varlist(VarSet, [V|Vars], PragmaVars, Error):- ( V = term__functor(term__atom("::"), [VarTerm, ModeTerm], _), VarTerm = term__variable(Var) -> ( varset__search_name(VarSet, Var, VarName) -> ( convert_mode(ModeTerm, Mode) -> P = (pragma_var(Var, VarName, Mode)), parse_pragma_c_code_varlist(VarSet, Vars, PragmaVars0, Error), PragmaVars = [P|PragmaVars0] ; PragmaVars = [], Error = yes("unknown mode in pragma(c_code, ...") ) ; % if the variable wasn't in the varset it must be an % underscore variable. PragmaVars = [], % return any old junk for that. Error = yes( "sorry, not implemented: anonymous `_' variable in pragma(c_code, ...)") ) ; PragmaVars = [], % return any old junk in PragmaVars Error = yes("arguments not in form 'Var :: mode'") ). %-----------------------------------------------------------------------------% % get_determinism(Term0, Term, Determinism) binds Determinism % to a representation of the determinism condition of Term0, if any, % and binds Term to the other part of Term0. If Term0 does not % contain a determinism, then Determinism is bound to `unspecified'. :- pred get_determinism(term, term, maybe1(maybe(determinism))). :- mode get_determinism(in, out, out) is det. get_determinism(B, Body, Determinism) :- ( B = term__functor(term__atom("is"), Args, _Context1), Args = [Body1, Determinism1] -> Body = Body1, ( ( Determinism1 = term__functor(term__atom(Determinism2), [], _Context2), standard_det(Determinism2, Determinism3) ) -> Determinism = ok(yes(Determinism3)) ; Determinism = error("invalid category", Determinism1) ) ; Body = B, Determinism = ok(no) ). :- pred standard_det(string, determinism). :- mode standard_det(in, out) is semidet. standard_det("det", det). standard_det("cc_nondet", cc_nondet). standard_det("cc_multi", cc_multidet). standard_det("nondet", nondet). standard_det("multi", multidet). standard_det("multidet", multidet). standard_det("semidet", semidet). standard_det("erroneous", erroneous). standard_det("failure", failure). %-----------------------------------------------------------------------------% % get_condition(Term0, Term, Condition) binds Condition % to a representation of the 'where' condition of Term0, if any, % and binds Term to the other part of Term0. If Term0 does not % contain a condition, then Condition is bound to true. :- pred get_condition(term, term, condition). :- mode get_condition(in, out, out) is det. get_condition(B, Body, Condition) :- ( B = term__functor(term__atom("where"), [Body1, Condition1], _Context) -> Body = Body1, Condition = where(Condition1) ; Body = B, Condition = true ). %-----------------------------------------------------------------------------% % This is for "Head = Body" (undiscriminated union) definitions. :- pred process_uu_type(term, term, maybe1(type_defn)). :- mode process_uu_type(in, in, out) is det. process_uu_type(Head, Body, Result) :- check_for_errors(Head, Body, Result0), process_uu_type_2(Result0, Body, Result). :- pred process_uu_type_2(maybe_functor, term, maybe1(type_defn)). :- mode process_uu_type_2(in, in, out) is det. process_uu_type_2(error(Error, Term), _, error(Error, Term)). process_uu_type_2(ok(Name, Args), Body, ok(uu_type(Name,Args,List))) :- sum_to_list(Body, List). %-----------------------------------------------------------------------------% % This is for "Head == Body" (equivalence) definitions. :- pred process_eqv_type(term, term, maybe1(type_defn)). :- mode process_eqv_type(in, in, out) is det. process_eqv_type(Head, Body, Result) :- check_for_errors(Head, Body, Result0), process_eqv_type_2(Result0, Body, Result). :- pred process_eqv_type_2(maybe_functor, term, maybe1(type_defn)). :- mode process_eqv_type_2(in, in, out) is det. process_eqv_type_2(error(Error, Term), _, error(Error, Term)). process_eqv_type_2(ok(Name, Args), Body, ok(eqv_type(Name,Args,Body))). %-----------------------------------------------------------------------------% % process_du_type(TypeHead, TypeBody, Result) % checks that its arguments are well formed, and if they are, % binds Result to a representation of the type information about the % TypeHead. % This is for "Head ---> Body" (constructor) definitions. :- pred process_du_type(term, term, maybe1(type_defn)). :- mode process_du_type(in, in, out) is det. process_du_type(Head, Body, Result) :- check_for_errors(Head, Body, Result0), process_du_type_2(Result0, Body, Result). :- pred process_du_type_2(maybe_functor, term, maybe1(type_defn)). :- mode process_du_type_2(in, in, out) is det. process_du_type_2(error(Error, Term), _, error(Error, Term)). process_du_type_2(ok(Functor,Args), Body, Result) :- % check that body is a disjunction of constructors ( %%% some [Constrs] convert_constructors(Body, Constrs) -> Result = ok(du_type(Functor, Args, Constrs)) ; Result = error("Invalid RHS of type definition", Body) ). %-----------------------------------------------------------------------------% % process_abstract_type(TypeHead, Result) % checks that its argument is well formed, and if it is, % binds Result to a representation of the type information about the % TypeHead. :- pred process_abstract_type(term, maybe1(type_defn)). :- mode process_abstract_type(in, out) is det. process_abstract_type(Head, Result) :- dummy_term(Body), check_for_errors(Head, Body, Result0), process_abstract_type_2(Result0, Result). :- pred process_abstract_type_2(maybe_functor, maybe1(type_defn)). :- mode process_abstract_type_2(in, out) is det. process_abstract_type_2(error(Error, Term), error(Error, Term)). process_abstract_type_2(ok(Functor, Args), ok(abstract_type(Functor, Args))). %-----------------------------------------------------------------------------% % check a type definition for errors :- pred check_for_errors(term, term, maybe_functor). :- mode check_for_errors(in, in, out) is det. check_for_errors(Head, Body, Result) :- ( Head = term__variable(_) -> Result = error("Variable on LHS of type definition", Head) ; parse_qualified_term(Head, "type definition", R), check_for_errors_2(R, Body, Head, Result) ). :- pred check_for_errors_2(maybe_functor, term, term, maybe_functor). :- mode check_for_errors_2(in, in, in, out) is det. check_for_errors_2(error(Msg, Term), _, _, error(Msg, Term)). check_for_errors_2(ok(Name, Args), Body, Head, Result) :- check_for_errors_3(Name, Args, Body, Head, Result). :- pred check_for_errors_3(sym_name, list(term), term, term, maybe_functor). :- mode check_for_errors_3(in, in, in, in, out) is det. check_for_errors_3(Name, Args, Body, Head, Result) :- % check that all the head args are variables ( %%% some [Arg] ( list__member(Arg, Args), Arg \= term__variable(_) ) -> Result = error("Type parameters must be variables", Head) ; % check that all the head arg variables are distinct %%% some [Arg2, OtherArgs] ( list__member(Arg2, Args, [Arg2|OtherArgs]), list__member(Arg2, OtherArgs) ) -> Result = error("Repeated type parameters in LHS of type defn", Head) % check that all the variables in the body occur in the head ; %%% some [Var2] ( term__contains_var(Body, Var2), \+ term__contains_var_list(Args, Var2) ) -> Result = error("Free type parameter in RHS of type definition", Body) ; Result = ok(Name, Args) ). %-----------------------------------------------------------------------------% % Convert a list of terms separated by semi-colons % (known as a "disjunction", even thought the terms aren't goals % in this case) into a list of constructors :- pred convert_constructors(term, list(constructor)). :- mode convert_constructors(in, out) is semidet. convert_constructors(Body, Constrs) :- disjunction_to_list(Body, List), convert_constructors_2(List, Constrs). % true if input argument is a valid list of constructors :- pred convert_constructors_2(list(term), list(constructor)). :- mode convert_constructors_2(in, out) is semidet. convert_constructors_2([], []). convert_constructors_2([Term | Terms], [Constr | Constrs]) :- convert_constructor(Term, Constr), convert_constructors_2(Terms, Constrs). % true if input argument is a valid constructor. % Note that as a special case, one level of % curly braces around the constructor are ignored. % This is to allow you to define ';'/2 constructors. :- pred convert_constructor(term, constructor). :- mode convert_constructor(in, out) is semidet. convert_constructor(Term, Result) :- ( Term = term__functor(term__atom("{}"), [Term1], _Context) -> Term2 = Term1 ; Term2 = Term ), parse_qualified_term(Term2, "convert_constructor/2", ok(F, As)), convert_type_list(As, ArgTypes), Result = F - ArgTypes. %-----------------------------------------------------------------------------% % convert a "disjunction" (bunch of terms separated by ';'s) to a list :- pred disjunction_to_list(term, list(term)). :- mode disjunction_to_list(in, out) is det. disjunction_to_list(Term, List) :- binop_term_to_list(";", Term, List). % convert a "conjunction" (bunch of terms separated by ','s) to a list :- pred conjunction_to_list(term, list(term)). :- mode conjunction_to_list(in, out) is det. conjunction_to_list(Term, List) :- binop_term_to_list(",", Term, List). % convert a "sum" (bunch of terms separated by '+' operators) to a list :- pred sum_to_list(term, list(term)). :- mode sum_to_list(in, out) is det. sum_to_list(Term, List) :- binop_term_to_list("+", Term, List). % general predicate to convert terms separated by any specified % operator into a list :- pred binop_term_to_list(string, term, list(term)). :- mode binop_term_to_list(in, in, out) is det. binop_term_to_list(Op, Term, List) :- binop_term_to_list_2(Op, Term, [], List). :- pred binop_term_to_list_2(string, term, list(term), list(term)). :- mode binop_term_to_list_2(in, in, in, out) is det. binop_term_to_list_2(Op, Term, List0, List) :- ( Term = term__functor(term__atom(Op), [L, R], _Context) -> binop_term_to_list_2(Op, R, List0, List1), binop_term_to_list_2(Op, L, List1, List) ; List = [Term|List0] ). %-----------------------------------------------------------------------------% % parse a `:- pred p(...)' declaration :- pred process_pred(string, varset, term, condition, maybe(determinism), maybe1(item)). :- mode process_pred(in, in, in, in, in, out) is det. process_pred(ModuleName, VarSet, PredType, Cond, MaybeDet, Result) :- parse_qualified_term(ModuleName, PredType, "`:- pred' declaration", R), process_pred_2(R, PredType, VarSet, MaybeDet, Cond, Result). :- pred process_pred_2(maybe_functor, term, varset, maybe(determinism), condition, maybe1(item)). :- mode process_pred_2(in, in, in, in, in, out) is det. process_pred_2(ok(F, As0), PredType, VarSet, MaybeDet, Cond, Result) :- ( convert_type_and_mode_list(As0, As) -> Result = ok(pred(VarSet, F, As, MaybeDet, Cond)) ; Result = error("Syntax error in `:- pred' declaration", PredType) ). process_pred_2(error(M, T), _, _, _, _, error(M, T)). %-----------------------------------------------------------------------------% % parse a `:- func p(...)' declaration :- pred process_func(string, varset, term, condition, maybe(determinism), maybe1(item)). :- mode process_func(in, in, in, in, in, out) is det. process_func(ModuleName, VarSet, Term, Cond, MaybeDet, Result) :- ( Term = term__functor(term__atom("="), [FuncTerm, ReturnTypeTerm], _Context) -> parse_qualified_term(ModuleName, FuncTerm, "`:- func' declaration", R), process_func_2(R, FuncTerm, ReturnTypeTerm, VarSet, MaybeDet, Cond, Result) ; Result = error("`=' expected in `:- func' declaration", Term) ). :- pred process_func_2(maybe_functor, term, term, varset, maybe(determinism), condition, maybe1(item)). :- mode process_func_2(in, in, in, in, in, in, out) is det. process_func_2(ok(F, As0), FuncTerm, ReturnTypeTerm, VarSet, MaybeDet, Cond, Result) :- ( convert_type_and_mode_list(As0, As) -> ( convert_type_and_mode(ReturnTypeTerm, ReturnType) -> Result = ok(func(VarSet, F, As, ReturnType, MaybeDet, Cond)) ; Result = error( "Syntax error in return type of `:- func' declaration", ReturnTypeTerm) ) ; Result = error( "Syntax error in arguments of `:- func' declaration", FuncTerm) ). process_func_2(error(M, T), _, _, _, _, _, error(M, T)). %-----------------------------------------------------------------------------% % parse a `:- mode p(...)' declaration :- pred process_mode(string, varset, term, condition, maybe(determinism), maybe1(item)). :- mode process_mode(in, in, in, in, in, out) is det. process_mode(ModuleName, VarSet, Term, Cond, MaybeDet, Result) :- ( Term = term__functor(term__atom("="), [FuncTerm, ReturnTypeTerm], _Context) -> parse_qualified_term(ModuleName, FuncTerm, "function `:- mode' declaration", R), process_func_mode(R, FuncTerm, ReturnTypeTerm, VarSet, MaybeDet, Cond, Result) ; parse_qualified_term(ModuleName, Term, "predicate `:- mode' declaration", R), process_pred_mode(R, Term, VarSet, MaybeDet, Cond, Result) ). :- pred process_pred_mode(maybe_functor, term, varset, maybe(determinism), condition, maybe1(item)). :- mode process_pred_mode(in, in, in, in, in, out) is det. process_pred_mode(ok(F, As0), PredMode, VarSet, MaybeDet, Cond, Result) :- ( convert_mode_list(As0, As) -> Result = ok(pred_mode(VarSet, F, As, MaybeDet, Cond)) ; Result = error("Syntax error in predicate mode declaration", PredMode) ). process_pred_mode(error(M, T), _, _, _, _, error(M, T)). :- pred process_func_mode(maybe_functor, term, term, varset, maybe(determinism), condition, maybe1(item)). :- mode process_func_mode(in, in, in, in, in, in, out) is det. process_func_mode(ok(F, As0), FuncMode, RetMode0, VarSet, MaybeDet, Cond, Result) :- ( convert_mode_list(As0, As) -> ( convert_mode(RetMode0, RetMode) -> Result = ok(func_mode(VarSet, F, As, RetMode, MaybeDet, Cond)) ; Result = error( "Syntax error in return mode of function mode declaration", RetMode0) ) ; Result = error( "Syntax error in arguments of function mode declaration", FuncMode) ). process_func_mode(error(M, T), _, _, _, _, _, error(M, T)). %-----------------------------------------------------------------------------% % parse a `:- inst foo = ...' definition :- pred parse_inst_decl(varset, term, maybe1(item)). :- mode parse_inst_decl(in, in, out) is det. parse_inst_decl(VarSet, InstDefn, Result) :- ( InstDefn = term__functor(term__atom(Op), [H,B], _Context), ( Op = "=" ; Op = "==" ) -> get_condition(B, Body, Condition), convert_inst_defn(H, Body, R), process_maybe1(make_inst_defn(VarSet, Condition), R, Result) ; % XXX this is for `abstract inst' declarations, % which are not really supported InstDefn = term__functor(term__atom("is"), [ Head, term__functor(term__atom("private"), [], _) ], _) -> Condition = true, convert_abstract_inst_defn(Head, R), process_maybe1(make_inst_defn(VarSet, Condition), R, Result) ; InstDefn = term__functor(term__atom("--->"), [H,B], Context) -> get_condition(B, Body, Condition), Body1 = term__functor(term__atom("bound"), [Body], Context), convert_inst_defn(H, Body1, R), process_maybe1(make_inst_defn(VarSet, Condition), R, Result) ; Result = error("`=' expected in `:- inst' definition", InstDefn) ). % we should check the condition for errs % (don't bother at the moment, since we ignore % conditions anyhow :-) :- pred convert_inst_defn(term, term, maybe1(inst_defn)). :- mode convert_inst_defn(in, in, out) is det. convert_inst_defn(Head, Body, Result) :- parse_qualified_term(Head, "inst definition", R), convert_inst_defn_2(R, Head, Body, Result). :- pred convert_inst_defn_2(maybe_functor, term, term, maybe1(inst_defn)). :- mode convert_inst_defn_2(in, in, in, out) is det. convert_inst_defn_2(error(M,T), _, _, error(M,T)). convert_inst_defn_2(ok(Name, Args), Head, Body, Result) :- % check that all the head args are variables ( %%% some [Arg] ( list__member(Arg, Args), Arg \= term__variable(_) ) -> Result = error("Inst parameters must be variables", Head) ; % check that all the head arg variables are distinct %%% some [Arg2, OtherArgs] ( list__member(Arg2, Args, [Arg2|OtherArgs]), list__member(Arg2, OtherArgs) ) -> Result = error("Repeated inst parameters in LHS of inst defn", Head) ; % check that all the variables in the body occur in the head %%% some [Var2] ( term__contains_var(Body, Var2), \+ term__contains_var_list(Args, Var2) ) -> Result = error("Free inst parameter in RHS of inst definition", Body) ; % should improve the error message here ( %%% some [ConvertedBody] convert_inst(Body, ConvertedBody) -> Result = ok(eqv_inst(Name, Args, ConvertedBody)) ; Result = error("Syntax error in inst body", Body) ) ). :- pred convert_abstract_inst_defn(term, maybe1(inst_defn)). :- mode convert_abstract_inst_defn(in, out) is det. convert_abstract_inst_defn(Head, Result) :- parse_qualified_term(Head, "inst definition", R), convert_abstract_inst_defn_2(R, Head, Result). :- pred convert_abstract_inst_defn_2(maybe_functor, term, maybe1(inst_defn)). :- mode convert_abstract_inst_defn_2(in, in, out) is det. convert_abstract_inst_defn_2(error(M,T), _, error(M,T)). convert_abstract_inst_defn_2(ok(Name, Args), Head, Result) :- % check that all the head args are variables ( %%% some [Arg] ( list__member(Arg, Args), Arg \= term__variable(_) ) -> Result = error("Inst parameters must be variables", Head) ; % check that all the head arg variables are distinct %%% some [Arg2, OtherArgs] ( list__member(Arg2, Args, [Arg2|OtherArgs]), list__member(Arg2, OtherArgs) ) -> Result = error( "Repeated inst parameters in abstract inst definition", Head) ; Result = ok(abstract_inst(Name, Args)) ). :- pred convert_inst_list(list(term), list(inst)). :- mode convert_inst_list(in, out) is semidet. convert_inst_list([], []). convert_inst_list([H0|T0], [H|T]) :- convert_inst(H0, H), convert_inst_list(T0, T). :- pred convert_inst(term, inst). :- mode convert_inst(in, out) is semidet. convert_inst(term__variable(V), inst_var(V)). convert_inst(term__functor(Name, Args0, Context), Result) :- % `free' insts ( Name = term__atom("free"), Args0 = [] -> Result = free % `any' insts ; Name = term__atom("any"), Args0 = [] -> Result = any(shared) ; Name = term__atom("unique_any"), Args0 = [] -> Result = any(unique) ; Name = term__atom("mostly_unique_any"), Args0 = [] -> Result = any(mostly_unique) ; Name = term__atom("clobbered_any"), Args0 = [] -> Result = any(clobbered) ; Name = term__atom("mostly_clobbered_any"), Args0 = [] -> Result = any(mostly_clobbered) % `ground' insts ; Name = term__atom("ground"), Args0 = [] -> Result = ground(shared, no) ; Name = term__atom("unique"), Args0 = [] -> Result = ground(unique, no) ; Name = term__atom("mostly_unique"), Args0 = [] -> Result = ground(mostly_unique, no) ; Name = term__atom("clobbered"), Args0 = [] -> Result = ground(clobbered, no) ; Name = term__atom("mostly_clobbered"), Args0 = [] -> Result = ground(mostly_clobbered, no) ; % The syntax for a higher-order pred inst is % % pred_initial(, , ...) is % or % pred_final(, , ...) is % % where , , ... are a list of modes, % and is a determinism. Name = term__atom("is"), Args0 = [PredTerm, DetTerm], PredTerm = term__functor(term__atom("pred"), ArgModesTerm, _) -> DetTerm = term__functor(term__atom(DetString), [], _), standard_det(DetString, Detism), convert_mode_list(ArgModesTerm, ArgModes), PredInst = pred_inst_info(ArgModes, Detism), Result = ground(shared, yes(PredInst)) % `not_reached' inst ; Name = term__atom("not_reached"), Args0 = [] -> Result = not_reached % `bound' insts ; Name = term__atom("bound"), Args0 = [Disj] -> parse_bound_inst_list(Disj, shared, Result) /* `bound_unique' is for backwards compatibility - use `unique' instead */ ; Name = term__atom("bound_unique"), Args0 = [Disj] -> parse_bound_inst_list(Disj, unique, Result) ; Name = term__atom("unique"), Args0 = [Disj] -> parse_bound_inst_list(Disj, unique, Result) ; Name = term__atom("mostly_unique"), Args0 = [Disj] -> parse_bound_inst_list(Disj, mostly_unique, Result) % anything else must be a user-defined inst ; parse_qualified_term(term__functor(Name, Args0, Context), "", ok(QualifiedName, Args1)), convert_inst_list(Args1, Args), Result = defined_inst(user_inst(QualifiedName, Args)) ). :- pred parse_bound_inst_list(term::in, uniqueness::in, (inst)::out) is semidet. parse_bound_inst_list(Disj, Uniqueness, bound(Uniqueness, Functors)) :- disjunction_to_list(Disj, List), convert_bound_inst_list(List, Functors0), list__sort_and_remove_dups(Functors0, Functors). :- pred convert_bound_inst_list(list(term), list(bound_inst)). :- mode convert_bound_inst_list(in, out) is semidet. convert_bound_inst_list([], []). convert_bound_inst_list([H0|T0], [H|T]) :- convert_bound_inst(H0, H), convert_bound_inst_list(T0, T). :- pred convert_bound_inst(term, bound_inst). :- mode convert_bound_inst(in, out) is semidet. convert_bound_inst(term__functor(Name0, Args0, _), functor(ConsId, Args)) :- list__length(Args0, Arity), make_functor_cons_id(Name0, Arity, ConsId), convert_inst_list(Args0, Args). :- pred make_inst_defn(varset, condition, inst_defn, item). :- mode make_inst_defn(in, in, in, out) is det. make_inst_defn(VarSet, Cond, InstDefn, inst_defn(VarSet, InstDefn, Cond)). %-----------------------------------------------------------------------------% % parse a `:- mode foo :: ...' or `:- mode foo = ...' definition. :- pred parse_mode_decl(string, varset, term, maybe1(item)). :- mode parse_mode_decl(in, in, in, out) is det. parse_mode_decl(ModuleName, VarSet, ModeDefn, Result) :- ( %%% some [H,B] mode_op(ModeDefn, H, B) -> get_condition(B, Body, Condition), convert_mode_defn(H, Body, R), process_maybe1(make_mode_defn(VarSet, Condition), R, Result) ; parse_mode_decl_pred(ModuleName, VarSet, ModeDefn, Result) ). :- pred mode_op(term, term, term). :- mode mode_op(in, out, out) is semidet. mode_op(term__functor(term__atom(Op),[H,B],_), H, B) :- % People never seem to remember what the right % operator to use in a `:- mode' declaration is, % so the syntax is forgiving. % We allow `::', the standard one which has the right % precedence, but we also allow `==' just to be nice. ( Op = "::" -> true ; Op = "==" ). :- pred convert_mode_defn(term, term, maybe1(mode_defn)). :- mode convert_mode_defn(in, in, out) is det. convert_mode_defn(Head, Body, Result) :- parse_qualified_term(Head, "mode definition", R), convert_mode_defn_2(R, Head, Body, Result). :- pred convert_mode_defn_2(maybe_functor, term, term, maybe1(mode_defn)). :- mode convert_mode_defn_2(in, in, in, out) is det. convert_mode_defn_2(error(M,T), _, _, error(M,T)). convert_mode_defn_2(ok(Name, Args), Head, Body, Result) :- % check that all the head args are variables ( %%% some [Arg] ( list__member(Arg, Args), Arg \= term__variable(_) ) -> Result = error("Mode parameters must be variables", Head) ; % check that all the head arg variables are distinct %%% some [Arg2, OtherArgs] ( list__member(Arg2, Args, [Arg2|OtherArgs]), list__member(Arg2, OtherArgs) ) -> Result = error("Repeated parameters in LHS of mode defn", Head) % check that all the variables in the body occur in the head ; %%% some [Var2] ( term__contains_var(Body, Var2), \+ term__contains_var_list(Args, Var2) ) -> Result = error("Free inst parameter in RHS of mode definition", Body) ; % should improve the error message here ( %%% some [ConvertedBody] convert_mode(Body, ConvertedBody) -> Result = ok(eqv_mode(Name, Args, ConvertedBody)) ; % catch-all error message - we should do % better than this Result = error("Syntax error in mode definition body", Body) ) ). :- pred convert_type_and_mode_list(list(term), list(type_and_mode)). :- mode convert_type_and_mode_list(in, out) is semidet. convert_type_and_mode_list([], []). convert_type_and_mode_list([H0|T0], [H|T]) :- convert_type_and_mode(H0, H), convert_type_and_mode_list(T0, T). :- pred convert_type_and_mode(term, type_and_mode). :- mode convert_type_and_mode(in, out) is semidet. convert_type_and_mode(Term, Result) :- ( Term = term__functor(term__atom("::"), [TypeTerm, ModeTerm], _Context) -> convert_type(TypeTerm, Type), convert_mode(ModeTerm, Mode), Result = type_and_mode(Type, Mode) ; convert_type(Term, Type), Result = type_only(Type) ). :- pred convert_mode_list(list(term), list(mode)). :- mode convert_mode_list(in, out) is semidet. convert_mode_list([], []). convert_mode_list([H0|T0], [H|T]) :- convert_mode(H0, H), convert_mode_list(T0, T). :- pred convert_mode(term, mode). :- mode convert_mode(in, out) is semidet. convert_mode(Term, Mode) :- ( Term = term__functor(term__atom("->"), [InstA, InstB], _Context) -> convert_inst(InstA, ConvertedInstA), convert_inst(InstB, ConvertedInstB), Mode = (ConvertedInstA -> ConvertedInstB) ; % Handle higher-order predicate modes: % a mode of the form % pred(, , ...) is det % is an abbreviation for the inst mapping % ( pred(, , ...) is det' % -> pred(, , ...) is det' % ) Term = term__functor(term__atom("is"), [PredTerm, DetTerm], _), PredTerm = term__functor(term__atom("pred"), ArgModesTerms, _) -> DetTerm = term__functor(term__atom(DetString), [], _), standard_det(DetString, Detism), convert_mode_list(ArgModesTerms, ArgModes), PredInstInfo = pred_inst_info(ArgModes, Detism), Inst = ground(shared, yes(PredInstInfo)), Mode = (Inst -> Inst) ; parse_qualified_term(Term, "mode definition", R), R = ok(Name, Args), % should improve error reporting convert_inst_list(Args, ConvertedArgs), Mode = user_defined_mode(Name, ConvertedArgs) ). :- pred make_mode_defn(varset, condition, mode_defn, item). :- mode make_mode_defn(in, in, in, out) is det. make_mode_defn(VarSet, Cond, ModeDefn, mode_defn(VarSet, ModeDefn, Cond)). %-----------------------------------------------------------------------------% :- type parser(T) == pred(term, maybe1(T)). :- mode parser :: pred(in, out) is det. :- type maker(T1, T2) == pred(T1, T2). :- mode maker :: pred(in, out) is det. :- pred parse_symlist_decl(parser(T), maker(list(T), sym_list), maker(sym_list, module_defn), term, varset, maybe1(item)). :- mode parse_symlist_decl(parser, maker, maker, in, in, out) is det. parse_symlist_decl(ParserPred, MakeSymListPred, MakeModuleDefnPred, Term, VarSet, Result) :- parse_list(ParserPred, Term, Result0), process_maybe1(make_module_defn(MakeSymListPred, MakeModuleDefnPred, VarSet), Result0, Result). :- pred make_module_defn(maker(T, sym_list), maker(sym_list, module_defn), varset, T, item). :- mode make_module_defn(maker, maker, in, in, out) is det. make_module_defn(MakeSymListPred, MakeModuleDefnPred, VarSet, T, module_defn(VarSet, ModuleDefn)) :- call(MakeSymListPred, T, SymList), call(MakeModuleDefnPred, SymList, ModuleDefn). %-----------------------------------------------------------------------------% % Parse a comma-separated list (misleading described as % a "conjunction") of things. :- pred parse_list(parser(T), term, maybe1(list(T))). :- mode parse_list(parser, in, out) is det. parse_list(Parser, Term, Result) :- conjunction_to_list(Term, List), parse_list_2(List, Parser, Result). :- pred parse_list_2(list(term), parser(T), maybe1(list(T))). :- mode parse_list_2(in, parser, out) is det. parse_list_2([], _, ok([])). parse_list_2([X|Xs], Parser, Result) :- call(Parser, X, X_Result), parse_list_2(Xs, Parser, Xs_Result), combine_list_results(X_Result, Xs_Result, Result). % If a list of things contains multiple errors, then we only % report the first one. :- pred combine_list_results(maybe1(T), maybe1(list(T)), maybe1(list(T))). :- mode combine_list_results(in, in, out) is det. combine_list_results(error(Msg, Term), _, error(Msg, Term)). combine_list_results(ok(_), error(Msg, Term), error(Msg, Term)). combine_list_results(ok(X), ok(Xs), ok([X|Xs])). %-----------------------------------------------------------------------------% :- pred process_maybe1(maker(T1, T2), maybe1(T1), maybe1(T2)). :- mode process_maybe1(maker, in, out) is det. process_maybe1(Maker, ok(X), ok(Y)) :- !, call(Maker, X, Y). process_maybe1(_, error(M, T), error(M, T)). :- pred process_maybe1_to_t(maker(T1, maybe1(T2)), maybe1(T1), maybe1(T2)). :- mode process_maybe1_to_t(maker, in, out) is det. process_maybe1_to_t(Maker, ok(X), Y) :- !, call(Maker, X, Y). process_maybe1_to_t(_, error(M, T), error(M, T)). %-----------------------------------------------------------------------------% :- pred make_module(list(module_specifier)::in, sym_list::out) is det. make_module(X, module(X)). :- pred make_sym(list(sym_specifier)::in, sym_list::out) is det. make_sym(X, sym(X)). :- pred make_pred(list(pred_specifier)::in, sym_list::out) is det. make_pred(X, pred(X)). :- pred make_func(list(func_specifier)::in, sym_list::out) is det. make_func(X, func(X)). :- pred make_cons(list(cons_specifier)::in, sym_list::out) is det. make_cons(X, cons(X)). :- pred make_type(list(type_specifier)::in, sym_list::out) is det. make_type(X, type(X)). :- pred make_adt(list(adt_specifier)::in, sym_list::out) is det. make_adt(X, adt(X)). :- pred make_op(list(op_specifier)::in, sym_list::out) is det. make_op(X, op(X)). %-----------------------------------------------------------------------------% % % A symbol specifier is one of % % SymbolNameSpecifier % Matches any symbol matched by the SymbolNameSpecifier. % TypedConstructorSpecifier % Matches any constructors matched by the % TypedConstructorSpecifier. % cons(ConstructorSpecifier) % Matches only constructors. % pred(PredSpecifier) % Matches only predicates, ie. constructors of type % `pred'. % adt(SymbolNameSpecifier) % Matches only type names. % type(SymbolNameSpecifier) % Matches type names matched by the SymbolNameSpecifier, % and also matches any constructors for the matched type % names. % op(SymbolNameSpecifier) % Matches only operators. % module(ModuleSpecifier) % Matches all symbols in the specified module. :- pred parse_symbol_specifier(term, maybe1(sym_specifier)). :- mode parse_symbol_specifier(in, out) is det. parse_symbol_specifier(MainTerm, Result) :- ( MainTerm = term__functor(term__atom(Functor), [Term], _Context) -> ( Functor = "cons" -> parse_constructor_specifier(Term, Result0), process_maybe1(make_cons_symbol_specifier, Result0, Result) ; Functor = "pred" -> parse_predicate_specifier(Term, Result0), process_maybe1(make_pred_symbol_specifier, Result0, Result) ; Functor = "func" -> parse_function_specifier(Term, Result0), process_maybe1(make_func_symbol_specifier, Result0, Result) ; Functor = "type" -> parse_type_specifier(Term, Result0), process_maybe1(make_type_symbol_specifier, Result0, Result) ; Functor = "adt" -> parse_adt_specifier(Term, Result0), process_maybe1(make_adt_symbol_specifier, Result0, Result) ; Functor = "op" -> parse_op_specifier(Term, Result0), process_maybe1(make_op_symbol_specifier, Result0, Result) ; Functor = "module" -> parse_module_specifier(Term, Result0), process_maybe1(make_module_symbol_specifier, Result0, Result) ; parse_constructor_specifier(MainTerm, Result0), process_maybe1(make_cons_symbol_specifier, Result0, Result) ) ; parse_constructor_specifier(MainTerm, Result0), process_maybe1(make_cons_symbol_specifier, Result0, Result) ). % Once we've parsed the appropriate type of symbol specifier, we % need to convert it to a sym_specifier. :- pred make_pred_symbol_specifier(pred_specifier::in, sym_specifier::out) is det. make_pred_symbol_specifier(PredSpec, pred(PredSpec)). :- pred make_func_symbol_specifier(func_specifier::in, sym_specifier::out) is det. make_func_symbol_specifier(FuncSpec, func(FuncSpec)). :- pred make_cons_symbol_specifier(cons_specifier::in, sym_specifier::out) is det. make_cons_symbol_specifier(ConsSpec, cons(ConsSpec)). :- pred make_type_symbol_specifier(type_specifier::in, sym_specifier::out) is det. make_type_symbol_specifier(TypeSpec, type(TypeSpec)). :- pred make_adt_symbol_specifier(adt_specifier::in, sym_specifier::out) is det. make_adt_symbol_specifier(ADT_Spec, adt(ADT_Spec)). :- pred make_op_symbol_specifier(op_specifier::in, sym_specifier::out) is det. make_op_symbol_specifier(OpSpec, op(OpSpec)). :- pred make_module_symbol_specifier(module_specifier::in, sym_specifier::out) is det. make_module_symbol_specifier(ModuleSpec, module(ModuleSpec)). :- pred cons_specifier_to_sym_specifier(cons_specifier, sym_specifier). :- mode cons_specifier_to_sym_specifier(in, out) is det. cons_specifier_to_sym_specifier(sym(SymSpec), sym(SymSpec)). cons_specifier_to_sym_specifier(typed(SymSpec), typed_sym(SymSpec)). %-----------------------------------------------------------------------------% % A ModuleSpecifier is just an identifier. :- pred parse_module_specifier(term, maybe1(module_specifier)). :- mode parse_module_specifier(in, out) is det. parse_module_specifier(Term, Result) :- ( Term = term__functor(term__atom(ModuleName), [], _Context) -> Result = ok(ModuleName) ; Result = error("Module specifier should be an identifier", Term) ). %-----------------------------------------------------------------------------% % A ConstructorSpecifier is one of % SymbolNameSpecifier % TypedConstructorSpecifier % % A TypedConstructorSpecifier is one of % SymbolNameSpecifier::Type % Matches only constructors with the specified result % type. % SymbolName(ArgType1, ..., ArgTypeN) % Matches only constructors with the specified argument % types. % SymbolName(ArgType1, ..., ArgTypeN)::Type % Matches only constructors with the specified argument % and result types. :- pred parse_constructor_specifier(term, maybe1(cons_specifier)). :- mode parse_constructor_specifier(in, out) is det. parse_constructor_specifier(Term, Result) :- ( Term = term__functor(term__atom("::"), [NameArgsTerm, TypeTerm], _Context) -> parse_arg_types_specifier(NameArgsTerm, NameArgsResult), parse_type(TypeTerm, TypeResult), process_typed_constructor_specifier(NameArgsResult, TypeResult, Result) ; parse_arg_types_specifier(Term, TermResult), process_maybe1(make_untyped_cons_spec, TermResult, Result) ). %-----------------------------------------------------------------------------% % A PredicateSpecifier is one of % SymbolName(ArgType1, ..., ArgTypeN) % Matches only predicates with the specified argument % types. % SymbolNameSpecifier :- pred parse_predicate_specifier(term, maybe1(pred_specifier)). :- mode parse_predicate_specifier(in, out) is det. parse_predicate_specifier(Term, Result) :- ( Term = term__functor(term__atom("/"), [_,_], _Context) -> parse_symbol_name_specifier(Term, NameResult), process_maybe1(make_arity_predicate_specifier, NameResult, Result) ; parse_qualified_term(Term, "predicate specifier", TermResult), process_typed_predicate_specifier(TermResult, Result) ). :- pred process_typed_predicate_specifier(maybe_functor, maybe1(pred_specifier)). :- mode process_typed_predicate_specifier(in, out) is det. process_typed_predicate_specifier(ok(Name, Args), ok(Result)) :- ( Args = [] -> Result = sym(name(Name)) ; Result = name_args(Name, Args) ). process_typed_predicate_specifier(error(Msg, Term), error(Msg, Term)). :- pred make_arity_predicate_specifier(sym_name_specifier, pred_specifier). :- mode make_arity_predicate_specifier(in, out) is det. make_arity_predicate_specifier(Result, sym(Result)). %-----------------------------------------------------------------------------% % Parsing the name & argument types of a constructor specifier is % exactly the same as parsing a predicate specifier... :- pred parse_arg_types_specifier(term, maybe1(pred_specifier)). :- mode parse_arg_types_specifier(in, out) is det. parse_arg_types_specifier(Term, Result) :- ( Term = term__functor(term__atom("/"), [_,_], _Context) -> parse_symbol_name_specifier(Term, NameResult), process_maybe1(make_arity_predicate_specifier, NameResult, Result) ; parse_qualified_term(Term, "constructor specifier", TermResult), process_typed_predicate_specifier(TermResult, Result) ). % ... but we have to convert the result back into the appropriate % format. :- pred process_typed_constructor_specifier(maybe1(pred_specifier), maybe1(type), maybe1(cons_specifier)). :- mode process_typed_constructor_specifier(in, in, out) is det. process_typed_constructor_specifier(error(Msg, Term), _, error(Msg, Term)). process_typed_constructor_specifier(ok(_), error(Msg, Term), error(Msg, Term)). process_typed_constructor_specifier(ok(NameArgs), ok(ResType), ok(Result)) :- process_typed_cons_spec_2(NameArgs, ResType, Result). :- pred process_typed_cons_spec_2(pred_specifier, type, cons_specifier). :- mode process_typed_cons_spec_2(in, in, out) is det. process_typed_cons_spec_2(sym(Name), Res, typed(name_res(Name, Res))). process_typed_cons_spec_2(name_args(Name, Args), Res, typed(name_args_res(Name, Args, Res))). :- pred make_untyped_cons_spec(pred_specifier::in, cons_specifier::out) is det. make_untyped_cons_spec(sym(Name), sym(Name)). make_untyped_cons_spec(name_args(Name, Args), typed(name_args(Name, Args))). %-----------------------------------------------------------------------------% % A SymbolNameSpecifier is one of % SymbolName % SymbolName/Arity % Matches only symbols of the specified arity. % :- pred parse_symbol_name_specifier(term, maybe1(sym_name_specifier)). :- mode parse_symbol_name_specifier(in, out) is det. parse_symbol_name_specifier(Term, Result) :- ( %%% some [NameTerm, ArityTerm, Context] Term = term__functor(term__atom("/"), [NameTerm, ArityTerm], _Context) -> ( %%% some [Arity, Context2] ArityTerm = term__functor(term__integer(Arity), [], _Context2) -> ( Arity >= 0 -> parse_symbol_name(NameTerm, NameResult), process_maybe1(make_name_arity_specifier(Arity), NameResult, Result) ; Result = error("Arity in symbol name specifier must be a non-negative integer", Term) ) ; Result = error("Arity in symbol name specifier must be an integer", Term) ) ; parse_symbol_name(Term, SymbolNameResult), process_maybe1(make_name_specifier, SymbolNameResult, Result) ). :- pred make_name_arity_specifier(arity, sym_name, sym_name_specifier). :- mode make_name_arity_specifier(in, in, out) is det. make_name_arity_specifier(Arity, Name, name_arity(Name, Arity)). :- pred make_name_specifier(sym_name::in, sym_name_specifier::out) is det. make_name_specifier(Name, name(Name)). %-----------------------------------------------------------------------------% % A QualifiedTerm is one of % Name(Args) % Module:Name(Args) % (or if Args is empty, one of % Name % Module:Name) :- pred parse_qualified_term(string, term, string, maybe_functor). :- mode parse_qualified_term(in, in, in, out) is det. parse_qualified_term(DefaultModName, Term, Msg, Result) :- ( Term = term__functor(term__atom(":"), [ModuleTerm, NameArgsTerm], _Context) -> ( NameArgsTerm = term__functor(term__atom(Name), Args, _Context2) -> ( ModuleTerm = term__functor(term__atom(Module), [], _Context3) -> ( Module = DefaultModName -> Result = ok(qualified(Module, Name), Args) ; Result = error("Module qualifier in predicate definition does not match preceding `:- module' declaration", Term) ) ; Result = error("Module name identifier expected before ':' in qualified symbol name", Term) ) ; Result = error("Identifier expected after ':' in qualified symbol name", Term) ) ; ( Term = term__functor(term__atom(Name2), Args2, _Context4) -> ( DefaultModName = "" -> Result = ok(unqualified(Name2), Args2) ; Result = ok(qualified(DefaultModName, Name2), Args2) ) ; string__append("atom expected in ", Msg, ErrorMsg), Result = error(ErrorMsg, Term) ) ). % parse_qualified_term/3 calls parse_qualified_term/4, and is used when % no default module name exists. :- pred parse_qualified_term(term, string, maybe_functor). :- mode parse_qualified_term(in, in, out) is det. parse_qualified_term(Term, Msg, Result) :- parse_qualified_term("", Term, Msg, Result). %-----------------------------------------------------------------------------% % A SymbolName is one of % Name % Matches symbols with the specified name in the % current namespace. % Module:Name % Matches symbols with the specified name exported % by the specified module. :- pred parse_symbol_name(string, term, maybe1(sym_name)). :- mode parse_symbol_name(in, in, out) is det. parse_symbol_name(DefaultModName, Term, Result) :- ( Term = term__functor(term__atom(":"), [ModuleTerm, NameTerm], _Context) -> ( NameTerm = term__functor(term__atom(Name), [], _Context1) -> ( ModuleTerm = term__functor(term__atom(Module), [], _Context2) -> Result = ok(qualified(Module, Name)) ; Result = error("Module name identifier expected before ':' in qualified symbol name", Term) ) ; Result = error("Identifier expected after ':' in qualified symbol name", Term) ) ; ( Term = term__functor(term__atom(Name2), [], _Context3) -> ( DefaultModName = "" -> Result = ok(unqualified(Name2)) ; Result = ok(qualified(DefaultModName, Name2)) ) ; Result = error("Symbol name specifier expected", Term) ) ). :- pred parse_symbol_name(term, maybe1(sym_name)). :- mode parse_symbol_name(in, out) is det. parse_symbol_name(Term, Result) :- parse_symbol_name("", Term, Result). %-----------------------------------------------------------------------------% % predicates used to convert a sym_list to a program item :- pred make_use(sym_list::in, module_defn::out) is det. make_use(Syms, use(Syms)). :- pred make_import(sym_list::in, module_defn::out) is det. make_import(Syms, import(Syms)). :- pred make_export(sym_list::in, module_defn::out) is det. make_export(Syms, export(Syms)). %-----------------------------------------------------------------------------% % A FuncSpecifier is just a constructur name specifier. :- pred parse_function_specifier(term, maybe1(func_specifier)). :- mode parse_function_specifier(in, out) is det. parse_function_specifier(Term, Result) :- parse_constructor_specifier(Term, Result). % A TypeSpecifier is just a symbol name specifier. :- pred parse_type_specifier(term, maybe1(sym_name_specifier)). :- mode parse_type_specifier(in, out) is det. parse_type_specifier(Term, Result) :- parse_symbol_name_specifier(Term, Result). % An ADT_Specifier is just a symbol name specifier. :- pred parse_adt_specifier(term, maybe1(sym_name_specifier)). :- mode parse_adt_specifier(in, out) is det. parse_adt_specifier(Term, Result) :- parse_symbol_name_specifier(Term, Result). %-----------------------------------------------------------------------------% % For the moment, an OpSpecifier is just a symbol name specifier. % XXX We should allow specifying the fixity of an operator :- pred parse_op_specifier(term, maybe1(op_specifier)). :- mode parse_op_specifier(in, out) is det. parse_op_specifier(Term, Result) :- parse_symbol_name_specifier(Term, R), process_maybe1(make_op_specifier, R, Result). :- pred make_op_specifier(sym_name_specifier::in, op_specifier::out) is det. make_op_specifier(X, sym(X)). %-----------------------------------------------------------------------------% % types are represented just as ordinary terms :- pred parse_type(term, maybe1(type)). :- mode parse_type(in, out) is det. parse_type(T, ok(T)). :- pred convert_type_list(list(term), list(type)). :- mode convert_type_list(in, out) is det. convert_type_list([], []). convert_type_list([H0|T0], [H|T]) :- convert_type(H0, H), convert_type_list(T0, T). :- pred convert_type(term, type). :- mode convert_type(in, out) is det. convert_type(T, T). %-----------------------------------------------------------------------------% report_warning(Message) --> io__stderr_stream(StdErr), globals__io_lookup_bool_option(halt_at_warn, HaltAtWarn), ( { HaltAtWarn = yes } -> io__set_exit_status(1) ; [] ), io__write_string(StdErr, Message). report_warning(Stream, Message) --> globals__io_lookup_bool_option(halt_at_warn, HaltAtWarn), ( { HaltAtWarn = yes } -> io__set_exit_status(1) ; [] ), io__write_string(Stream, Message). report_warning(ModuleName, LineNum, Message) --> { string__format("%s.m:%3d: Warning: %s\n", [s(ModuleName), i(LineNum), s(Message)], FullMessage) }, io__stderr_stream(StdErr), io__write_string(StdErr, FullMessage), globals__io_lookup_bool_option(halt_at_warn, HaltAtWarn), ( { HaltAtWarn = yes } -> io__set_exit_status(1) ; [] ). %-----------------------------------------------------------------------------%