%-----------------------------------------------------------------------------% % Copyright (C) 1997-2000 The University of Melbourne. % This file may only be copied under the terms of the GNU General % Public License - see the file COPYING in the Mercury distribution. %-----------------------------------------------------------------------------% % % term_errors.m % Main author: crs. % % This module prints out the various error messages that are produced by % the various modules of termination analysis. % %-----------------------------------------------------------------------------% :- module term_errors. :- interface. :- import_module hlds_module, hlds_pred, prog_data. :- import_module io, bag, std_util, list, assoc_list. :- type termination_error ---> pragma_foreign_code % The analysis result depends on the change constant % of a piece of pragma foreign code, (which cannot be % obtained without analyzing the foreign code, which is % something we cannot do). % Valid in both passes. ; imported_pred % The SCC contains some imported procedures, % whose code is not accessible. ; can_loop_proc_called(pred_proc_id, pred_proc_id) % can_loop_proc_called(Caller, Callee, Context) % The call from Caller to Callee at the associated % context is to a procedure (Callee) whose termination % info is set to can_loop. % Although this error does not prevent us from % producing argument size information, it would % prevent us from proving termination. % We look for this error in pass 1; if we find it, % we do not perform pass 2. ; horder_args(pred_proc_id, pred_proc_id) % horder_args(Caller, Callee, Context) % The call from Caller to Callee at the associated % context has some arguments of a higher order type. % Valid in both passes. ; horder_call % horder_call % There is a higher order call at the associated % context. % Valid in both passes. ; inf_termination_const(pred_proc_id, pred_proc_id) % inf_termination_const(Caller, Callee, Context) % The call from Caller to Callee at the associated % context is to a procedure (Callee) whose arg size % info is set to infinite. % Valid in both passes. ; not_subset(pred_proc_id, bag(prog_var), bag(prog_var)) % not_subset(Proc, SupplierVariables, InHeadVariables) % This error occurs when the bag of active variables % is not a subset of the input head variables. % Valid error only in pass 1. ; inf_call(pred_proc_id, pred_proc_id) % inf_call(Caller, Callee) % The call from Caller to Callee at the associated % context has infinite weight. % Valid error only in pass 2. ; cycle(pred_proc_id, assoc_list(pred_proc_id, prog_context)) % cycle(StartPPId, CallSites) % In the cycle of calls starting at StartPPId and % going through the named call sites may be an % infinite loop. % Valid error only in pass 2. ; no_eqns % There are no equations in this SCC. % This has 2 possible causes. (1) If the predicate has % no output arguments, no equations will be created % for them. The change constant of the predicate is % undefined, but it will also never be used. % (2) If the procedure is a builtin predicate, with % an empty body, traversal cannot create any equations. % Valid error only in pass 1. ; too_many_paths % There are too many distinct paths to be analyzed. % Valid in both passes (which analyze different sets % of paths). ; solver_failed % The solver could not find finite termination % constants for the procedures in the SCC. % Valid only in pass 1. ; is_builtin(pred_id) % The termination constant of the given builtin is % set to infinity; this happens when the type of at % least one output argument permits a norm greater % than zero. ; does_not_term_pragma(pred_id). % The given procedure has a does_not_terminate pragma. :- type term_errors__error == pair(prog_context, termination_error). :- pred term_errors__report_term_errors(list(pred_proc_id)::in, list(term_errors__error)::in, module_info::in, io__state::di, io__state::uo) is det. % An error is considered an indirect error if it is due either to a % language feature we cannot analyze or due to an error in another part % of the code. By default, we do not issue warnings about indirect errors, % since in the first case, the programmer cannot do anything about it, % and in the second case, the piece of code that the programmer *can* do % something about is not this piece. :- pred indirect_error(term_errors__termination_error). :- mode indirect_error(in) is semidet. :- implementation. :- import_module hlds_out, prog_out, passes_aux, error_util. :- import_module term, varset. :- import_module mercury_to_mercury, term_util, options, globals. :- import_module bool, int, string, map, bag, require. indirect_error(horder_call). indirect_error(pragma_foreign_code). indirect_error(imported_pred). indirect_error(can_loop_proc_called(_, _)). indirect_error(horder_args(_, _)). indirect_error(does_not_term_pragma(_)). term_errors__report_term_errors(SCC, Errors, Module) --> { get_context_from_scc(SCC, Module, Context) }, ( { SCC = [PPId] } -> { Pieces0 = [words("Termination of")] }, { error_util__describe_one_proc_name(Module, PPId, PredName) }, { list__append(Pieces0, [fixed(PredName)], Pieces1) }, { Single = yes(PPId) } ; { Pieces0 = [words("Termination of the mutually recursive procedures")] }, { error_util__describe_several_proc_names(Module, SCC, ProcNamePieces) }, { list__append(Pieces0, ProcNamePieces, Pieces1) }, { Single = no } ), ( { Errors = [] }, % XXX this should never happen % XXX but for some reason, it often does % { error("empty list of errors") } { Pieces2 = [words("not proven, for unknown reason(s).")] }, { list__append(Pieces1, Pieces2, Pieces) }, write_error_pieces(Context, 0, Pieces) ; { Errors = [Error] }, { Pieces2 = [words("not proven for the following reason:")] }, { list__append(Pieces1, Pieces2, Pieces) }, write_error_pieces(Context, 0, Pieces), term_errors__output_error(Error, Single, no, 0, Module) ; { Errors = [_, _ | _] }, { Pieces2 = [words("not proven for the following reasons:")] }, { list__append(Pieces1, Pieces2, Pieces) }, write_error_pieces(Context, 0, Pieces), term_errors__output_errors(Errors, Single, 1, 0, Module) ). :- pred term_errors__report_arg_size_errors(list(pred_proc_id)::in, list(term_errors__error)::in, module_info::in, io__state::di, io__state::uo) is det. term_errors__report_arg_size_errors(SCC, Errors, Module) --> { get_context_from_scc(SCC, Module, Context) }, ( { SCC = [PPId] } -> { Pieces0 = [words("Termination constant of")] }, { error_util__describe_one_proc_name(Module, PPId, ProcName) }, { list__append(Pieces0, [fixed(ProcName)], Pieces1) }, { Single = yes(PPId) } ; { Pieces0 = [words("Termination constants"), words("of the mutually recursive procedures")] }, { error_util__describe_several_proc_names(Module, SCC, ProcNamePieces) }, { list__append(Pieces0, ProcNamePieces, Pieces1) }, { Single = no } ), { Piece2 = words("set to infinity for the following") }, ( { Errors = [] }, { error("empty list of errors") } ; { Errors = [Error] }, { Piece3 = words("reason:") }, { list__append(Pieces1, [Piece2, Piece3], Pieces) }, write_error_pieces(Context, 0, Pieces), term_errors__output_error(Error, Single, no, 0, Module) ; { Errors = [_, _ | _] }, { Piece3 = words("reasons:") }, { list__append(Pieces1, [Piece2, Piece3], Pieces) }, write_error_pieces(Context, 0, Pieces), term_errors__output_errors(Errors, Single, 1, 0, Module) ). :- pred term_errors__output_errors(list(term_errors__error)::in, maybe(pred_proc_id)::in, int::in, int::in, module_info::in, io__state::di, io__state::uo) is det. term_errors__output_errors([], _, _, _, _) --> []. term_errors__output_errors([Error | Errors], Single, ErrNum0, Indent, Module) --> term_errors__output_error(Error, Single, yes(ErrNum0), Indent, Module), { ErrNum1 is ErrNum0 + 1 }, term_errors__output_errors(Errors, Single, ErrNum1, Indent, Module). :- pred term_errors__output_error(term_errors__error::in, maybe(pred_proc_id)::in, maybe(int)::in, int::in, module_info::in, io__state::di, io__state::uo) is det. term_errors__output_error(Context - Error, Single, ErrorNum, Indent, Module) --> { term_errors__description(Error, Single, Module, Pieces0, Reason) }, { ErrorNum = yes(N) -> string__int_to_string(N, Nstr), string__append_list(["Reason ", Nstr, ":"], Preamble), Pieces = [fixed(Preamble) | Pieces0] ; Pieces = Pieces0 }, write_error_pieces(Context, Indent, Pieces), ( { Reason = yes(InfArgSizePPId) } -> { lookup_proc_arg_size_info(Module, InfArgSizePPId, ArgSize) }, ( { ArgSize = yes(infinite(ArgSizeErrors)) } -> % XXX the next line is cheating { ArgSizePPIdSCC = [InfArgSizePPId] }, term_errors__report_arg_size_errors(ArgSizePPIdSCC, ArgSizeErrors, Module) ; { error("inf arg size procedure does not have inf arg size") } ) ; [] ). :- pred term_errors__description(termination_error::in, maybe(pred_proc_id)::in, module_info::in, list(format_component)::out, maybe(pred_proc_id)::out) is det. term_errors__description(horder_call, _, _, Pieces, no) :- Pieces = [words("It contains a higher order call.")]. term_errors__description(pragma_foreign_code, _, _, Pieces, no) :- Pieces = [words("It depends on the properties of"), words("foreign language code included via a"), fixed("`:- pragma c_code'"), words("or"), fixed("`:- pragma foreign'"), words("declaration.")]. term_errors__description(inf_call(CallerPPId, CalleePPId), Single, Module, Pieces, no) :- ( Single = yes(PPId), require(unify(PPId, CallerPPId), "caller outside this SCC"), Piece1 = words("It") ; Single = no, error_util__describe_one_proc_name(Module, CallerPPId, ProcName), Piece1 = fixed(ProcName) ), Piece2 = words("calls"), error_util__describe_one_proc_name(Module, CalleePPId, CalleePiece), Pieces3 = [words("with an unbounded increase"), words("in the size of the input arguments.")], Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3]. term_errors__description(can_loop_proc_called(CallerPPId, CalleePPId), Single, Module, Pieces, no) :- ( Single = yes(PPId), require(unify(PPId, CallerPPId), "caller outside this SCC"), Piece1 = words("It") ; Single = no, error_util__describe_one_proc_name(Module, CallerPPId, ProcName), Piece1 = fixed(ProcName) ), Piece2 = words("calls"), error_util__describe_one_proc_name(Module, CalleePPId, CalleePiece), Pieces3 = [words("which could not be proven to terminate.")], Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3]. term_errors__description(imported_pred, _, _, Pieces, no) :- Pieces = [words("It contains one or more"), words("predicates and/or functions"), words("imported from another module.")]. term_errors__description(horder_args(CallerPPId, CalleePPId), Single, Module, Pieces, no) :- ( Single = yes(PPId), require(unify(PPId, CallerPPId), "caller outside this SCC"), Piece1 = words("It") ; Single = no, error_util__describe_one_proc_name(Module, CallerPPId, ProcName), Piece1 = fixed(ProcName) ), Piece2 = words("calls"), error_util__describe_one_proc_name(Module, CalleePPId, CalleePiece), Pieces3 = [words("with one or more higher order arguments.")], Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3]. term_errors__description(inf_termination_const(CallerPPId, CalleePPId), Single, Module, Pieces, yes(CalleePPId)) :- ( Single = yes(PPId), require(unify(PPId, CallerPPId), "caller outside this SCC"), Piece1 = words("It") ; Single = no, error_util__describe_one_proc_name(Module, CallerPPId, ProcName), Piece1 = fixed(ProcName) ), Piece2 = words("calls"), error_util__describe_one_proc_name(Module, CalleePPId, CalleePiece), Pieces3 = [words("which has a termination constant of infinity.")], Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3]. term_errors__description(not_subset(ProcPPId, OutputSuppliers, HeadVars), Single, Module, Pieces, no) :- ( Single = yes(PPId), ( PPId = ProcPPId -> Pieces1 = [words("The set of"), words("its output supplier variables")] ; % XXX this should never happen (but it does) % error("not_subset outside this SCC"), error_util__describe_one_proc_name(Module, ProcPPId, PPIdPiece), Pieces1 = [words("The set of"), words("output supplier variables of"), fixed(PPIdPiece)] ) ; Single = no, error_util__describe_one_proc_name(Module, ProcPPId, PPIdPiece), Pieces1 = [words("The set of output supplier variables of"), fixed(PPIdPiece)] ), ProcPPId = proc(PredId, ProcId), module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo), proc_info_varset(ProcInfo, Varset), term_errors_var_bag_description(OutputSuppliers, Varset, OutputSuppliersNames), list__map(lambda([OS::in, FOS::out] is det, (FOS = fixed(OS))), OutputSuppliersNames, OutputSuppliersPieces), Pieces3 = [words("is not a subset of the head variables")], term_errors_var_bag_description(HeadVars, Varset, HeadVarsNames), list__map(lambda([HV::in, FHV::out] is det, (FHV = fixed(HV))), HeadVarsNames, HeadVarsPieces), list__condense([Pieces1, OutputSuppliersPieces, Pieces3, HeadVarsPieces], Pieces). term_errors__description(cycle(_StartPPId, CallSites), _, Module, Pieces, no) :- ( CallSites = [DirectCall] -> error_util__describe_one_call_site(Module, DirectCall, Site), Pieces = [words("At the recursive call to"), fixed(Site), words("the arguments are"), words("not guaranteed to decrease in size.")] ; Pieces1 = [words("In the recursive cycle"), words("through the calls to")], error_util__describe_several_call_sites(Module, CallSites, SitePieces), Pieces2 = [words("the arguments are"), words("not guaranteed to decrease in size.")], list__condense([Pieces1, SitePieces, Pieces2], Pieces) ). term_errors__description(too_many_paths, _, _, Pieces, no) :- Pieces = [words("There are too many execution paths"), words("for the analysis to process.")]. term_errors__description(no_eqns, _, _, Pieces, no) :- Pieces = [words("The analysis was unable to form any constraints"), words("between the arguments of this group of procedures.")]. term_errors__description(solver_failed, _, _, Pieces, no) :- Pieces = [words("The solver found the constraints produced"), words("by the analysis to be infeasible.")]. term_errors__description(is_builtin(_PredId), _Single, _, Pieces, no) :- % XXX require(unify(Single, yes(_)), "builtin not alone in SCC"), Pieces = [words("It is a builtin predicate.")]. term_errors__description(does_not_term_pragma(PredId), Single, Module, Pieces, no) :- Pieces1 = [words( "There is a `:- pragma does_not_terminate' declaration for")], ( Single = yes(PPId), PPId = proc(SCCPredId, _), require(unify(PredId, SCCPredId), "does not terminate pragma outside this SCC"), Piece2 = words("it.") ; Single = no, error_util__describe_one_pred_name(Module, PredId, Piece2Nodot), string__append(Piece2Nodot, ".", Piece2Str), Piece2 = fixed(Piece2Str) ), list__append(Pieces1, [Piece2], Pieces). %----------------------------------------------------------------------------% :- pred term_errors_var_bag_description(bag(prog_var)::in, prog_varset::in, list(string)::out) is det. term_errors_var_bag_description(HeadVars, Varset, Pieces) :- bag__to_assoc_list(HeadVars, HeadVarCountList), term_errors_var_bag_description_2(HeadVarCountList, Varset, yes, Pieces). :- pred term_errors_var_bag_description_2(assoc_list(prog_var, int)::in, prog_varset::in, bool::in, list(string)::out) is det. term_errors_var_bag_description_2([], _, _, ["{}"]). term_errors_var_bag_description_2([Var - Count | VarCounts], Varset, First, [Piece | Pieces]) :- varset__lookup_name(Varset, Var, VarName), ( Count > 1 -> string__append(VarName, "*", VarCountPiece0), string__int_to_string(Count, CountStr), string__append(VarCountPiece0, CountStr, VarCountPiece) ; VarCountPiece = VarName ), ( First = yes -> string__append("{", VarCountPiece, Piece0) ; Piece0 = VarCountPiece ), ( VarCounts = [] -> string__append(Piece0, "}.", Piece), Pieces = [] ; Piece = Piece0, term_errors_var_bag_description_2(VarCounts, Varset, First, Pieces) ). %----------------------------------------------------------------------------% %----------------------------------------------------------------------------%