%-----------------------------------------------------------------------------%
% Copyright (C) 1993-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io.m.
% Main author: fjh.
%
% This module defines predicates for parsing Mercury programs.
%
% In some ways the representation of programs here is considerably
% more complex than is necessary for the compiler.
% The basic reason for this is that it was designed to preserve
% as much information about the source code as possible, so that
% this representation could also be used for other tools such
% as Mercury-to-Goedel converters, pretty-printers, etc.
% Currently the only information that is lost is that comments and
% whitespace are stripped, any redundant parenthesization
% are lost, distinctions between different spellings of the same
% operator (eg "\+" vs "not") are lost, and DCG clauses get expanded.
% It would be a good idea to preserve all those too (well, maybe not
% the redundant parentheses), but right now it's not worth the effort.
%
% So that means that this phase of compilation is purely parsing.
% No simplifications are done (other than DCG expansion).
% The results of this phase specify
% basically the same information as is contained in the source code,
% but in a parse tree rather than a flat file.
% Simplifications are done only by make_hlds.m, which transforms
% the parse tree which we built here into the HLDS.
%
% Some of this code is a rather bad example of cut-and-paste style reuse.
% It should be cleaned up to eliminate most of the duplication.
% But that task really needs to wait until we implement higher-order
% predicates. For the moment, just be careful that any changes
% you make are reflected correctly in all similar parts of this
% file.
%
% Implication and equivalence implemented by squirrel, who would also
% like to get her hands on this file and give it a good clean up and
% put it into good clean "mercury" style!
% Wishlist:
%
% 1. implement importing/exporting operators with a particular fixity
% eg. :- import_op prefix(+). % only prefix +, not infix
% (not important, but should be there for reasons of symmetry.)
% 2. improve the handling of type and inst parameters
% 3. improve the error reporting (most of the semidet preds should
% be det and should return a meaningful indication of where an
% error occured).
:- module prog_io.
:- interface.
:- import_module prog_data, prog_io_util.
:- import_module bool, varset, term, list, io.
%-----------------------------------------------------------------------------%
% This module (prog_io) exports the following predicates:
% prog_io__read_module(FileName, ModuleName, Search, Error,
% Messages, Program)
% Reads and parses the module 'ModuleName'.
% If Search is yes, search directories given by the option
% search_directories.
% Error is `fatal' if the file coudn't be opened, `yes'
% if a syntax error was detected, and `no' otherwise.
% Messages is a list of warning/error messages.
% Program is the parse tree.
:- type module_error
---> no % no errors
; yes % some syntax errors
; fatal. % couldn't open the file
:- type file_name == string.
:- type dir_name == string.
:- pred prog_io__read_module(file_name, module_name, bool, module_error,
message_list, item_list, io__state, io__state).
:- mode prog_io__read_module(in, in, in, out, out, out, di, uo) is det.
% Same as prog_io__read_module, but use intermod_directories
% instead of search_directories when searching for the file.
:- pred prog_io__read_opt_file(file_name, module_name, bool, module_error,
message_list, item_list, io__state, io__state).
:- mode prog_io__read_opt_file(in, in, in, out, out, out, di, uo) is det.
% search_for_file(Dirs, FileName, Found, IO0, IO)
%
% Search Dirs for FileName, opening the file if it is found.
:- pred search_for_file(list(dir_name), file_name, bool, io__state, io__state).
:- mode search_for_file(in, in, out, di, uo) is det.
% parse_item(ModuleName, VarSet, Term, MaybeItem)
%
% parse Term. If successful, MaybeItem is bound to the parsed item,
% otherwise it is bound to an appropriate error message.
% Qualify appropriate parts of the item, with ModuleName as the
% module name.
:- pred parse_item(module_name, varset, term, maybe_item_and_context).
:- mode parse_item(in, in, in, out) is det.
% parse_decl(ModuleName, VarSet, Term, Result)
%
% parse Term as a declaration. If successful, Result is bound to the
% parsed item, otherwise it is bound to an appropriate error message.
% Qualify appropriate parts of the item, with ModuleName as the module
% name.
:- pred parse_decl(module_name, varset, term, maybe_item_and_context).
:- mode parse_decl(in, in, in, out) is det.
%-----------------------------------------------------------------------------%
% A QualifiedTerm is one of
% Name(Args)
% Module:Name(Args)
% (or if Args is empty, one of
% Name
% Module:Name)
% where Module is a SymName.
% For backwards compatibility, we allow `__'
% as an alternative to `:'.
% sym_name_and_args takes a term and returns a sym_name and a list of
% argument terms.
% It fals if the input is not valid syntax for a QualifiedTerm.
:- pred sym_name_and_args(term, sym_name, list(term)).
:- mode sym_name_and_args(in, out, out) is semidet.
% parse_qualified_term/4 takes a term (and also the containing
% term, and a string describing the context from which it
% was called [e.g. "clause head"] and the containing term)
% and returns a sym_name and a list of argument terms.
% Returns an error on ill-formed input.
% See also parse_implicitly_qualified_term/5 (below).
:- pred parse_qualified_term(term, term, string, maybe_functor).
:- mode parse_qualified_term(in, in, in, out) is det.
% parse_implicitly_qualified_term(DefaultModName, Term,
% ContainingTerm, Msg, Result):
%
% parse_implicitly_qualified_term/5 takes a default module name
% and a term,
% (and also the containing term, and a string describing
% the context from which it was called (e.g. "clause head"),
% and returns a sym_name and a list of argument terms.
% Returns an error on ill-formed input or a module qualifier that
% doesn't match the DefaultModName.
%
% Note: parse_qualified_term/4 is used for places where a symbol
% is _used_, in which case no default module name exists, whereas
% parse_implicitly_qualified_term/5 is used for places where a symbol
% is _defined_; in that case, there is a default module name (the
% name of the current module) -- specifying a module qualifier
% explicitly is redundant, but it is allowed, so long as the
% module qualifier specified matches the default.
:- pred parse_implicitly_qualified_term(module_name, term, term, string,
maybe_functor).
:- mode parse_implicitly_qualified_term(in, in, in, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module prog_io_goal, prog_io_dcg, prog_io_pragma, prog_io_util.
:- import_module prog_io_typeclass.
:- import_module hlds_data, hlds_pred, prog_util, globals, options, (inst).
:- import_module purity.
:- import_module int, string, std_util, parser, term_io, dir, require.
%-----------------------------------------------------------------------------%
prog_io__read_module(FileName, ModuleName, Search, Error, Messages, Items) -->
prog_io__read_module_2(FileName, ModuleName, Search,
search_directories, Error, Messages, Items).
prog_io__read_opt_file(FileName, ModuleName, Search,
Error, Messages, Items) -->
prog_io__read_module_2(FileName, ModuleName, Search,
intermod_directories, Error, Messages, Items).
% This implementation uses io__read_term to read in the program
% term at a time, and then converts those terms into clauses and
% declarations, checking for errors as it goes.
% Note that rather than using difference lists, we just
% build up the lists of items and messages in reverse order
% and then reverse them afterwards. (Using difference lists would require
% late-input modes.)
:- pred prog_io__read_module_2(file_name, module_name, bool, option,
module_error, message_list, item_list, io__state, io__state).
:- mode prog_io__read_module_2(in, in, in, in, out, out, out, di, uo) is det.
prog_io__read_module_2(FileName, DefaultModuleName, Search,
SearchOpt, Error, Messages, Items) -->
(
{ Search = yes }
->
globals__io_lookup_accumulating_option(SearchOpt,
Dirs)
;
{ dir__this_directory(CurrentDir) },
{ Dirs = [CurrentDir] }
),
search_for_file(Dirs, FileName, R),
( { R = yes } ->
read_all_items(DefaultModuleName, Messages, Items, Error),
io__seen
;
io__progname_base("prog_io.m", Progname),
{
string__append(Progname, ": can't open file `", Message1),
string__append(Message1, FileName, Message2),
string__append(Message2, "'", Message),
dummy_term(Term),
Messages = [Message - Term],
Error = fatal,
Items = []
}
).
search_for_file([], _, no) --> [].
search_for_file([Dir | Dirs], FileName, R) -->
{ dir__this_directory(Dir) ->
ThisFileName = FileName
;
dir__directory_separator(Separator),
string__first_char(Tmp1, Separator, FileName),
string__append(Dir, Tmp1, ThisFileName)
},
io__see(ThisFileName, R0),
( { R0 = ok } ->
{ R = yes }
;
search_for_file(Dirs, FileName, R)
).
%-----------------------------------------------------------------------------%
% extract the final `:- end_module' declaration if any
:- type module_end ---> no ; yes(module_name, term__context).
:- pred get_end_module(item_list, item_list, module_end).
:- mode get_end_module(in, out, out) is det.
get_end_module(RevItems0, RevItems, EndModule) :-
(
RevItems0 = [
module_defn(_VarSet, end_module(ModuleName)) - Context
| RevItems1]
->
RevItems = RevItems1,
EndModule = yes(ModuleName, Context)
;
RevItems = RevItems0,
EndModule = no
).
%-----------------------------------------------------------------------------%
% check that the module starts with a :- module declaration,
% and that the end_module declaration (if any) is correct,
% and construct the final parsing result.
:- pred check_end_module(module_end, message_list, item_list, module_error,
message_list, item_list, module_error, io__state, io__state).
:- mode check_end_module(in, in, in, in, out, out, out, di, uo) is det.
check_end_module(EndModule, Messages0, Items0, Error0,
Messages, Items, Error) -->
%
% double-check that the first item is a `:- module ModuleName'
% declaration, and remove it from the front of the item list
%
{
Items0 = [module_defn(_VarSet, module(ModuleName1)) - _Context1
| Items1]
->
Items = Items1,
%
% check that the end module declaration (if any)
% matches the begin module declaration
%
(
EndModule = yes(ModuleName2, Context2),
ModuleName1 \= ModuleName2
->
dummy_term_with_context(Context2, Term),
add_error(
"`:- end_module' declaration doesn't match `:- module' declaration",
Term, Messages0, Messages),
Error = yes
;
Messages = Messages0,
Error = Error0
)
;
% if there's no `:- module' declaration at this point, it is
% an internal error -- read_first_item should have inserted one
error("check_end_module: no `:- module' declaration")
}.
%-----------------------------------------------------------------------------%
% Create a dummy term.
% Used for error messages that are not associated with any
% particular term or context.
:- pred dummy_term(term).
:- mode dummy_term(out) is det.
dummy_term(Term) :-
term__context_init(Context),
dummy_term_with_context(Context, Term).
% Create a dummy term with the specified context.
% Used for error messages that are associated with some specific
% context, but for which we don't want to print out the term
% (or for which the term isn't available to be printed out).
:- pred dummy_term_with_context(term__context, term).
:- mode dummy_term_with_context(in, out) is det.
dummy_term_with_context(Context, Term) :-
Term = term__functor(term__atom(""), [], Context).
%-----------------------------------------------------------------------------%
% Read a source file from standard in, first reading in
% the input term by term and then parsing those terms and producing
% a high-level representation.
% Parsing is actually a 3-stage process instead of the
% normal two-stage process:
% lexical analysis (chars -> tokens),
% parsing stage 1 (tokens -> terms),
% parsing stage 2 (terms -> items).
% The final stage produces a list of program items, each of
% which may be a declaration or a clause.
%
% We use a continuation-passing style here.
:- pred read_all_items(module_name, message_list, item_list, module_error,
io__state, io__state).
:- mode read_all_items(in, out, out, out, di, uo) is det.
read_all_items(ModuleName, Messages, Items, Error) -->
%
% read all the items (the first one is handled specially)
%
io__input_stream(Stream),
io__input_stream_name(Stream, SourceFileName),
read_first_item(ModuleName, SourceFileName,
RevMessages, RevItems0, Error0),
%
% get the end_module declaration (if any),
% check that it matches the initial module declaration (if any),
% and remove both of them from the final item list.
%
{ get_end_module(RevItems0, RevItems, EndModule) },
{ list__reverse(RevMessages, Messages0) },
{ list__reverse(RevItems, Items0) },
check_end_module(EndModule,
Messages0, Items0, Error0,
Messages, Items, Error).
%
% We need to jump through a few hoops when reading the first item,
% to allow the initial `:- module' declaration to be optional.
% The reason is that in order to parse an item, we need to know
% which module it is defined in (because we do some module
% qualification and checking of module qualifiers at parse time),
% but the initial `:- module' declaration and the declaration
% that follows it occur in different scopes, so we need to know
% what it is that we're parsing before we can parse it!
% We solve this dilemma by first parsing it in the root scope,
% and then if it turns out to not be a `:- module' declaration
% we reparse it in the default module scope. Blecchh.
%
:- pred read_first_item(module_name, file_name,
message_list, item_list, module_error, io__state, io__state).
:- mode read_first_item(in, in, out, out, out, di, uo) is det.
read_first_item(DefaultModuleName, SourceFileName, Messages, Items, Error) -->
globals__io_lookup_bool_option(warn_missing_module_name, WarnMissing),
globals__io_lookup_bool_option(warn_wrong_module_name, WarnWrong),
%
% parse the first term, treating it as occurring
% within the scope of the special "root" module
% (so that any `:- module' declaration is taken to
% be a non-nested module unless explicitly qualified).
%
parser__read_term(SourceFileName, MaybeFirstTerm),
{ root_module_name(RootModuleName) },
{ process_read_term(RootModuleName, MaybeFirstTerm, MaybeFirstItem) },
(
%
% apply and then skip `pragma source_file' decls,
% by calling ourselves recursively with the new source
% file name
%
{ MaybeFirstItem = ok(FirstItem, _) },
{ FirstItem = pragma(source_file(NewSourceFileName)) }
->
read_first_item(DefaultModuleName, NewSourceFileName,
Messages, Items, Error)
;
%
% check if the first term was a `:- module' decl
%
{ MaybeFirstItem = ok(FirstItem, FirstContext) },
{ FirstItem = module_defn(_VarSet, ModuleDefn) },
{ ModuleDefn = module(StartModuleName) }
->
%
% if so, then check that it matches the expected
% module name, and if not, report a warning
%
{
match_sym_name(StartModuleName, DefaultModuleName)
->
ModuleName = DefaultModuleName,
Messages0 = []
;
maybe_add_warning(WarnWrong, MaybeFirstTerm, FirstContext,
"incorrect module name in `:- module' declaration",
[], Messages0),
% XXX Which one should we use here?
% Tradition says that the default module
% name (computed from the filename) takes
% precedence, but I don't know why;
% using the declared one might be better.
% For the moment I'll leave it as is,
% in case changing it would break something.
ModuleName = DefaultModuleName
},
{ make_module_decl(ModuleName, FirstContext, FixedFirstItem) },
{ Items0 = [FixedFirstItem] },
{ Error0 = no },
read_items_loop(ModuleName, SourceFileName,
Messages0, Items0, Error0,
Messages, Items, Error)
;
%
% if the first term was not a `:- module' decl,
% then issue a warning (if warning enabled), and
% insert an implicit `:- module ModuleName' decl.
%
{ MaybeFirstItem = ok(_FirstItem, FirstContext0) ->
FirstContext = FirstContext0
;
term__context_init(SourceFileName, 1, FirstContext)
},
{ WarnMissing = yes ->
dummy_term_with_context(FirstContext, FirstTerm),
add_warning(
"module should start with a `:- module' declaration",
FirstTerm, [], Messages0)
;
Messages0 = []
},
{ ModuleName = DefaultModuleName },
{ make_module_decl(ModuleName, FirstContext, FixedFirstItem) },
%
% reparse the first term, this time treating it as
% occuring within the scope of the implicit
% `:- module' decl rather than in the root module.
%
{ MaybeSecondTerm = MaybeFirstTerm },
{ process_read_term(ModuleName, MaybeSecondTerm,
MaybeSecondItem) },
{ Items0 = [FixedFirstItem] },
{ Error0 = no },
read_items_loop_2(MaybeSecondItem, ModuleName, SourceFileName,
Messages0, Items0, Error0,
Messages, Items, Error)
).
:- pred make_module_decl(module_name, term__context, item_and_context).
:- mode make_module_decl(in, in, out) is det.
make_module_decl(ModuleName, Context, Item - Context) :-
varset__init(EmptyVarSet),
ModuleDefn = module(ModuleName),
Item = module_defn(EmptyVarSet, ModuleDefn).
:- pred maybe_add_warning(bool, read_term, term__context, string,
message_list, message_list).
:- mode maybe_add_warning(in, in, in, in, in, out) is det.
maybe_add_warning(DoWarn, MaybeTerm, Context, Warning, Messages0, Messages) :-
( DoWarn = yes ->
( MaybeTerm = term(_VarSet, Term) ->
WarningTerm = Term
;
dummy_term_with_context(Context, WarningTerm)
),
add_warning(Warning, WarningTerm, Messages0, Messages)
;
Messages = Messages0
).
%-----------------------------------------------------------------------------%
% The code below was carefully optimized to run efficiently
% in NU-Prolog. We used to call read_item(MaybeItem) -
% which does all the work for a single item -
% via io__gc_call/1, which called the goal with garbage collection.
% But optimizing for NU-Prolog is no longer a big priority...
:- pred read_items_loop(module_name, file_name,
message_list, item_list, module_error,
message_list, item_list, module_error,
io__state, io__state).
:- mode read_items_loop(in, in, in, in, in, out, out, out, di, uo) is det.
read_items_loop(ModuleName, SourceFileName, Msgs1, Items1, Error1,
Msgs, Items, Error) -->
read_item(ModuleName, SourceFileName, MaybeItem),
read_items_loop_2(MaybeItem, ModuleName, SourceFileName,
Msgs1, Items1, Error1, Msgs, Items, Error).
%-----------------------------------------------------------------------------%
:- pred read_items_loop_2(maybe_item_or_eof, module_name, file_name,
message_list, item_list, module_error,
message_list, item_list, module_error,
io__state, io__state).
:- mode read_items_loop_2(in, in, in, in, in, in, out, out, out, di, uo) is det.
% do a switch on the type of the next item
read_items_loop_2(eof, _ModuleName, _SourceFileName, Msgs, Items, Error,
Msgs, Items, Error) --> [].
% if the next item was end-of-file, then we're done.
read_items_loop_2(syntax_error(ErrorMsg, LineNumber), ModuleName,
SourceFileName, Msgs0, Items0, _Error0, Msgs, Items, Error) -->
% if the next item was a syntax error, then insert it in
% the list of messages and continue looping
{
term__context_init(SourceFileName, LineNumber, Context),
dummy_term_with_context(Context, Term),
ThisError = ErrorMsg - Term,
Msgs1 = [ThisError | Msgs0],
Items1 = Items0,
Error1 = yes
},
read_items_loop(ModuleName, SourceFileName, Msgs1, Items1, Error1,
Msgs, Items, Error).
read_items_loop_2(error(M, T), ModuleName, SourceFileName,
Msgs0, Items0, _Error0, Msgs, Items, Error) -->
% if the next item was a semantic error, then insert it in
% the list of messages and continue looping
{
add_error(M, T, Msgs0, Msgs1),
Items1 = Items0,
Error1 = yes
},
read_items_loop(ModuleName, SourceFileName, Msgs1, Items1, Error1,
Msgs, Items, Error).
read_items_loop_2(ok(Item, Context), ModuleName0, SourceFileName0,
Msgs0, Items0, Error0, Msgs, Items, Error) -->
% if the next item was a valid item, check whether it was
% a declaration that affects the current parsing context --
% i.e. either a `module'/`end_module' declaration or a
% `pragma source_file' declaration. If so, set the new
% parsing context according. Next, unless the item is a
% `pragma source_file' declaration, insert it into the item list.
% Then continue looping.
{ Item = pragma(source_file(NewSourceFileName)) ->
SourceFileName = NewSourceFileName,
ModuleName = ModuleName0,
Items1 = Items0
; Item = module_defn(_VarSet, module(NestedModuleName)) ->
ModuleName = NestedModuleName,
SourceFileName = SourceFileName0,
Items1 = Items0
; Item = module_defn(_VarSet, end_module(NestedModuleName)) ->
root_module_name(RootModuleName),
sym_name_get_module_name(NestedModuleName, RootModuleName,
ParentModuleName),
ModuleName = ParentModuleName,
SourceFileName = SourceFileName0,
Items1 = Items0
;
SourceFileName = SourceFileName0,
ModuleName = ModuleName0,
Items1 = [Item - Context | Items0]
},
read_items_loop(ModuleName, SourceFileName, Msgs0, Items1, Error0,
Msgs, Items, Error).
%-----------------------------------------------------------------------------%
% read_item/1 reads a single item, and if it is a valid term
% parses it.
:- type maybe_item_or_eof ---> eof
; syntax_error(file_name, int)
; error(string, term)
; ok(item, term__context).
:- pred read_item(module_name, file_name, maybe_item_or_eof,
io__state, io__state).
:- mode read_item(in, in, out, di, uo) is det.
read_item(ModuleName, SourceFileName, MaybeItem) -->
parser__read_term(SourceFileName, MaybeTerm),
{ process_read_term(ModuleName, MaybeTerm, MaybeItem) }.
:- pred process_read_term(module_name, read_term, maybe_item_or_eof).
:- mode process_read_term(in, in, out) is det.
process_read_term(_ModuleName, eof, eof).
process_read_term(_ModuleName, error(ErrorMsg, LineNumber),
syntax_error(ErrorMsg, LineNumber)).
process_read_term(ModuleName, term(VarSet, Term),
MaybeItemOrEof) :-
parse_item(ModuleName, VarSet, Term, MaybeItem),
convert_item(MaybeItem, MaybeItemOrEof).
:- pred convert_item(maybe_item_and_context, maybe_item_or_eof).
:- mode convert_item(in, out) is det.
convert_item(ok(Item, Context), ok(Item, Context)).
convert_item(error(M, T), error(M, T)).
parse_item(ModuleName, VarSet, Term, Result) :-
( %%% some [Decl, DeclContext]
Term = term__functor(term__atom(":-"), [Decl], _DeclContext)
->
% It's a declaration
parse_decl(ModuleName, VarSet, Decl, Result)
; %%% some [DCG_H, DCG_B, DCG_Context]
% It's a DCG clause
Term = term__functor(term__atom("-->"), [DCG_H, DCG_B],
DCG_Context)
->
parse_dcg_clause(ModuleName, VarSet, DCG_H, DCG_B,
DCG_Context, Result)
;
% It's either a fact or a rule
( %%% some [H, B, TermContext]
Term = term__functor(term__atom(":-"), [H, B],
TermContext)
->
% it's a rule
Head = H,
Body = B,
TheContext = TermContext
;
% it's a fact
Head = Term,
(
Head = term__functor(_Functor, _Args,
HeadContext)
->
TheContext = HeadContext
;
% term consists of just a single
% variable - the context has been lost
term__context_init(TheContext)
),
Body = term__functor(term__atom("true"), [], TheContext)
),
parse_goal(Body, VarSet, Body2, VarSet2),
(
Head = term__functor(term__atom("="),
[FuncHead, FuncResult], _)
->
parse_implicitly_qualified_term(ModuleName,
FuncHead, Head, "equation head", R2),
process_func_clause(R2, FuncResult, VarSet2, Body2, R3)
;
parse_implicitly_qualified_term(ModuleName,
Head, Term, "clause head", R2),
process_pred_clause(R2, VarSet2, Body2, R3)
),
add_context(R3, TheContext, Result)
).
:- pred process_pred_clause(maybe_functor, varset, goal, maybe1(item)).
:- mode process_pred_clause(in, in, in, out) is det.
process_pred_clause(ok(Name, Args), VarSet, Body,
ok(pred_clause(VarSet, Name, Args, Body))).
process_pred_clause(error(ErrMessage, Term), _, _, error(ErrMessage, Term)).
:- pred process_func_clause(maybe_functor, term, varset, goal, maybe1(item)).
:- mode process_func_clause(in, in, in, in, out) is det.
process_func_clause(ok(Name, Args), Result, VarSet, Body,
ok(func_clause(VarSet, Name, Args, Result, Body))).
process_func_clause(error(ErrMessage, Term), _, _, _, error(ErrMessage, Term)).
%-----------------------------------------------------------------------------%
parse_decl(ModuleName, VarSet, F, Result) :-
(
F = term__functor(term__atom(Atom), As, Context)
->
(
process_decl(ModuleName, VarSet, Atom, As, R)
->
add_context(R, Context, Result)
;
Result = error("unrecognized declaration", F)
)
;
Result = error("atom expected after `:-'", F)
).
% process_decl(VarSet, Atom, Args, Result) succeeds if Atom(Args)
% is a declaration and binds Result to a representation of that
% declaration.
:- pred process_decl(module_name, varset, string, list(term), maybe1(item)).
:- mode process_decl(in, in, in, in, out) is semidet.
process_decl(ModuleName, VarSet, "type", [TypeDecl], Result) :-
parse_type_decl(ModuleName, VarSet, TypeDecl, Result).
% If this clause is changed, also modify clause below for "impure."
process_decl(ModuleName, VarSet, "pred", [PredDecl], Result) :-
parse_type_decl_pred(ModuleName, VarSet, PredDecl, pure, Result).
process_decl(ModuleName, VarSet, "func", [FuncDecl], Result) :-
parse_type_decl_func(ModuleName, VarSet, FuncDecl, pure, Result).
% Because "<=" has a higher precedence than "pred" or "func", we
% we need to handle preds and funcs with class contexts specially.
process_decl(ModuleName, VarSet, "<=", [Decl, ClassContext], Result) :-
(
Decl = term__functor(term__atom("pred"), [PredDecl], Context)
->
NewTerm = term__functor(term__atom("<="),
[PredDecl, ClassContext], Context),
parse_type_decl_pred(ModuleName, VarSet, NewTerm, pure,
Result)
;
Decl = term__functor(term__atom("func"), [FuncDecl], Context)
->
NewTerm = term__functor(term__atom("<="),
[FuncDecl, ClassContext], Context),
parse_type_decl_func(ModuleName, VarSet, NewTerm, pure,
Result)
;
Result = error(
"Class contexts only allowed on pred or func declarations",
Decl)
).
process_decl(ModuleName, VarSet, "mode", [ModeDecl], Result) :-
parse_mode_decl(ModuleName, VarSet, ModeDecl, Result).
process_decl(ModuleName, VarSet, "inst", [InstDecl], Result) :-
parse_inst_decl(ModuleName, VarSet, InstDecl, Result).
process_decl(_ModuleName, VarSet, "import_module", [ModuleSpec], Result) :-
parse_symlist_decl(parse_module_specifier, make_module, make_import,
ModuleSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_module", [ModuleSpec], Result) :-
parse_symlist_decl(parse_module_specifier, make_module, make_use,
ModuleSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_module", [ModuleSpec], Result) :-
parse_symlist_decl(parse_module_specifier, make_module, make_export,
ModuleSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_sym", [SymSpec], Result) :-
parse_symlist_decl(parse_symbol_specifier, make_sym, make_import,
SymSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_sym", [SymSpec], Result) :-
parse_symlist_decl(parse_symbol_specifier, make_sym, make_use,
SymSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_sym", [SymSpec], Result) :-
parse_symlist_decl(parse_symbol_specifier, make_sym, make_export,
SymSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_pred", [PredSpec], Result) :-
parse_symlist_decl(parse_predicate_specifier, make_pred, make_import,
PredSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_pred", [PredSpec], Result) :-
parse_symlist_decl(parse_predicate_specifier, make_pred, make_use,
PredSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_pred", [PredSpec], Result) :-
parse_symlist_decl(parse_predicate_specifier, make_pred, make_export,
PredSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_func", [FuncSpec], Result) :-
parse_symlist_decl(parse_function_specifier, make_func, make_import,
FuncSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_func", [FuncSpec], Result) :-
parse_symlist_decl(parse_function_specifier, make_func, make_use,
FuncSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_func", [FuncSpec], Result) :-
parse_symlist_decl(parse_function_specifier, make_func, make_export,
FuncSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_cons", [ConsSpec], Result) :-
parse_symlist_decl(parse_constructor_specifier, make_cons, make_import,
ConsSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_cons", [ConsSpec], Result) :-
parse_symlist_decl(parse_constructor_specifier, make_cons, make_use,
ConsSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_cons", [ConsSpec], Result) :-
parse_symlist_decl(parse_constructor_specifier, make_cons, make_export,
ConsSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_type", [TypeSpec], Result) :-
parse_symlist_decl(parse_type_specifier, make_type, make_import,
TypeSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_type", [TypeSpec], Result) :-
parse_symlist_decl(parse_type_specifier, make_type, make_use,
TypeSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_type", [TypeSpec], Result) :-
parse_symlist_decl(parse_type_specifier, make_type, make_export,
TypeSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_adt", [ADT_Spec], Result) :-
parse_symlist_decl(parse_adt_specifier, make_adt, make_import,
ADT_Spec, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_adt", [ADT_Spec], Result) :-
parse_symlist_decl(parse_adt_specifier, make_adt, make_use,
ADT_Spec, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_adt", [ADT_Spec], Result) :-
parse_symlist_decl(parse_adt_specifier, make_adt, make_export,
ADT_Spec, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_op", [OpSpec], Result) :-
parse_symlist_decl(parse_op_specifier, make_op, make_import,
OpSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_op", [OpSpec], Result) :-
parse_symlist_decl(parse_op_specifier, make_op, make_use,
OpSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_op", [OpSpec], Result) :-
parse_symlist_decl(parse_op_specifier, make_op, make_export,
OpSpec, VarSet, Result).
process_decl(_ModuleName, VarSet, "interface", [],
ok(module_defn(VarSet, interface))).
process_decl(_ModuleName, VarSet, "implementation", [],
ok(module_defn(VarSet, implementation))).
process_decl(_ModuleName, VarSet, "external", [PredSpec], Result) :-
parse_symbol_name_specifier(PredSpec, Result0),
process_maybe1(make_external(VarSet), Result0, Result).
process_decl(DefaultModuleName, VarSet, "module", [ModuleName], Result) :-
parse_module_name(DefaultModuleName, ModuleName, R),
(
R = ok(ModuleNameSym),
Result = ok(module_defn(VarSet, module(ModuleNameSym)))
;
R = error(A, B),
Result = error(A, B)
).
process_decl(DefaultModuleName, VarSet, "include_module", [ModuleNames],
Result) :-
parse_list(parse_module_name(DefaultModuleName), ModuleNames, R),
(
R = ok(ModuleNameSyms),
Result = ok(module_defn(VarSet,
include_module(ModuleNameSyms)))
;
R = error(A, B),
Result = error(A, B)
).
process_decl(DefaultModuleName, VarSet, "end_module", [ModuleName], Result) :-
parse_module_name(DefaultModuleName, ModuleName, R),
(
R = ok(ModuleNameSym),
Result = ok(module_defn(VarSet, end_module(ModuleNameSym)))
;
R = error(A, B),
Result = error(A, B)
).
% NU-Prolog `when' declarations are silently ignored for
% backwards compatibility.
process_decl(_ModuleName, _VarSet, "when", [_Goal, _Cond], Result) :-
Result = ok(nothing).
process_decl(ModuleName, VarSet, "pragma", Pragma, Result):-
parse_pragma(ModuleName, VarSet, Pragma, Result).
process_decl(ModuleName, VarSet, "typeclass", Args, Result):-
parse_typeclass(ModuleName, VarSet, Args, Result).
process_decl(ModuleName, VarSet, "instance", Args, Result):-
parse_instance(ModuleName, VarSet, Args, Result).
% XXX I'm not very happy with this. I believe this should
% recursively call process_decl in order to process the pred or func
% declaration. The information that the pred/func decl is preceeded
% by "impure" should be carried by another argument, which can be
% generalised to a list of declared properties or attributes. Then
% each predicate for handling a declaration would have to handle
% the list of properties, and complain about any invalid properties.
% This is a more general solution, and avoids the code duplication of
% the calls to parse_type_decl_{pred,func}.
process_decl(ModuleName, VarSet, "impure", [Decl], Result):-
process_purity_decl(ModuleName, VarSet, (impure), Decl, Result).
process_decl(ModuleName, VarSet, "semipure", [Decl], Result):-
process_purity_decl(ModuleName, VarSet, (semipure), Decl, Result).
:- pred process_purity_decl(module_name, varset, purity, term, maybe1(item)).
:- mode process_purity_decl(in, in, in, in, out) is det.
process_purity_decl(ModuleName, VarSet, Purity, Decl, Result) :-
( Decl = term__functor(term__atom("pred"), [PredDecl], _Context)
->
parse_type_decl_pred(ModuleName, VarSet,
PredDecl, Purity, Result)
% ; Decl = term__functor(term__atom("func"), [FuncDecl], _Context)
% ->
% parse_type_decl_func(ModuleName, VarSet,
% FuncDecl, Purity, Result)
;
Result = error("invalid impurity declaration", Decl)
).
:- pred parse_type_decl(module_name, varset, term, maybe1(item)).
:- mode parse_type_decl(in, in, in, out) is det.
parse_type_decl(ModuleName, VarSet, TypeDecl, Result) :-
(
TypeDecl = term__functor(term__atom(Name), Args, _),
parse_type_decl_type(ModuleName, Name, Args, Cond, R)
->
R1 = R,
Cond1 = Cond
;
process_abstract_type(ModuleName, TypeDecl, R1),
Cond1 = true
),
process_maybe1(make_type_defn(VarSet, Cond1), R1, Result).
% we should check the condition for errs
% (don't bother at the moment, since we ignore
% conditions anyhow :-)
:- pred make_type_defn(varset, condition, type_defn, item).
:- mode make_type_defn(in, in, in, out) is det.
make_type_defn(VarSet, Cond, TypeDefn, type_defn(VarSet, TypeDefn, Cond)).
:- pred make_external(varset, sym_name_specifier, item).
:- mode make_external(in, in, out) is det.
make_external(VarSet, SymSpec, module_defn(VarSet, external(SymSpec))).
%-----------------------------------------------------------------------------%
% add a warning message to the list of messages
:- pred add_warning(string, term, message_list, message_list).
:- mode add_warning(in, in, in, out) is det.
add_warning(Warning, Term, Msgs, [Msg - Term | Msgs]) :-
string__append("Warning: ", Warning, Msg).
% add an error message to the list of messages
:- pred add_error(string, term, message_list, message_list).
:- mode add_error(in, in, in, out) is det.
add_error(Error, Term, Msgs, [Msg - Term | Msgs]) :-
string__append("Error: ", Error, Msg).
%-----------------------------------------------------------------------------%
% parse_type_decl_type(Term, Condition, Result) succeeds
% if Term is a "type" type declaration, and binds Condition
% to the condition for that declaration (if any), and Result to
% a representation of the declaration.
:- pred parse_type_decl_type(module_name, string, list(term), condition,
maybe1(type_defn)).
:- mode parse_type_decl_type(in, in, in, out, out) is semidet.
parse_type_decl_type(ModuleName, "--->", [H, B], Condition, R) :-
/* get_condition(...), */
Condition = true,
get_maybe_equality_pred(B, Body, EqualityPred),
process_du_type(ModuleName, H, Body, EqualityPred, R).
parse_type_decl_type(ModuleName, "=", [H, B], Condition, R) :-
get_condition(B, Body, Condition),
process_uu_type(ModuleName, H, Body, R).
parse_type_decl_type(ModuleName, "==", [H, B], Condition, R) :-
get_condition(B, Body, Condition),
process_eqv_type(ModuleName, H, Body, R).
%-----------------------------------------------------------------------------%
% parse_type_decl_pred(ModuleName, VarSet, Pred, Purity, Result)
% succeeds if Pred is a predicate type declaration, and binds Result
% to a representation of the declaration.
:- pred parse_type_decl_pred(module_name, varset, term, purity, maybe1(item)).
:- mode parse_type_decl_pred(in, in, in, in, out) is det.
parse_type_decl_pred(ModuleName, VarSet, Pred, Purity, R) :-
get_condition(Pred, Body, Condition),
get_determinism(Body, Body2, MaybeDeterminism),
process_type_decl_pred(ModuleName, MaybeDeterminism, VarSet, Body2,
Condition, Purity, R).
:- pred process_type_decl_pred(module_name, maybe1(maybe(determinism)), varset,
term, condition, purity, maybe1(item)).
:- mode process_type_decl_pred(in, in, in, in, in, in, out) is det.
process_type_decl_pred(_MNm, error(Term, Reason), _, _, _, _,
error(Term, Reason)).
process_type_decl_pred(ModuleName, ok(MaybeDeterminism), VarSet, Body,
Condition, Purity, R) :-
process_pred(ModuleName, VarSet, Body, Condition, MaybeDeterminism,
Purity, R).
%-----------------------------------------------------------------------------%
% parse_type_decl_func(ModuleName, Varset, Func, Purity, Result)
% succeeds if Func is a function type declaration, and binds Result to
% a representation of the declaration.
:- pred parse_type_decl_func(module_name, varset, term, purity, maybe1(item)).
:- mode parse_type_decl_func(in, in, in, in, out) is det.
parse_type_decl_func(ModuleName, VarSet, Func, Purity, R) :-
get_condition(Func, Body, Condition),
get_determinism(Body, Body2, MaybeDeterminism),
process_maybe1_to_t(process_func(ModuleName, VarSet, Body2, Condition,
Purity), MaybeDeterminism, R).
%-----------------------------------------------------------------------------%
% parse_mode_decl_pred(ModuleName, Pred, Condition, Result) succeeds
% if Pred is a predicate mode declaration, and binds Condition
% to the condition for that declaration (if any), and Result to
% a representation of the declaration.
:- pred parse_mode_decl_pred(module_name, varset, term, maybe1(item)).
:- mode parse_mode_decl_pred(in, in, in, out) is det.
parse_mode_decl_pred(ModuleName, VarSet, Pred, Result) :-
get_condition(Pred, Body, Condition),
get_determinism(Body, Body2, MaybeDeterminism),
process_maybe1_to_t(process_mode(ModuleName, VarSet, Body2, Condition),
MaybeDeterminism, Result).
%-----------------------------------------------------------------------------%
% get_maybe_equality_pred(Body0, Body, MaybeEqualPred):
% Checks if `Body0' is a term of the form
% `
where equality is '
% If so, returns the `' in Body and the in
% MaybeEqualPred. If not, returns Body = Body0
% and `no' in MaybeEqualPred.
:- pred get_maybe_equality_pred(term, term, maybe1(maybe(sym_name))).
:- mode get_maybe_equality_pred(in, out, out) is det.
get_maybe_equality_pred(B, Body, MaybeEqualityPred) :-
(
B = term__functor(term__atom("where"), Args, _Context1),
Args = [Body1, Equality_Is_PredName]
->
Body = Body1,
(
Equality_Is_PredName = term__functor(term__atom("is"),
[Equality, PredName], _),
Equality = term__functor(term__atom("equality"), [], _)
->
parse_symbol_name(PredName, MaybeEqualityPred0),
process_maybe1(make_yes, MaybeEqualityPred0,
MaybeEqualityPred)
;
MaybeEqualityPred = error("syntax error after `where'",
Body)
)
;
Body = B,
MaybeEqualityPred = ok(no)
).
:- pred make_yes(T::in, maybe(T)::out) is det.
make_yes(T, yes(T)).
% get_determinism(Term0, Term, Determinism) binds Determinism
% to a representation of the determinism condition of Term0, if any,
% and binds Term to the other part of Term0. If Term0 does not
% contain a determinism, then Determinism is bound to `unspecified'.
:- pred get_determinism(term, term, maybe1(maybe(determinism))).
:- mode get_determinism(in, out, out) is det.
get_determinism(B, Body, Determinism) :-
(
B = term__functor(term__atom("is"), Args, _Context1),
Args = [Body1, Determinism1]
->
Body = Body1,
(
(
Determinism1 = term__functor(term__atom(Determinism2),
[], _Context2),
standard_det(Determinism2, Determinism3)
)
->
Determinism = ok(yes(Determinism3))
;
Determinism = error("invalid category", Determinism1)
)
;
Body = B,
Determinism = ok(no)
).
%-----------------------------------------------------------------------------%
% get_condition(Term0, Term, Condition) binds Condition
% to a representation of the 'where' condition of Term0, if any,
% and binds Term to the other part of Term0. If Term0 does not
% contain a condition, then Condition is bound to true.
:- pred get_condition(term, term, condition).
:- mode get_condition(in, out, out) is det.
get_condition(Body, Body, true).
/********
% NU-Prolog supported type declarations of the form
% :- pred p(T) where p(X) : sorted(X).
% or
% :- type sorted_list(T) = list(T) where X : sorted(X).
% :- pred p(sorted_list(T).
% There is some code here to support that sort of thing, but
% probably we would now need to use a different syntax, since
% Mercury now uses `where' for different purposes (e.g. specifying
% user-defined equality predicates; also for type classes, eventually...)
%
get_condition(B, Body, Condition) :-
(
B = term__functor(term__atom("where"), [Body1, Condition1],
_Context)
->
Body = Body1,
Condition = where(Condition1)
;
Body = B,
Condition = true
).
********/
%-----------------------------------------------------------------------------%
% This is for "Head = Body" (undiscriminated union) definitions.
:- pred process_uu_type(module_name, term, term, maybe1(type_defn)).
:- mode process_uu_type(in, in, in, out) is det.
process_uu_type(ModuleName, Head, Body, Result) :-
check_for_errors(ModuleName, Head, Body, Result0),
process_uu_type_2(Result0, Body, Result).
:- pred process_uu_type_2(maybe_functor, term, maybe1(type_defn)).
:- mode process_uu_type_2(in, in, out) is det.
process_uu_type_2(error(Error, Term), _, error(Error, Term)).
process_uu_type_2(ok(Name, Args), Body, ok(uu_type(Name, Args, List))) :-
sum_to_list(Body, List).
%-----------------------------------------------------------------------------%
% This is for "Head == Body" (equivalence) definitions.
:- pred process_eqv_type(module_name, term, term, maybe1(type_defn)).
:- mode process_eqv_type(in, in, in, out) is det.
process_eqv_type(ModuleName, Head, Body, Result) :-
check_for_errors(ModuleName, Head, Body, Result0),
process_eqv_type_2(Result0, Body, Result).
:- pred process_eqv_type_2(maybe_functor, term, maybe1(type_defn)).
:- mode process_eqv_type_2(in, in, out) is det.
process_eqv_type_2(error(Error, Term), _, error(Error, Term)).
process_eqv_type_2(ok(Name, Args), Body, ok(eqv_type(Name, Args, Body))).
%-----------------------------------------------------------------------------%
% process_du_type(ModuleName, TypeHead, TypeBody, Result)
% checks that its arguments are well formed, and if they are,
% binds Result to a representation of the type information about the
% TypeHead.
% This is for "Head ---> Body" (constructor) definitions.
:- pred process_du_type(module_name, term, term, maybe1(maybe(equality_pred)),
maybe1(type_defn)).
:- mode process_du_type(in, in, in, in, out) is det.
process_du_type(ModuleName, Head, Body, EqualityPred, Result) :-
check_for_errors(ModuleName, Head, Body, Result0),
process_du_type_2(ModuleName, Result0, Body, EqualityPred, Result).
:- pred process_du_type_2(module_name, maybe_functor, term,
maybe1(maybe(equality_pred)), maybe1(type_defn)).
:- mode process_du_type_2(in, in, in, in, out) is det.
process_du_type_2(_, error(Error, Term), _, _, error(Error, Term)).
process_du_type_2(ModuleName, ok(Functor, Args), Body, MaybeEqualityPred,
Result) :-
% check that body is a disjunction of constructors
( %%% some [Constrs]
convert_constructors(ModuleName, Body, Constrs)
->
(
MaybeEqualityPred = ok(EqualityPred),
Result = ok(du_type(Functor, Args, Constrs,
EqualityPred))
;
MaybeEqualityPred = error(Error, Term),
Result = error(Error, Term)
)
;
Result = error("invalid RHS of type definition", Body)
).
%-----------------------------------------------------------------------------%
% process_abstract_type(ModuleName, TypeHead, Result)
% checks that its argument is well formed, and if it is,
% binds Result to a representation of the type information about the
% TypeHead.
:- pred process_abstract_type(module_name, term, maybe1(type_defn)).
:- mode process_abstract_type(in, in, out) is det.
process_abstract_type(ModuleName, Head, Result) :-
dummy_term(Body),
check_for_errors(ModuleName, Head, Body, Result0),
process_abstract_type_2(Result0, Result).
:- pred process_abstract_type_2(maybe_functor, maybe1(type_defn)).
:- mode process_abstract_type_2(in, out) is det.
process_abstract_type_2(error(Error, Term), error(Error, Term)).
process_abstract_type_2(ok(Functor, Args), ok(abstract_type(Functor, Args))).
%-----------------------------------------------------------------------------%
% check a type definition for errors
:- pred check_for_errors(module_name, term, term, maybe_functor).
:- mode check_for_errors(in, in, in, out) is det.
check_for_errors(ModuleName, Head, Body, Result) :-
( Head = term__variable(_) ->
%
% `Head' has no term__context, so we need to get the
% context from `Body'
%
( Body = term__functor(_, _, Context) ->
dummy_term_with_context(Context, ErrorTerm)
;
dummy_term(ErrorTerm)
),
Result = error("variable on LHS of type definition", ErrorTerm)
;
parse_implicitly_qualified_term(ModuleName,
Head, Head, "type definition", R),
check_for_errors_2(R, Body, Head, Result)
).
:- pred check_for_errors_2(maybe_functor, term, term, maybe_functor).
:- mode check_for_errors_2(in, in, in, out) is det.
check_for_errors_2(error(Msg, Term), _, _, error(Msg, Term)).
check_for_errors_2(ok(Name, Args), Body, Head, Result) :-
check_for_errors_3(Name, Args, Body, Head, Result).
:- pred check_for_errors_3(sym_name, list(term), term, term, maybe_functor).
:- mode check_for_errors_3(in, in, in, in, out) is det.
check_for_errors_3(Name, Args, Body, Head, Result) :-
% check that all the head args are variables
( %%% some [Arg]
(
list__member(Arg, Args),
Arg \= term__variable(_)
)
->
Result = error("type parameters must be variables", Head)
;
% check that all the head arg variables are distinct
%%% some [Arg2, OtherArgs]
(
list__member(Arg2, Args, [Arg2|OtherArgs]),
list__member(Arg2, OtherArgs)
)
->
Result = error("repeated type parameters in LHS of type defn", Head)
% check that all the variables in the body occur in the head
; %%% some [Var2]
(
term__contains_var(Body, Var2),
\+ term__contains_var_list(Args, Var2)
)
->
Result = error("free type parameter in RHS of type definition",
Body)
;
Result = ok(Name, Args)
).
%-----------------------------------------------------------------------------%
% Convert a list of terms separated by semi-colons
% (known as a "disjunction", even thought the terms aren't goals
% in this case) into a list of constructors
:- pred convert_constructors(module_name, term, list(constructor)).
:- mode convert_constructors(in, in, out) is semidet.
convert_constructors(ModuleName, Body, Constrs) :-
disjunction_to_list(Body, List),
convert_constructors_2(ModuleName, List, Constrs).
% true if input argument is a valid list of constructors
:- pred convert_constructors_2(module_name, list(term), list(constructor)).
:- mode convert_constructors_2(in, in, out) is semidet.
convert_constructors_2(_, [], []).
convert_constructors_2(ModuleName, [Term | Terms], [Constr | Constrs]) :-
convert_constructor(ModuleName, Term, Constr),
convert_constructors_2(ModuleName, Terms, Constrs).
% true if input argument is a valid constructor.
% Note that as a special case, one level of
% curly braces around the constructor are ignored.
% This is to allow you to define ';'/2 constructors.
:- pred convert_constructor(module_name, term, constructor).
:- mode convert_constructor(in, in, out) is semidet.
convert_constructor(ModuleName, Term, Result) :-
(
Term = term__functor(term__atom("{}"), [Term1], _Context)
->
Term2 = Term1
;
Term2 = Term
),
parse_implicitly_qualified_term(ModuleName,
Term2, Term, "constructor definition", ok(F, As)),
convert_constructor_arg_list(As, Args),
Result = F - Args.
%-----------------------------------------------------------------------------%
% parse a `:- pred p(...)' declaration
:- pred process_pred(module_name, varset, term, condition, maybe(determinism),
purity, maybe1(item)).
:- mode process_pred(in, in, in, in, in, in, out) is det.
process_pred(ModuleName, VarSet, PredType0, Cond, MaybeDet, Purity, Result) :-
(
maybe_get_class_context(ModuleName, PredType0, PredType,
MaybeContext)
->
(
MaybeContext = ok(Constraints),
parse_implicitly_qualified_term(ModuleName,
PredType, PredType, "`:- pred' declaration",
R),
process_pred_2(R, PredType, VarSet, MaybeDet, Cond,
Purity, Constraints, Result)
;
MaybeContext = error(String, Term),
Result = error(String, Term)
)
;
parse_implicitly_qualified_term(ModuleName,
PredType0, PredType0, "`:- pred' declaration", R),
process_pred_2(R, PredType0, VarSet, MaybeDet, Cond, Purity,
[], Result)
).
:- pred process_pred_2(maybe_functor, term, varset, maybe(determinism),
condition, purity, list(class_constraint),
maybe1(item)).
:- mode process_pred_2(in, in, in, in, in, in, in, out) is det.
process_pred_2(ok(F, As0), PredType, VarSet, MaybeDet, Cond, Purity,
ClassContext, Result) :-
(
convert_type_and_mode_list(As0, As)
->
(
verify_type_and_mode_list(As)
->
Result = ok(pred(VarSet, F, As, MaybeDet, Cond,
Purity, ClassContext))
;
Result = error("some but not all arguments have modes", PredType)
)
;
Result = error("syntax error in `:- pred' declaration",
PredType)
).
process_pred_2(error(M, T), _, _, _, _, _, _, error(M, T)).
%-----------------------------------------------------------------------------%
% We could probably get rid of some code duplication between here and
% prog_io_typeclass.m
% The last argument is `no' if no context was given, and yes(Result) if
% there was. Result is either bound to the correctly parsed context, or
% an appropriate error message (if a syntactically invalid class
% context was given).
:- pred maybe_get_class_context(module_name, term, term,
maybe1(list(class_constraint))).
:- mode maybe_get_class_context(in, in, out, out) is semidet.
maybe_get_class_context(ModuleName, PredType0, PredType, MaybeContext) :-
PredType0 = term__functor(term__atom("<="),
[PredType, Constraints], _),
parse_class_constraints(ModuleName, Constraints, MaybeContext).
%-----------------------------------------------------------------------------%
% Verify that among the arguments of a :- pred declaration,
% either all arguments specify a mode or none of them do.
:- pred verify_type_and_mode_list(list(type_and_mode)).
:- mode verify_type_and_mode_list(in) is semidet.
verify_type_and_mode_list([]).
verify_type_and_mode_list([First | Rest]) :-
verify_type_and_mode_list_2(Rest, First).
:- pred verify_type_and_mode_list_2(list(type_and_mode), type_and_mode).
:- mode verify_type_and_mode_list_2(in, in) is semidet.
verify_type_and_mode_list_2([], _).
verify_type_and_mode_list_2([Head | Tail], First) :-
(
Head = type_only(_),
First = type_only(_)
;
Head = type_and_mode(_, _),
First = type_and_mode(_, _)
),
verify_type_and_mode_list_2(Tail, First).
%-----------------------------------------------------------------------------%
% parse a `:- func p(...)' declaration
:- pred process_func(module_name, varset, term, condition, purity,
maybe(determinism), maybe1(item)).
:- mode process_func(in, in, in, in, in, in, out) is det.
process_func(ModuleName, VarSet, Term0, Cond, Purity, MaybeDet, Result) :-
(
maybe_get_class_context(ModuleName, Term0, Term,
MaybeContext)
->
(
MaybeContext = ok(Constraints),
process_unconstrained_func(ModuleName, VarSet, Term,
Cond, MaybeDet, Purity, Constraints, Result)
;
MaybeContext = error(String, ErrorTerm),
Result = error(String, ErrorTerm)
)
;
process_unconstrained_func(ModuleName, VarSet, Term0,
Cond, MaybeDet, Purity, [], Result)
).
:- pred process_unconstrained_func(module_name, varset, term, condition,
maybe(determinism), purity, list(class_constraint), maybe1(item)).
:- mode process_unconstrained_func(in, in, in, in, in, in, in, out) is det.
process_unconstrained_func(ModuleName, VarSet, Term, Cond, MaybeDet,
Purity, Constraints, Result) :-
(
Term = term__functor(term__atom("="),
[FuncTerm, ReturnTypeTerm], _Context)
->
parse_implicitly_qualified_term(ModuleName, FuncTerm, Term,
"`:- func' declaration", R),
process_func_2(R, FuncTerm, ReturnTypeTerm, VarSet, MaybeDet,
Cond, Purity, Constraints, Result)
;
Result = error("`=' expected in `:- func' declaration", Term)
).
:- pred process_func_2(maybe_functor, term, term, varset, maybe(determinism),
condition, purity, list(class_constraint),
maybe1(item)).
:- mode process_func_2(in, in, in, in, in, in, in, in, out) is det.
process_func_2(ok(F, As0), FuncTerm, ReturnTypeTerm, VarSet, MaybeDet, Cond,
Purity, ClassContext, Result) :-
( convert_type_and_mode_list(As0, As) ->
( \+ verify_type_and_mode_list(As) ->
Result = error("some but not all arguments have modes",
FuncTerm)
; convert_type_and_mode(ReturnTypeTerm, ReturnType) ->
(
As = [type_and_mode(_, _) | _],
ReturnType = type_only(_)
->
Result = error(
"function arguments have modes, but function result doesn't",
FuncTerm)
;
As = [type_only(_) | _],
ReturnType = type_and_mode(_, _)
->
Result = error(
"function result has mode, but function arguments don't",
FuncTerm)
;
ReturnType = type_only(_),
MaybeDet = yes(_)
->
Result = error(
"function declaration specifies a determinism but does not specify the mode",
FuncTerm)
;
Result = ok(func(VarSet, F, As, ReturnType,
MaybeDet, Cond, Purity, ClassContext))
)
;
Result = error(
"syntax error in return type of `:- func' declaration",
ReturnTypeTerm)
)
;
Result = error(
"syntax error in arguments of `:- func' declaration",
FuncTerm)
).
process_func_2(error(M, T), _, _, _, _, _, _, _, error(M, T)).
%-----------------------------------------------------------------------------%
% parse a `:- mode p(...)' declaration
:- pred process_mode(module_name, varset, term, condition, maybe(determinism),
maybe1(item)).
:- mode process_mode(in, in, in, in, in, out) is det.
process_mode(ModuleName, VarSet, Term, Cond, MaybeDet, Result) :-
(
Term = term__functor(term__atom("="),
[FuncTerm, ReturnTypeTerm], _Context)
->
parse_implicitly_qualified_term(ModuleName, FuncTerm, Term,
"function `:- mode' declaration", R),
process_func_mode(R, FuncTerm, ReturnTypeTerm, VarSet, MaybeDet,
Cond, Result)
;
parse_implicitly_qualified_term(ModuleName, Term, Term,
"predicate `:- mode' declaration", R),
process_pred_mode(R, Term, VarSet, MaybeDet, Cond, Result)
).
:- pred process_pred_mode(maybe_functor, term, varset, maybe(determinism),
condition, maybe1(item)).
:- mode process_pred_mode(in, in, in, in, in, out) is det.
process_pred_mode(ok(F, As0), PredMode, VarSet, MaybeDet, Cond, Result) :-
(
convert_mode_list(As0, As)
->
Result = ok(pred_mode(VarSet, F, As, MaybeDet, Cond))
;
Result = error("syntax error in predicate mode declaration",
PredMode)
).
process_pred_mode(error(M, T), _, _, _, _, error(M, T)).
:- pred process_func_mode(maybe_functor, term, term, varset, maybe(determinism),
condition, maybe1(item)).
:- mode process_func_mode(in, in, in, in, in, in, out) is det.
process_func_mode(ok(F, As0), FuncMode, RetMode0, VarSet, MaybeDet, Cond,
Result) :-
(
convert_mode_list(As0, As)
->
( convert_mode(RetMode0, RetMode) ->
Result = ok(func_mode(VarSet, F, As, RetMode, MaybeDet,
Cond))
;
Result = error(
"syntax error in return mode of function mode declaration",
RetMode0)
)
;
Result = error(
"syntax error in arguments of function mode declaration",
FuncMode)
).
process_func_mode(error(M, T), _, _, _, _, _, error(M, T)).
%-----------------------------------------------------------------------------%
% Parse a `:- inst .' declaration.
%
:- pred parse_inst_decl(module_name, varset, term, maybe1(item)).
:- mode parse_inst_decl(in, in, in, out) is det.
parse_inst_decl(ModuleName, VarSet, InstDefn, Result) :-
(
InstDefn = term__functor(term__atom(Op), [H, B], _Context),
( Op = "=" ; Op = "==" )
->
get_condition(B, Body, Condition),
convert_inst_defn(ModuleName, H, Body, R),
process_maybe1(make_inst_defn(VarSet, Condition), R, Result)
;
% XXX this is for `abstract inst' declarations,
% which are not really supported
InstDefn = term__functor(term__atom("is"), [
Head,
term__functor(term__atom("private"), [], _)
], _)
->
Condition = true,
convert_abstract_inst_defn(ModuleName, Head, R),
process_maybe1(make_inst_defn(VarSet, Condition), R, Result)
;
InstDefn = term__functor(term__atom("--->"), [H, B], Context)
->
get_condition(B, Body, Condition),
Body1 = term__functor(term__atom("bound"), [Body], Context),
convert_inst_defn(ModuleName, H, Body1, R),
process_maybe1(make_inst_defn(VarSet, Condition), R, Result)
;
Result = error("`=' expected in `:- inst' definition", InstDefn)
).
% we should check the condition for errs
% (don't bother at the moment, since we ignore
% conditions anyhow :-)
% Parse a `:- inst ---> .' definition.
%
:- pred convert_inst_defn(module_name, term, term, maybe1(inst_defn)).
:- mode convert_inst_defn(in, in, in, out) is det.
convert_inst_defn(ModuleName, Head, Body, Result) :-
parse_implicitly_qualified_term(ModuleName,
Head, Body, "inst definition", R),
convert_inst_defn_2(R, Head, Body, Result).
:- pred convert_inst_defn_2(maybe_functor, term, term, maybe1(inst_defn)).
:- mode convert_inst_defn_2(in, in, in, out) is det.
convert_inst_defn_2(error(M, T), _, _, error(M, T)).
convert_inst_defn_2(ok(Name, Args), Head, Body, Result) :-
% check that all the head args are variables
( %%% some [Arg]
(
list__member(Arg, Args),
Arg \= term__variable(_)
)
->
Result = error("inst parameters must be variables", Head)
;
% check that all the head arg variables are distinct
%%% some [Arg2, OtherArgs]
(
list__member(Arg2, Args, [Arg2|OtherArgs]),
list__member(Arg2, OtherArgs)
)
->
Result = error("repeated inst parameters in LHS of inst defn",
Head)
;
% check that all the variables in the body occur in the head
%%% some [Var2]
(
term__contains_var(Body, Var2),
\+ term__contains_var_list(Args, Var2)
)
->
Result = error("free inst parameter in RHS of inst definition",
Body)
;
% check that the inst is a valid user-defined inst, i.e. that
% it does not have the form of one of the builtin insts
\+ (
convert_inst(Head, UserInst),
UserInst = defined_inst(user_inst(_, _))
)
->
Result = error("attempt to redefine builtin inst", Head)
;
% should improve the error message here
( %%% some [ConvertedBody]
convert_inst(Body, ConvertedBody)
->
Result = ok(eqv_inst(Name, Args, ConvertedBody))
;
Result = error("syntax error in inst body", Body)
)
).
:- pred convert_abstract_inst_defn(module_name, term, maybe1(inst_defn)).
:- mode convert_abstract_inst_defn(in, in, out) is det.
convert_abstract_inst_defn(ModuleName, Head, Result) :-
parse_implicitly_qualified_term(ModuleName, Head, Head,
"inst definition", R),
convert_abstract_inst_defn_2(R, Head, Result).
:- pred convert_abstract_inst_defn_2(maybe_functor, term, maybe1(inst_defn)).
:- mode convert_abstract_inst_defn_2(in, in, out) is det.
convert_abstract_inst_defn_2(error(M, T), _, error(M, T)).
convert_abstract_inst_defn_2(ok(Name, Args), Head, Result) :-
% check that all the head args are variables
( %%% some [Arg]
(
list__member(Arg, Args),
Arg \= term__variable(_)
)
->
Result = error("inst parameters must be variables", Head)
;
% check that all the head arg variables are distinct
%%% some [Arg2, OtherArgs]
(
list__member(Arg2, Args, [Arg2|OtherArgs]),
list__member(Arg2, OtherArgs)
)
->
Result = error(
"repeated inst parameters in abstract inst definition",
Head)
;
Result = ok(abstract_inst(Name, Args))
).
:- pred make_inst_defn(varset, condition, inst_defn, item).
:- mode make_inst_defn(in, in, in, out) is det.
make_inst_defn(VarSet, Cond, InstDefn, inst_defn(VarSet, InstDefn, Cond)).
%-----------------------------------------------------------------------------%
% parse a `:- mode foo :: ...' or `:- mode foo = ...' definition.
:- pred parse_mode_decl(module_name, varset, term, maybe1(item)).
:- mode parse_mode_decl(in, in, in, out) is det.
parse_mode_decl(ModuleName, VarSet, ModeDefn, Result) :-
( %%% some [H, B]
mode_op(ModeDefn, H, B)
->
get_condition(B, Body, Condition),
convert_mode_defn(ModuleName, H, Body, R),
process_maybe1(make_mode_defn(VarSet, Condition), R, Result)
;
parse_mode_decl_pred(ModuleName, VarSet, ModeDefn, Result)
).
% People never seem to remember what the right operator to use in a
% `:- mode' declaration is, so the syntax is forgiving. We allow
% `::', the standard one which has the right precedence, but we
% also allow `==' just to be nice.
:- pred mode_op(term, term, term).
:- mode mode_op(in, out, out) is semidet.
mode_op(term__functor(term__atom(Op), [H, B], _), H, B) :-
( Op = "::" ; Op = "==" ).
:- pred convert_mode_defn(module_name, term, term, maybe1(mode_defn)).
:- mode convert_mode_defn(in, in, in, out) is det.
convert_mode_defn(ModuleName, Head, Body, Result) :-
parse_implicitly_qualified_term(ModuleName, Head, Head,
"mode definition", R),
convert_mode_defn_2(R, Head, Body, Result).
:- pred convert_mode_defn_2(maybe_functor, term, term, maybe1(mode_defn)).
:- mode convert_mode_defn_2(in, in, in, out) is det.
convert_mode_defn_2(error(M, T), _, _, error(M, T)).
convert_mode_defn_2(ok(Name, Args), Head, Body, Result) :-
% check that all the head args are variables
( %%% some [Arg]
(
list__member(Arg, Args),
Arg \= term__variable(_)
)
->
Result = error("mode parameters must be variables", Head)
;
% check that all the head arg variables are distinct
%%% some [Arg2, OtherArgs]
(
list__member(Arg2, Args, [Arg2|OtherArgs]),
list__member(Arg2, OtherArgs)
)
->
Result = error("repeated parameters in LHS of mode defn",
Head)
% check that all the variables in the body occur in the head
; %%% some [Var2]
(
term__contains_var(Body, Var2),
\+ term__contains_var_list(Args, Var2)
)
->
Result = error("free inst parameter in RHS of mode definition",
Body)
;
% should improve the error message here
( %%% some [ConvertedBody]
convert_mode(Body, ConvertedBody)
->
Result = ok(eqv_mode(Name, Args, ConvertedBody))
;
% catch-all error message - we should do
% better than this
Result = error("syntax error in mode definition body",
Body)
)
).
:- pred convert_type_and_mode_list(list(term), list(type_and_mode)).
:- mode convert_type_and_mode_list(in, out) is semidet.
convert_type_and_mode_list([], []).
convert_type_and_mode_list([H0|T0], [H|T]) :-
convert_type_and_mode(H0, H),
convert_type_and_mode_list(T0, T).
:- pred convert_type_and_mode(term, type_and_mode).
:- mode convert_type_and_mode(in, out) is semidet.
convert_type_and_mode(Term, Result) :-
(
Term = term__functor(term__atom("::"), [TypeTerm, ModeTerm],
_Context)
->
convert_type(TypeTerm, Type),
convert_mode(ModeTerm, Mode),
Result = type_and_mode(Type, Mode)
;
convert_type(Term, Type),
Result = type_only(Type)
).
:- pred make_mode_defn(varset, condition, mode_defn, item).
:- mode make_mode_defn(in, in, in, out) is det.
make_mode_defn(VarSet, Cond, ModeDefn, mode_defn(VarSet, ModeDefn, Cond)).
%-----------------------------------------------------------------------------%
:- type parser(T) == pred(term, maybe1(T)).
:- mode parser :: pred(in, out) is det.
:- type maker(T1, T2) == pred(T1, T2).
:- mode maker :: pred(in, out) is det.
:- pred parse_symlist_decl(parser(T), maker(list(T), sym_list),
maker(sym_list, module_defn),
term, varset, maybe1(item)).
:- mode parse_symlist_decl(parser, maker, maker, in, in, out) is det.
parse_symlist_decl(ParserPred, MakeSymListPred, MakeModuleDefnPred,
Term, VarSet, Result) :-
parse_list(ParserPred, Term, Result0),
process_maybe1(make_module_defn(MakeSymListPred, MakeModuleDefnPred,
VarSet), Result0, Result).
:- pred make_module_defn(maker(T, sym_list), maker(sym_list, module_defn),
varset, T, item).
:- mode make_module_defn(maker, maker, in, in, out) is det.
make_module_defn(MakeSymListPred, MakeModuleDefnPred, VarSet, T,
module_defn(VarSet, ModuleDefn)) :-
call(MakeSymListPred, T, SymList),
call(MakeModuleDefnPred, SymList, ModuleDefn).
%-----------------------------------------------------------------------------%
% Parse a comma-separated list (misleading described as
% a "conjunction") of things.
:- pred parse_list(parser(T), term, maybe1(list(T))).
:- mode parse_list(parser, in, out) is det.
parse_list(Parser, Term, Result) :-
conjunction_to_list(Term, List),
parse_list_2(List, Parser, Result).
:- pred parse_list_2(list(term), parser(T), maybe1(list(T))).
:- mode parse_list_2(in, parser, out) is det.
parse_list_2([], _, ok([])).
parse_list_2([X|Xs], Parser, Result) :-
call(Parser, X, X_Result),
parse_list_2(Xs, Parser, Xs_Result),
combine_list_results(X_Result, Xs_Result, Result).
% If a list of things contains multiple errors, then we only
% report the first one.
:- pred combine_list_results(maybe1(T), maybe1(list(T)), maybe1(list(T))).
:- mode combine_list_results(in, in, out) is det.
combine_list_results(error(Msg, Term), _, error(Msg, Term)).
combine_list_results(ok(_), error(Msg, Term), error(Msg, Term)).
combine_list_results(ok(X), ok(Xs), ok([X|Xs])).
%-----------------------------------------------------------------------------%
:- pred process_maybe1(maker(T1, T2), maybe1(T1), maybe1(T2)).
:- mode process_maybe1(maker, in, out) is det.
process_maybe1(Maker, ok(X), ok(Y)) :- !, call(Maker, X, Y).
process_maybe1(_, error(M, T), error(M, T)).
:- pred process_maybe1_to_t(maker(T1, maybe1(T2)), maybe1(T1), maybe1(T2)).
:- mode process_maybe1_to_t(maker, in, out) is det.
process_maybe1_to_t(Maker, ok(X), Y) :- !, call(Maker, X, Y).
process_maybe1_to_t(_, error(M, T), error(M, T)).
%-----------------------------------------------------------------------------%
:- pred make_module(list(module_specifier)::in, sym_list::out) is det.
make_module(X, module(X)).
:- pred make_sym(list(sym_specifier)::in, sym_list::out) is det.
make_sym(X, sym(X)).
:- pred make_pred(list(pred_specifier)::in, sym_list::out) is det.
make_pred(X, pred(X)).
:- pred make_func(list(func_specifier)::in, sym_list::out) is det.
make_func(X, func(X)).
:- pred make_cons(list(cons_specifier)::in, sym_list::out) is det.
make_cons(X, cons(X)).
:- pred make_type(list(type_specifier)::in, sym_list::out) is det.
make_type(X, type(X)).
:- pred make_adt(list(adt_specifier)::in, sym_list::out) is det.
make_adt(X, adt(X)).
:- pred make_op(list(op_specifier)::in, sym_list::out) is det.
make_op(X, op(X)).
%-----------------------------------------------------------------------------%
%
% A symbol specifier is one of
%
% SymbolNameSpecifier
% Matches any symbol matched by the SymbolNameSpecifier.
% TypedConstructorSpecifier
% Matches any constructors matched by the
% TypedConstructorSpecifier.
% cons(ConstructorSpecifier)
% Matches only constructors.
% pred(PredSpecifier)
% Matches only predicates, ie. constructors of type
% `pred'.
% adt(SymbolNameSpecifier)
% Matches only type names.
% type(SymbolNameSpecifier)
% Matches type names matched by the SymbolNameSpecifier,
% and also matches any constructors for the matched type
% names.
% op(SymbolNameSpecifier)
% Matches only operators.
% module(ModuleSpecifier)
% Matches all symbols in the specified module.
:- pred parse_symbol_specifier(term, maybe1(sym_specifier)).
:- mode parse_symbol_specifier(in, out) is det.
parse_symbol_specifier(MainTerm, Result) :-
( MainTerm = term__functor(term__atom(Functor), [Term], _Context) ->
( Functor = "cons" ->
parse_constructor_specifier(Term, Result0),
process_maybe1(make_cons_symbol_specifier, Result0,
Result)
; Functor = "pred" ->
parse_predicate_specifier(Term, Result0),
process_maybe1(make_pred_symbol_specifier, Result0,
Result)
; Functor = "func" ->
parse_function_specifier(Term, Result0),
process_maybe1(make_func_symbol_specifier, Result0,
Result)
; Functor = "type" ->
parse_type_specifier(Term, Result0),
process_maybe1(make_type_symbol_specifier, Result0,
Result)
; Functor = "adt" ->
parse_adt_specifier(Term, Result0),
process_maybe1(make_adt_symbol_specifier, Result0,
Result)
; Functor = "op" ->
parse_op_specifier(Term, Result0),
process_maybe1(make_op_symbol_specifier, Result0,
Result)
; Functor = "module" ->
parse_module_specifier(Term, Result0),
process_maybe1(make_module_symbol_specifier, Result0,
Result)
;
parse_constructor_specifier(MainTerm, Result0),
process_maybe1(make_cons_symbol_specifier, Result0,
Result)
)
;
parse_constructor_specifier(MainTerm, Result0),
process_maybe1(make_cons_symbol_specifier, Result0, Result)
).
% Once we've parsed the appropriate type of symbol specifier, we
% need to convert it to a sym_specifier.
:- pred make_pred_symbol_specifier(pred_specifier::in, sym_specifier::out)
is det.
make_pred_symbol_specifier(PredSpec, pred(PredSpec)).
:- pred make_func_symbol_specifier(func_specifier::in, sym_specifier::out)
is det.
make_func_symbol_specifier(FuncSpec, func(FuncSpec)).
:- pred make_cons_symbol_specifier(cons_specifier::in, sym_specifier::out)
is det.
make_cons_symbol_specifier(ConsSpec, cons(ConsSpec)).
:- pred make_type_symbol_specifier(type_specifier::in, sym_specifier::out)
is det.
make_type_symbol_specifier(TypeSpec, type(TypeSpec)).
:- pred make_adt_symbol_specifier(adt_specifier::in, sym_specifier::out) is det.
make_adt_symbol_specifier(ADT_Spec, adt(ADT_Spec)).
:- pred make_op_symbol_specifier(op_specifier::in, sym_specifier::out) is det.
make_op_symbol_specifier(OpSpec, op(OpSpec)).
:- pred make_module_symbol_specifier(module_specifier::in, sym_specifier::out)
is det.
make_module_symbol_specifier(ModuleSpec, module(ModuleSpec)).
:- pred cons_specifier_to_sym_specifier(cons_specifier, sym_specifier).
:- mode cons_specifier_to_sym_specifier(in, out) is det.
cons_specifier_to_sym_specifier(sym(SymSpec), sym(SymSpec)).
cons_specifier_to_sym_specifier(typed(SymSpec), typed_sym(SymSpec)).
%-----------------------------------------------------------------------------%
% A ModuleSpecifier is just an sym_name.
:- pred parse_module_specifier(term, maybe1(module_specifier)).
:- mode parse_module_specifier(in, out) is det.
parse_module_specifier(Term, Result) :-
parse_symbol_name(Term, Result).
% A ModuleName is an implicitly-quantified sym_name.
%
% We check for module names starting with capital letters
% as a special case, so that we can report a better error
% message for that case.
:- pred parse_module_name(module_name, term, maybe1(module_name)).
:- mode parse_module_name(in, in, out) is det.
parse_module_name(DefaultModuleName, Term, Result) :-
(
Term = term__variable(_)
->
dummy_term(ErrorContext),
Result = error("module names starting with capital letters must be quoted using single quotes (e.g. "":- module 'Foo'."")", ErrorContext)
;
parse_implicitly_qualified_symbol_name(DefaultModuleName,
Term, Result)
).
%-----------------------------------------------------------------------------%
% A ConstructorSpecifier is one of
% SymbolNameSpecifier
% TypedConstructorSpecifier
%
% A TypedConstructorSpecifier is one of
% SymbolNameSpecifier::Type
% Matches only constructors with the specified result
% type.
% SymbolName(ArgType1, ..., ArgTypeN)
% Matches only constructors with the specified argument
% types.
% SymbolName(ArgType1, ..., ArgTypeN)::Type
% Matches only constructors with the specified argument
% and result types.
:- pred parse_constructor_specifier(term, maybe1(cons_specifier)).
:- mode parse_constructor_specifier(in, out) is det.
parse_constructor_specifier(Term, Result) :-
(
Term = term__functor(term__atom("::"), [NameArgsTerm, TypeTerm],
_Context)
->
parse_arg_types_specifier(NameArgsTerm, NameArgsResult),
parse_type(TypeTerm, TypeResult),
process_typed_constructor_specifier(NameArgsResult, TypeResult, Result)
;
parse_arg_types_specifier(Term, TermResult),
process_maybe1(make_untyped_cons_spec, TermResult, Result)
).
%-----------------------------------------------------------------------------%
% A PredicateSpecifier is one of
% SymbolName(ArgType1, ..., ArgTypeN)
% Matches only predicates with the specified argument
% types.
% SymbolNameSpecifier
:- pred parse_predicate_specifier(term, maybe1(pred_specifier)).
:- mode parse_predicate_specifier(in, out) is det.
parse_predicate_specifier(Term, Result) :-
(
Term = term__functor(term__atom("/"), [_,_], _Context)
->
parse_symbol_name_specifier(Term, NameResult),
process_maybe1(make_arity_predicate_specifier, NameResult, Result)
;
parse_qualified_term(Term, Term, "predicate specifier", TermResult),
process_typed_predicate_specifier(TermResult, Result)
).
:- pred process_typed_predicate_specifier(maybe_functor, maybe1(pred_specifier)).
:- mode process_typed_predicate_specifier(in, out) is det.
process_typed_predicate_specifier(ok(Name, Args), ok(Result)) :-
( Args = [] ->
Result = sym(name(Name))
;
Result = name_args(Name, Args)
).
process_typed_predicate_specifier(error(Msg, Term), error(Msg, Term)).
:- pred make_arity_predicate_specifier(sym_name_specifier, pred_specifier).
:- mode make_arity_predicate_specifier(in, out) is det.
make_arity_predicate_specifier(Result, sym(Result)).
%-----------------------------------------------------------------------------%
% Parsing the name & argument types of a constructor specifier is
% exactly the same as parsing a predicate specifier...
:- pred parse_arg_types_specifier(term, maybe1(pred_specifier)).
:- mode parse_arg_types_specifier(in, out) is det.
parse_arg_types_specifier(Term, Result) :-
(
Term = term__functor(term__atom("/"), [_,_], _Context)
->
parse_symbol_name_specifier(Term, NameResult),
process_maybe1(make_arity_predicate_specifier, NameResult, Result)
;
parse_qualified_term(Term, Term, "constructor specifier", TermResult),
process_typed_predicate_specifier(TermResult, Result)
).
% ... but we have to convert the result back into the appropriate
% format.
:- pred process_typed_constructor_specifier(maybe1(pred_specifier),
maybe1(type), maybe1(cons_specifier)).
:- mode process_typed_constructor_specifier(in, in, out) is det.
process_typed_constructor_specifier(error(Msg, Term), _, error(Msg, Term)).
process_typed_constructor_specifier(ok(_), error(Msg, Term), error(Msg, Term)).
process_typed_constructor_specifier(ok(NameArgs), ok(ResType), ok(Result)) :-
process_typed_cons_spec_2(NameArgs, ResType, Result).
:- pred process_typed_cons_spec_2(pred_specifier, type, cons_specifier).
:- mode process_typed_cons_spec_2(in, in, out) is det.
process_typed_cons_spec_2(sym(Name), Res, typed(name_res(Name, Res))).
process_typed_cons_spec_2(name_args(Name, Args), Res,
typed(name_args_res(Name, Args, Res))).
:- pred make_untyped_cons_spec(pred_specifier::in, cons_specifier::out) is det.
make_untyped_cons_spec(sym(Name), sym(Name)).
make_untyped_cons_spec(name_args(Name, Args), typed(name_args(Name, Args))).
%-----------------------------------------------------------------------------%
% A SymbolNameSpecifier is one of
% SymbolName
% SymbolName/Arity
% Matches only symbols of the specified arity.
%
:- pred parse_symbol_name_specifier(term, maybe1(sym_name_specifier)).
:- mode parse_symbol_name_specifier(in, out) is det.
parse_symbol_name_specifier(Term, Result) :-
( %%% some [NameTerm, ArityTerm, Context]
Term = term__functor(term__atom("/"), [NameTerm, ArityTerm], _Context)
->
( %%% some [Arity, Context2]
ArityTerm = term__functor(term__integer(Arity), [], _Context2)
->
( Arity >= 0 ->
parse_symbol_name(NameTerm, NameResult),
process_maybe1(make_name_arity_specifier(Arity), NameResult,
Result)
;
Result = error("arity in symbol name specifier must be a non-negative integer", Term)
)
;
Result = error("arity in symbol name specifier must be an integer", Term)
)
;
parse_symbol_name(Term, SymbolNameResult),
process_maybe1(make_name_specifier, SymbolNameResult, Result)
).
:- pred make_name_arity_specifier(arity, sym_name, sym_name_specifier).
:- mode make_name_arity_specifier(in, in, out) is det.
make_name_arity_specifier(Arity, Name, name_arity(Name, Arity)).
:- pred make_name_specifier(sym_name::in, sym_name_specifier::out) is det.
make_name_specifier(Name, name(Name)).
%-----------------------------------------------------------------------------%
% A SymbolName is one of
% Name
% Matches symbols with the specified name in the
% current namespace.
% Module:Name
% Matches symbols with the specified name exported
% by the specified module (where Module is itself
% a SymbolName).
%
% We also allow the syntax `Module__Name'
% as an alternative for `Module:Name'.
:- pred parse_symbol_name(term, maybe1(sym_name)).
:- mode parse_symbol_name(in, out) is det.
parse_symbol_name(Term, Result) :-
(
Term = term__functor(term__atom(":"), [ModuleTerm, NameTerm], _Context)
->
(
NameTerm = term__functor(term__atom(Name), [], _Context1)
->
parse_symbol_name(ModuleTerm, ModuleResult),
(
ModuleResult = ok(Module),
Result = ok(qualified(Module, Name))
;
ModuleResult = error(_, _),
Result = error("module name identifier expected before ':' in qualified symbol name", Term)
)
;
Result = error("identifier expected after ':' in qualified symbol name", Term)
)
;
(
Term = term__functor(term__atom(Name), [], _Context3)
->
string_to_sym_name(Name, "__", SymName),
Result = ok(SymName)
;
Result = error("symbol name expected", Term)
)
).
:- pred parse_implicitly_qualified_symbol_name(module_name, term,
maybe1(sym_name)).
:- mode parse_implicitly_qualified_symbol_name(in, in, out) is det.
parse_implicitly_qualified_symbol_name(DefaultModName, Term, Result) :-
parse_symbol_name(Term, Result0),
( Result0 = ok(SymName) ->
(
root_module_name(DefaultModName)
->
Result = Result0
;
SymName = qualified(ModName, _),
\+ match_sym_name(ModName, DefaultModName)
->
Result = error("module qualifier in definition does not match preceding `:- module' declaration", Term)
;
unqualify_name(SymName, UnqualName),
Result = ok(qualified(DefaultModName, UnqualName))
)
;
Result = Result0
).
%-----------------------------------------------------------------------------%
% A QualifiedTerm is one of
% Name(Args)
% Module:Name(Args)
% (or if Args is empty, one of
% Name
% Module:Name)
% where Module is a SymName.
% For backwards compatibility, we allow `__'
% as an alternative to `:'.
sym_name_and_args(Term, SymName, Args) :-
parse_qualified_term(Term, Term, "", ok(SymName, Args)).
parse_implicitly_qualified_term(DefaultModName, Term, ContainingTerm, Msg,
Result) :-
parse_qualified_term(Term, ContainingTerm, Msg, Result0),
( Result0 = ok(SymName, Args) ->
(
root_module_name(DefaultModName)
->
Result = Result0
;
SymName = qualified(ModName, _),
\+ match_sym_name(ModName, DefaultModName)
->
Result = error("module qualifier in definition does not match preceding `:- module' declaration", Term)
;
unqualify_name(SymName, UnqualName),
Result = ok(qualified(DefaultModName, UnqualName), Args)
)
;
Result = Result0
).
parse_qualified_term(Term, ContainingTerm, Msg, Result) :-
(
Term = term__functor(term__atom(":"), [ModuleTerm, NameArgsTerm],
_Context)
->
(
NameArgsTerm = term__functor(term__atom(Name), Args, _Context2)
->
parse_symbol_name(ModuleTerm, ModuleResult),
(
ModuleResult = ok(Module),
Result = ok(qualified(Module, Name), Args)
;
ModuleResult = error(_, _),
Result = error("module name identifier expected before ':' in qualified symbol name", Term)
)
;
Result = error("identifier expected after ':' in qualified symbol name", Term)
)
;
(
Term = term__functor(term__atom(Name), Args, _Context4)
->
string_to_sym_name(Name, "__", SymName),
Result = ok(SymName, Args)
;
string__append("atom expected in ", Msg, ErrorMsg),
%
% since variables don't have any term__context,
% if Term is a variable, we use ContainingTerm instead
% (hopefully that _will_ have a term__context).
%
( Term = term__variable(_) ->
ErrorTerm = ContainingTerm
;
ErrorTerm = Term
),
Result = error(ErrorMsg, ErrorTerm)
)
).
%-----------------------------------------------------------------------------%
% predicates used to convert a sym_list to a program item
:- pred make_use(sym_list::in, module_defn::out) is det.
make_use(Syms, use(Syms)).
:- pred make_import(sym_list::in, module_defn::out) is det.
make_import(Syms, import(Syms)).
:- pred make_export(sym_list::in, module_defn::out) is det.
make_export(Syms, export(Syms)).
%-----------------------------------------------------------------------------%
% A FuncSpecifier is just a constructur name specifier.
:- pred parse_function_specifier(term, maybe1(func_specifier)).
:- mode parse_function_specifier(in, out) is det.
parse_function_specifier(Term, Result) :-
parse_constructor_specifier(Term, Result).
% A TypeSpecifier is just a symbol name specifier.
:- pred parse_type_specifier(term, maybe1(sym_name_specifier)).
:- mode parse_type_specifier(in, out) is det.
parse_type_specifier(Term, Result) :-
parse_symbol_name_specifier(Term, Result).
% An ADT_Specifier is just a symbol name specifier.
:- pred parse_adt_specifier(term, maybe1(sym_name_specifier)).
:- mode parse_adt_specifier(in, out) is det.
parse_adt_specifier(Term, Result) :-
parse_symbol_name_specifier(Term, Result).
%-----------------------------------------------------------------------------%
% For the moment, an OpSpecifier is just a symbol name specifier.
% XXX We should allow specifying the fixity of an operator
:- pred parse_op_specifier(term, maybe1(op_specifier)).
:- mode parse_op_specifier(in, out) is det.
parse_op_specifier(Term, Result) :-
parse_symbol_name_specifier(Term, R),
process_maybe1(make_op_specifier, R, Result).
:- pred make_op_specifier(sym_name_specifier::in, op_specifier::out) is det.
make_op_specifier(X, sym(X)).
%-----------------------------------------------------------------------------%
% types are represented just as ordinary terms
:- pred parse_type(term, maybe1(type)).
:- mode parse_type(in, out) is det.
parse_type(T, ok(T)).
:- pred convert_constructor_arg_list(list(term), list(constructor_arg)).
:- mode convert_constructor_arg_list(in, out) is det.
convert_constructor_arg_list([], []).
convert_constructor_arg_list([Term | Terms], [Arg | Args]) :-
(
Term = term__functor(term__atom("::"), [NameTerm, TypeTerm], _),
NameTerm = term__functor(term__atom(Name), [], _)
->
convert_type(TypeTerm, Type),
Arg = Name - Type
;
convert_type(Term, Type),
Arg = "" - Type
),
convert_constructor_arg_list(Terms, Args).
:- pred convert_type(term, type).
:- mode convert_type(in, out) is det.
convert_type(T, T).
%-----------------------------------------------------------------------------%
% We use the empty module name ('') as the "root" module name; when adding
% default module qualifiers in parse_implicitly_qualified_{term,symbol},
% if the default module is the root module then we don't add any qualifier.
:- pred root_module_name(module_name::out) is det.
root_module_name(unqualified("")).
%-----------------------------------------------------------------------------%