%-----------------------------------------------------------------------------% % Copyright (C) 1995-2003 The University of Melbourne. % This file may only be copied under the terms of the GNU General % Public License - see the file COPYING in the Mercury distribution. %-----------------------------------------------------------------------------% % file: lambda.m % main author: fjh % This module is a pass over the HLDS to deal with lambda expressions. % % Lambda expressions are converted into separate predicates, so for % example we translate % % :- pred p(int::in) is det. % p(X) :- % V__1 = lambda([Y::out] is nondet, q(Y, X))), % solutions(V__1, List), % ... % :- pred q(int::out, int::in) is nondet. % % into % % p(X) :- % V__1 = '__LambdaGoal__1'(X) % solutions(V__1, List), % ... % % :- pred '__LambdaGoal__1'(int::in, int::out) is nondet. % '__LambdaGoal__1'(X, Y) :- q(Y, X). % % % Note that the mode checker requires that a lambda expression % not bind any of the non-local variables such as `X' in the above % example. % % Similarly, a lambda expression may not bind any of the type_infos for % those variables; that is, none of the non-local variables % should be existentially typed (from the perspective of the lambda goal). % Now that we run the polymorphism.m pass before mode checking, this is % also checked by mode analysis. % % It might be OK to allow the parameters of the lambda goal to be % existentially typed, but currently that is not supported. % One difficulty is that it's hard to determine here which type variables % should be existentially quantified. The information is readily % available during type inference, and really type inference should save % that information in a field in the lambda_goal struct, but currently it % doesn't; it saves the head_type_params field in the pred_info, which % tells us which type variables where produced by the body, but for % any given lambda goal we don't know whether the type variable was % produced by something outside the lambda goal or by something inside % the lambda goal (only in the latter case should it be existentially % quantified). % The other difficulty is that taking the address of a predicate with an % existential type would require second-order polymorphism: for a predicate % declared as `:- some [T] pred p(int, T)', the expression `p' must have % type `some [T] pred(int, T)', which is quite a different thing to saying % that there is some type `T' for which `p' has type `pred(int, T)' -- % we don't know what `T' is until the predicate is called, and it might % be different for each call. % Currently we don't support second-order polymorphism, so we % don't support existentially typed lambda expressions either. % %-----------------------------------------------------------------------------% :- module transform_hlds__lambda. :- interface. :- import_module hlds__hlds_module. :- import_module hlds__hlds_pred. :- pred lambda__process_module(module_info, module_info). :- mode lambda__process_module(in, out) is det. :- pred lambda__process_pred(pred_id, module_info, module_info). :- mode lambda__process_pred(in, in, out) is det. %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% :- implementation. :- import_module backend_libs__code_model. % XXX for some back-end dependent % optimizations % Parse tree modules :- import_module parse_tree__prog_data. :- import_module parse_tree__prog_util. % HLDS modules :- import_module check_hlds__inst_match. :- import_module check_hlds__mode_util. :- import_module check_hlds__type_util. :- import_module hlds__goal_util. :- import_module hlds__hlds_data. :- import_module hlds__hlds_goal. :- import_module hlds__quantification. % Misc :- import_module libs__globals. :- import_module libs__options. % Standard library modules :- import_module list, map, set. :- import_module term, varset, bool, string, std_util, require. :- type lambda_info ---> lambda_info( prog_varset, % from the proc_info map(prog_var, type), % from the proc_info class_constraints, % from the pred_info tvarset, % from the proc_info inst_varset, % from the proc_info map(tvar, type_info_locn), % from the proc_info % (typeinfos) map(class_constraint, prog_var), % from the proc_info % (typeclass_infos) pred_markers, % from the pred_info pred_or_func, string, % pred/func name aditi_owner, module_info, bool % true iff we need to recompute the nonlocals ). %-----------------------------------------------------------------------------% % This whole section just traverses the module structure. lambda__process_module(ModuleInfo0, ModuleInfo) :- module_info_predids(ModuleInfo0, PredIds), lambda__process_preds(PredIds, ModuleInfo0, ModuleInfo1), % Need update the dependency graph to include the lambda predicates. module_info_clobber_dependency_info(ModuleInfo1, ModuleInfo). :- pred lambda__process_preds(list(pred_id), module_info, module_info). :- mode lambda__process_preds(in, in, out) is det. lambda__process_preds([], ModuleInfo, ModuleInfo). lambda__process_preds([PredId | PredIds], ModuleInfo0, ModuleInfo) :- lambda__process_pred(PredId, ModuleInfo0, ModuleInfo1), lambda__process_preds(PredIds, ModuleInfo1, ModuleInfo). lambda__process_pred(PredId, ModuleInfo0, ModuleInfo) :- module_info_pred_info(ModuleInfo0, PredId, PredInfo), ProcIds = pred_info_procids(PredInfo), lambda__process_procs(PredId, ProcIds, ModuleInfo0, ModuleInfo). :- pred lambda__process_procs(pred_id, list(proc_id), module_info, module_info). :- mode lambda__process_procs(in, in, in, out) is det. lambda__process_procs(_PredId, [], ModuleInfo, ModuleInfo). lambda__process_procs(PredId, [ProcId | ProcIds], ModuleInfo0, ModuleInfo) :- lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1), lambda__process_procs(PredId, ProcIds, ModuleInfo1, ModuleInfo). :- pred lambda__process_proc(pred_id, proc_id, module_info, module_info). :- mode lambda__process_proc(in, in, in, out) is det. lambda__process_proc(PredId, ProcId, !ModuleInfo) :- module_info_preds(!.ModuleInfo, PredTable0), map__lookup(PredTable0, PredId, PredInfo0), pred_info_procedures(PredInfo0, ProcTable0), map__lookup(ProcTable0, ProcId, ProcInfo0), lambda__process_proc_2(ProcInfo0, ProcInfo, PredInfo0, PredInfo1, !ModuleInfo), pred_info_procedures(PredInfo1, ProcTable1), map__det_update(ProcTable1, ProcId, ProcInfo, ProcTable), pred_info_set_procedures(ProcTable, PredInfo1, PredInfo), module_info_preds(!.ModuleInfo, PredTable1), map__det_update(PredTable1, PredId, PredInfo, PredTable), module_info_set_preds(PredTable, !ModuleInfo). :- pred lambda__process_proc_2(proc_info::in, proc_info::out, pred_info::in, pred_info::out, module_info::in, module_info::out) is det. lambda__process_proc_2(!ProcInfo, !PredInfo, !ModuleInfo) :- % grab the appropriate fields from the pred_info and proc_info PredName = pred_info_name(!.PredInfo), PredOrFunc = pred_info_is_pred_or_func(!.PredInfo), pred_info_typevarset(!.PredInfo, TypeVarSet0), pred_info_get_markers(!.PredInfo, Markers), pred_info_get_class_context(!.PredInfo, Constraints0), pred_info_get_aditi_owner(!.PredInfo, Owner), proc_info_headvars(!.ProcInfo, HeadVars), proc_info_varset(!.ProcInfo, VarSet0), proc_info_vartypes(!.ProcInfo, VarTypes0), proc_info_goal(!.ProcInfo, Goal0), proc_info_typeinfo_varmap(!.ProcInfo, TVarMap0), proc_info_typeclass_info_varmap(!.ProcInfo, TCVarMap0), proc_info_inst_varset(!.ProcInfo, InstVarSet0), MustRecomputeNonLocals0 = no, % process the goal Info0 = lambda_info(VarSet0, VarTypes0, Constraints0, TypeVarSet0, InstVarSet0, TVarMap0, TCVarMap0, Markers, PredOrFunc, PredName, Owner, !.ModuleInfo, MustRecomputeNonLocals0), lambda__process_goal(Goal0, Goal1, Info0, Info1), Info1 = lambda_info(VarSet1, VarTypes1, Constraints, TypeVarSet, _, TVarMap, TCVarMap, _, _, _, _, !:ModuleInfo, MustRecomputeNonLocals), % check if we need to requantify ( MustRecomputeNonLocals = yes -> implicitly_quantify_clause_body(HeadVars, _Warnings, Goal1, Goal, VarSet1, VarSet, VarTypes1, VarTypes) ; Goal = Goal1, VarSet = VarSet1, VarTypes = VarTypes1 ), % set the new values of the fields in proc_info and pred_info proc_info_set_goal(Goal, !ProcInfo), proc_info_set_varset(VarSet, !ProcInfo), proc_info_set_vartypes(VarTypes, !ProcInfo), proc_info_set_typeinfo_varmap(TVarMap, !ProcInfo), proc_info_set_typeclass_info_varmap(TCVarMap, !ProcInfo), pred_info_set_typevarset(TypeVarSet, !PredInfo), pred_info_set_class_context(Constraints, !PredInfo). :- pred lambda__process_goal(hlds_goal, hlds_goal, lambda_info, lambda_info). :- mode lambda__process_goal(in, out, in, out) is det. lambda__process_goal(Goal0 - GoalInfo0, Goal) --> lambda__process_goal_2(Goal0, GoalInfo0, Goal). :- pred lambda__process_goal_2(hlds_goal_expr, hlds_goal_info, hlds_goal, lambda_info, lambda_info). :- mode lambda__process_goal_2(in, in, out, in, out) is det. lambda__process_goal_2(unify(XVar, Y, Mode, Unification, Context), GoalInfo, Unify - GoalInfo) --> ( { Y = lambda_goal(Purity, PredOrFunc, EvalMethod, _, NonLocalVars, Vars, Modes, Det, LambdaGoal0) } -> % first, process the lambda goal recursively, in case it % contains some nested lambda expressions. lambda__process_goal(LambdaGoal0, LambdaGoal1), % then, convert the lambda expression into a new predicate lambda__process_lambda(Purity, PredOrFunc, EvalMethod, Vars, Modes, Det, NonLocalVars, LambdaGoal1, Unification, Y1, Unification1), { Unify = unify(XVar, Y1, Mode, Unification1, Context) } ; % ordinary unifications are left unchanged { Unify = unify(XVar, Y, Mode, Unification, Context) } ). % the rest of the clauses just process goals recursively lambda__process_goal_2(conj(Goals0), GoalInfo, conj(Goals) - GoalInfo) --> lambda__process_goal_list(Goals0, Goals). lambda__process_goal_2(par_conj(Goals0), GoalInfo, par_conj(Goals) - GoalInfo) --> lambda__process_goal_list(Goals0, Goals). lambda__process_goal_2(disj(Goals0), GoalInfo, disj(Goals) - GoalInfo) --> lambda__process_goal_list(Goals0, Goals). lambda__process_goal_2(not(Goal0), GoalInfo, not(Goal) - GoalInfo) --> lambda__process_goal(Goal0, Goal). lambda__process_goal_2(switch(Var, CanFail, Cases0), GoalInfo, switch(Var, CanFail, Cases) - GoalInfo) --> lambda__process_cases(Cases0, Cases). lambda__process_goal_2(some(Vars, CanRemove, Goal0), GoalInfo, some(Vars, CanRemove, Goal) - GoalInfo) --> lambda__process_goal(Goal0, Goal). lambda__process_goal_2(if_then_else(Vars, A0, B0, C0), GoalInfo, if_then_else(Vars, A, B, C) - GoalInfo) --> lambda__process_goal(A0, A), lambda__process_goal(B0, B), lambda__process_goal(C0, C). lambda__process_goal_2(generic_call(A,B,C,D), GoalInfo, generic_call(A,B,C,D) - GoalInfo) --> []. lambda__process_goal_2(call(A,B,C,D,E,F), GoalInfo, call(A,B,C,D,E,F) - GoalInfo) --> []. lambda__process_goal_2(foreign_proc(A,B,C,D,E,F,G), GoalInfo, foreign_proc(A,B,C,D,E,F,G) - GoalInfo) --> []. lambda__process_goal_2(shorthand(_), _, _) --> % these should have been expanded out by now { error("lambda__process_goal_2: unexpected shorthand") }. :- pred lambda__process_goal_list(list(hlds_goal), list(hlds_goal), lambda_info, lambda_info). :- mode lambda__process_goal_list(in, out, in, out) is det. lambda__process_goal_list([], []) --> []. lambda__process_goal_list([Goal0 | Goals0], [Goal | Goals]) --> lambda__process_goal(Goal0, Goal), lambda__process_goal_list(Goals0, Goals). :- pred lambda__process_cases(list(case), list(case), lambda_info, lambda_info). :- mode lambda__process_cases(in, out, in, out) is det. lambda__process_cases([], []) --> []. lambda__process_cases([case(ConsId, Goal0) | Cases0], [case(ConsId, Goal) | Cases]) --> lambda__process_goal(Goal0, Goal), lambda__process_cases(Cases0, Cases). :- pred lambda__process_lambda(purity, pred_or_func, lambda_eval_method, list(prog_var), list(mode), determinism, list(prog_var), hlds_goal, unification, unify_rhs, unification, lambda_info, lambda_info). :- mode lambda__process_lambda(in, in, in, in, in, in, in, in, in, out, out, in, out) is det. lambda__process_lambda(Purity, PredOrFunc, EvalMethod, Vars, Modes, Detism, OrigNonLocals0, LambdaGoal, Unification0, Functor, Unification, LambdaInfo0, LambdaInfo) :- LambdaInfo0 = lambda_info(VarSet, VarTypes, _PredConstraints, TVarSet, InstVarSet, TVarMap, TCVarMap, Markers, POF, OrigPredName, Owner, ModuleInfo0, MustRecomputeNonLocals0), % Calculate the constraints which apply to this lambda % expression. % Note currently we only allow lambda expressions % to have universally quantified constraints. map__keys(TCVarMap, AllConstraints), map__apply_to_list(Vars, VarTypes, LambdaVarTypes), list__map(type_util__vars, LambdaVarTypes, LambdaTypeVarsList), list__condense(LambdaTypeVarsList, LambdaTypeVars), list__filter(lambda__constraint_contains_vars(LambdaTypeVars), AllConstraints, UnivConstraints), Constraints = constraints(UnivConstraints, []), % existentially typed lambda expressions are not yet supported % (see the documentation at top of this file) ExistQVars = [], LambdaGoal = _ - LambdaGoalInfo, goal_info_get_nonlocals(LambdaGoalInfo, LambdaGoalNonLocals), set__insert_list(LambdaGoalNonLocals, Vars, LambdaNonLocals), goal_util__extra_nonlocal_typeinfos(TVarMap, TCVarMap, VarTypes, ExistQVars, LambdaNonLocals, ExtraTypeInfos), OrigVars = OrigNonLocals0, ( Unification0 = construct(Var0, _, _, UniModes0, _, _, _) -> Var = Var0, UniModes1 = UniModes0 ; error("lambda__transform_lambda: weird unification") ), set__delete_list(LambdaGoalNonLocals, Vars, NonLocals1), % We need all the typeinfos, including the ones that are not used, % for the layout structure describing the closure. NewTypeInfos = ExtraTypeInfos `set__difference` NonLocals1, NonLocals = NonLocals1 `set__union` NewTypeInfos, % If we added variables to the nonlocals of the lambda goal, % then we need to recompute the nonlocals for the procedure % that contains it. ( \+ set__empty(NewTypeInfos) -> MustRecomputeNonLocals = yes ; MustRecomputeNonLocals = MustRecomputeNonLocals0 ), set__to_sorted_list(NonLocals, ArgVars1), ( % Optimize a special case: replace % `lambda([Y1, Y2, ...] is Detism, % p(X1, X2, ..., Y1, Y2, ...))' % where `p' has determinism `Detism' with % `p(X1, X2, ...)' % % This optimization is only valid if the modes of the Xi are % input, since only input arguments can be curried. % It's also only valid if all the inputs in the Yi precede the % outputs. It's also not valid if any of the Xi are in the Yi. LambdaGoal = call(PredId0, ProcId0, CallVars, _, _, _) - _, module_info_pred_proc_info(ModuleInfo0, PredId0, ProcId0, Call_PredInfo, Call_ProcInfo), ( EvalMethod = (aditi_bottom_up), pred_info_get_markers(Call_PredInfo, Call_Markers), check_marker(Call_Markers, aditi) ; EvalMethod = normal ), list__remove_suffix(CallVars, Vars, InitialVars), % check that none of the variables that we're trying to % use as curried arguments are lambda-bound variables \+ ( list__member(InitialVar, InitialVars), list__member(InitialVar, Vars) ), % Check that the code models are compatible. % Note that det is not compatible with semidet, % and semidet is not compatible with nondet, % since the calling conventions are different. % If we're using the LLDS back-end % (i.e. not --high-level-code), % det is compatible with nondet. % If we're using the MLDS back-end, % then predicates and functions have different % calling conventions. proc_info_interface_code_model(Call_ProcInfo, Call_CodeModel), determinism_to_code_model(Detism, CodeModel), module_info_globals(ModuleInfo0, Globals), globals__lookup_bool_option(Globals, highlevel_code, HighLevelCode), ( HighLevelCode = no, ( CodeModel = Call_CodeModel ; CodeModel = model_non, Call_CodeModel = model_det ) ; HighLevelCode = yes, Call_PredOrFunc = pred_info_is_pred_or_func(Call_PredInfo), PredOrFunc = Call_PredOrFunc, CodeModel = Call_CodeModel ), % check that the curried arguments are all input proc_info_argmodes(Call_ProcInfo, Call_ArgModes), list__length(InitialVars, NumInitialVars), list__take(NumInitialVars, Call_ArgModes, CurriedArgModes), \+ ( list__member(Mode, CurriedArgModes), \+ mode_is_input(ModuleInfo0, Mode) ) -> ArgVars = InitialVars, PredId = PredId0, ProcId = ProcId0, mode_util__modes_to_uni_modes(CurriedArgModes, CurriedArgModes, ModuleInfo0, UniModes), % % we need to mark the procedure as having had its % address taken % proc_info_set_address_taken(address_is_taken, Call_ProcInfo, Call_NewProcInfo), module_info_set_pred_proc_info(PredId, ProcId, Call_PredInfo, Call_NewProcInfo, ModuleInfo0, ModuleInfo) ; % Prepare to create a new predicate for the lambda % expression: work out the arguments, module name, predicate % name, arity, arg types, determinism, % context, status, etc. for the new predicate. ArgVars = put_typeinfo_vars_first(ArgVars1, VarTypes), list__append(ArgVars, Vars, AllArgVars), module_info_name(ModuleInfo0, ModuleName), module_info_next_lambda_count(LambdaCount, ModuleInfo0, ModuleInfo1), goal_info_get_context(LambdaGoalInfo, OrigContext), term__context_line(OrigContext, OrigLine), make_pred_name_with_context(ModuleName, "IntroducedFrom", PredOrFunc, OrigPredName, OrigLine, LambdaCount, PredName), goal_info_get_context(LambdaGoalInfo, LambdaContext), % The TVarSet is a superset of what it really ought be, % but that shouldn't matter. % Existentially typed lambda expressions are not % yet supported (see the documentation at top of this file) ExistQVars = [], lambda__uni_modes_to_modes(UniModes1, OrigArgModes), % We have to jump through hoops to work out the mode % of the lambda predicate. For introduced % type_info arguments, we use the mode "in". For the original % non-local vars, we use the modes from `UniModes1'. % For the lambda var arguments at the end, % we use the mode in the lambda expression. list__length(ArgVars, NumArgVars), in_mode(In), list__duplicate(NumArgVars, In, InModes), map__from_corresponding_lists(ArgVars, InModes, ArgModesMap), map__from_corresponding_lists(OrigVars, OrigArgModes, OrigArgModesMap), map__overlay(ArgModesMap, OrigArgModesMap, ArgModesMap1), map__apply_to_list(ArgVars, ArgModesMap1, ArgModes1), % Recompute the uni_modes. mode_util__modes_to_uni_modes(ArgModes1, ArgModes1, ModuleInfo1, UniModes), list__append(ArgModes1, Modes, AllArgModes), map__apply_to_list(AllArgVars, VarTypes, ArgTypes), purity_to_markers(Purity, LambdaMarkers0), ( % Pass through the aditi markers for % aggregate query closures. % XXX we should differentiate between normal % top-down closures and aggregate query closures, % possibly by using a different type for aggregate % queries. Currently all nondet lambda expressions % within Aditi predicates are treated as aggregate % inputs. % EvalMethod = (aditi_bottom_up), determinism_components(Detism, _, at_most_many), check_marker(Markers, aditi) -> markers_to_marker_list(Markers, MarkerList0), list__filter( (pred(Marker::in) is semidet :- % Pass through only Aditi markers. % Don't pass through `context' markers, since % they are useless for non-recursive predicates % such as the created predicate. ( Marker = aditi ; Marker = dnf ; Marker = psn ; Marker = naive ; Marker = supp_magic ; Marker = aditi_memo ; Marker = aditi_no_memo )), MarkerList0, MarkerList), list__foldl(add_marker, MarkerList, LambdaMarkers0, LambdaMarkers) ; EvalMethod = (aditi_bottom_up) -> add_marker(aditi, LambdaMarkers0, LambdaMarkers) ; LambdaMarkers = LambdaMarkers0 ), % Now construct the proc_info and pred_info for the new % single-mode predicate, using the information computed above proc_info_create(VarSet, VarTypes, AllArgVars, AllArgModes, InstVarSet, Detism, LambdaGoal, LambdaContext, TVarMap, TCVarMap, address_is_taken, ProcInfo0), % If we previously already needed to recompute the nonlocals, % then we'd better to that recomputation for the procedure % that we just created. ( MustRecomputeNonLocals0 = yes -> requantify_proc(ProcInfo0, ProcInfo) ; ProcInfo = ProcInfo0 ), set__init(Assertions), pred_info_create(ModuleName, PredName, TVarSet, ExistQVars, ArgTypes, true, LambdaContext, local, LambdaMarkers, PredOrFunc, Constraints, Owner, Assertions, ProcInfo, ProcId, PredInfo), % save the new predicate in the predicate table module_info_get_predicate_table(ModuleInfo1, PredicateTable0), predicate_table_insert(PredicateTable0, PredInfo, PredId, PredicateTable), module_info_set_predicate_table(PredicateTable, ModuleInfo1, ModuleInfo) ), ConsId = pred_const(PredId, ProcId, EvalMethod), Functor = functor(ConsId, no, ArgVars), Unification = construct(Var, ConsId, ArgVars, UniModes, construct_dynamically, cell_is_unique, no), LambdaInfo = lambda_info(VarSet, VarTypes, Constraints, TVarSet, InstVarSet, TVarMap, TCVarMap, Markers, POF, OrigPredName, Owner, ModuleInfo, MustRecomputeNonLocals). :- pred lambda__constraint_contains_vars(list(tvar), class_constraint). :- mode lambda__constraint_contains_vars(in, in) is semidet. lambda__constraint_contains_vars(LambdaVars, ClassConstraint) :- ClassConstraint = constraint(_, ConstraintTypes), list__map(type_util__vars, ConstraintTypes, ConstraintVarsList), list__condense(ConstraintVarsList, ConstraintVars), % Probably not the most efficient way of doing it, but I % wouldn't think that it matters. set__list_to_set(LambdaVars, LambdaVarsSet), set__list_to_set(ConstraintVars, ConstraintVarsSet), set__subset(ConstraintVarsSet, LambdaVarsSet). :- pred lambda__uni_modes_to_modes(list(uni_mode), list(mode)). :- mode lambda__uni_modes_to_modes(in, out) is det. % This predicate works out the modes of the original non-local % variables of a lambda expression based on the list of uni_mode % in the unify_info for the lambda unification. lambda__uni_modes_to_modes([], []). lambda__uni_modes_to_modes([UniMode | UniModes], [Mode | Modes]) :- UniMode = ((_Initial0 - Initial1) -> (_Final0 - _Final1)), Mode = (Initial1 -> Initial1), lambda__uni_modes_to_modes(UniModes, Modes). %---------------------------------------------------------------------------% %---------------------------------------------------------------------------%