%-----------------------------------------------------------------------------% % Copyright (C) 2000-2002 The University of Melbourne. % This file may only be copied under the terms of the GNU Library General % Public License - see the file COPYING.LIB in the Mercury distribution. %-----------------------------------------------------------------------------% % File: sparse_bitset.m. % Author: stayl % Stability: medium. % % This module provides an ADT for storing sets of integers. % If the integers stored are closely grouped, a sparse_bitset % is much more compact than the representation provided by set.m, % and the operations will be much faster. % % % Efficiency notes: % % A sparse bitset is represented as a sorted list of pairs of integers. % For a pair `Offset - Bits', `Offset' is a multiple of `int__bits_per_int'. % The bits of `Bits' describe which of the elements of the range % `Offset' .. `Offset + bits_per_int - 1' are in the set. % Pairs with the same value of `Offset' are merged. % Pairs for which `Bits' is zero are removed. % % The values of `Offset' in the list need not be contiguous multiples % of `bits_per_int', hence the name _sparse_ bitset. % % A sparse_bitset is suitable for storing sets of integers which % can be represented using only a few `Offset - Bits' pairs. % In the worst case, where the integers stored are not closely % grouped, a sparse_bitset will take more memory than an % ordinary set, but the operations should not be too much slower. % % In the asymptotic complexities of the operations below, % `rep_size(Set)' is the number of pairs needed to represent `Set', % and `card(Set)' is the number of elements in `Set'. % %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% :- module sparse_bitset. :- interface. :- import_module enum, list, term. :- type sparse_bitset(T). % <= enum(T). % Return an empty set. :- func init = sparse_bitset(T). :- pred init(sparse_bitset(T)). :- mode init(out) is det. :- pred empty(sparse_bitset(T)). :- mode empty(in) is semidet. :- mode empty(out) is det. % `equal(SetA, SetB' is true iff `SetA' and `SetB' % contain the same elements. % Takes O(min(rep_size(SetA), rep_size(SetB))) time. :- pred equal(sparse_bitset(T), sparse_bitset(T)). :- mode equal(in, in) is semidet. % `list_to_set(List)' returns a set % containing only the members of `List'. % In the worst case this will take O(length(List)^2) time % and space. If the elements of the list are closely % grouped, it will be closer to O(length(List)). :- func list_to_set(list(T)) = sparse_bitset(T) <= enum(T). :- pred list_to_set(list(T), sparse_bitset(T)) <= enum(T). :- mode list_to_set(in, out) is det. % `sorted_list_to_set(List)' returns a set containing % only the members of `List'. % `List' must be sorted. % Takes O(length(List)) time and space. :- func sorted_list_to_set(list(T)) = sparse_bitset(T) <= enum(T). :- pred sorted_list_to_set(list(T), sparse_bitset(T)) <= enum(T). :- mode sorted_list_to_set(in, out) is det. % `to_sorted_list(Set, List)' returns a list % containing all the members of `Set', in sorted order. % Takes O(card(Set)) time and space. :- func to_sorted_list(sparse_bitset(T)) = list(T) <= enum(T). :- pred to_sorted_list(sparse_bitset(T), list(T)) <= enum(T). :- mode to_sorted_list(in, out) is det. % `make_singleton_set(Elem)' returns a set % containing just the single element `Elem'. :- func make_singleton_set(T) = sparse_bitset(T) <= enum(T). % Note: set.m contains the reverse mode of this predicate, % but it is difficult to implement both modes using % the representation in this module. :- pred singleton_set(sparse_bitset(T), T) <= enum(T). :- mode singleton_set(out, in) is det. % `subset(Subset, Set)' is true iff `Subset' is a subset of `Set'. % Same as `intersect(Set, Subset, Subset)', but may be more efficient. :- pred subset(sparse_bitset(T), sparse_bitset(T)). :- mode subset(in, in) is semidet. % `superset(Superset, Set)' is true iff `Superset' is a % superset of `Set'. % Same as `intersect(Superset, Set, Set)', but may be more efficient. :- pred superset(sparse_bitset(T), sparse_bitset(T)). :- mode superset(in, in) is semidet. % `contains(Set, X)' is true iff `X' is a member of `Set'. % Takes O(rep_size(Set)) time. :- pred contains(sparse_bitset(T), T) <= enum(T). :- mode contains(in, in) is semidet. % `insert(Set, X)' returns the union % of `Set' and the set containing only `X'. % Takes O(rep_size(Set)) time and space. :- func insert(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T). :- pred insert(sparse_bitset(T), T, sparse_bitset(T)) <= enum(T). :- mode insert(in, in, out) is det. % `insert_list(Set, X)' returns the union of `Set' and the set % containing only the members of `X'. % Same as `union(Set, list_to_set(X))', but may be more efficient. :- func insert_list(sparse_bitset(T), list(T)) = sparse_bitset(T) <= enum(T). :- pred insert_list(sparse_bitset(T), list(T), sparse_bitset(T)) <= enum(T). :- mode insert_list(in, in, out) is det. % `delete(Set, X)' returns the difference % of `Set' and the set containing only `X'. % Takes O(rep_size(Set)) time and space. :- func delete(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T). :- pred delete(sparse_bitset(T), T, sparse_bitset(T)) <= enum(T). :- mode delete(in, in, out) is det. % `delete_list(Set, X)' returns the difference of `Set' and the set % containing only the members of `X'. % Same as `difference(Set, list_to_set(X))', but may be more efficient. :- func delete_list(sparse_bitset(T), list(T)) = sparse_bitset(T) <= enum(T). :- pred delete_list(sparse_bitset(T), list(T), sparse_bitset(T)) <= enum(T). :- mode delete_list(in, in, out) is det. % `remove(Set, X)' returns the difference % of `Set' and the set containing only `X', % failing if `Set' does not contain `X'. % Takes O(rep_size(Set)) time and space. :- func remove(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T). :- mode remove(in, in) = out is semidet. :- pred remove(sparse_bitset(T), T, sparse_bitset(T)) <= enum(T). :- mode remove(in, in, out) is semidet. % `remove_list(Set, X)' returns the difference of `Set' % and the set containing all the elements of `X', % failing if any element of `X' is not in `Set0'. % Same as % `subset(list_to_set(X), Set), difference(Set, list_to_set(X))', % but may be more efficient. :- func remove_list(sparse_bitset(T), list(T)) = sparse_bitset(T) <= enum(T). :- mode remove_list(in, in) = out is semidet. :- pred remove_list(sparse_bitset(T), list(T), sparse_bitset(T)) <= enum(T). :- mode remove_list(in, in, out) is semidet. % `remove_least(Set0, X, Set)' is true iff `X' is the % least element in `Set0', and `Set' is the set which % contains all the elements of `Set0' except `X'. % Takes O(1) time and space. :- pred remove_least(sparse_bitset(T), T, sparse_bitset(T)) <= enum(T). :- mode remove_least(in, out, out) is semidet. % `union(SetA, SetB)' returns the union of `SetA' and `SetB'. % The efficiency of the union operation is not sensitive % to the argument ordering. % Takes O(rep_size(SetA) + rep_size(SetB)) time and space. :- func union(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T). :- pred union(sparse_bitset(T), sparse_bitset(T), sparse_bitset(T)). :- mode union(in, in, out) is det. % `intersect(SetA, SetB)' returns the intersection of % `SetA' and `SetB'. The efficiency of the intersection % operation is not sensitive to the argument ordering. % Takes O(rep_size(SetA) + rep_size(SetB)) time and % O(min(rep_size(SetA)), rep_size(SetB)) space. :- func intersect(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T). :- pred intersect(sparse_bitset(T), sparse_bitset(T), sparse_bitset(T)). :- mode intersect(in, in, out) is det. % `difference(SetA, SetB)' returns the set containing all the % elements of `SetA' except those that occur in `SetB'. % Takes O(rep_size(SetA) + rep_size(SetB)) time and % O(rep_size(SetA)) space. :- func difference(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T). :- pred difference(sparse_bitset(T), sparse_bitset(T), sparse_bitset(T)). :- mode difference(in, in, out) is det. % `count(Set)' returns the number of elements in `Set'. % Takes O(card(Set)) time. :- func count(sparse_bitset(T)) = int <= enum(T). % `foldl(Func, Set, Start)' calls Func with each element % of `Set' (in sorted order) and an accumulator % (with the initial value of `Start'), and returns % the final value. % Takes O(card(Set)) time. :- func foldl(func(T, U) = U, sparse_bitset(T), U) = U <= enum(T). % `foldr(Func, Set, Start)' calls Func with each element % of `Set' (in reverse sorted order) and an accumulator % (with the initial value of `Start'), and returns % the final value. % Takes O(card(Set)) time. :- func foldr(func(T, U) = U, sparse_bitset(T), U) = U <= enum(T). %-----------------------------------------------------------------------------% :- implementation. % Everything below here is not intended to be part of the public interface, % and will not be included in the Mercury library reference manual. :- interface. :- pragma type_spec(list_to_set/1, T = var(_)). :- pragma type_spec(list_to_set/1, T = int). :- pragma type_spec(sorted_list_to_set/1, T = var(_)). :- pragma type_spec(sorted_list_to_set/1, T = int). :- pragma type_spec(to_sorted_list/1, T = var(_)). :- pragma type_spec(to_sorted_list/1, T = int). :- pragma type_spec(make_singleton_set/1, T = var(_)). :- pragma type_spec(make_singleton_set/1, T = int). :- pragma type_spec(contains/2, T = var(_)). :- pragma type_spec(contains/2, T = int). :- pragma type_spec(insert/2, T = var(_)). :- pragma type_spec(insert/2, T = int). :- pragma type_spec(insert_list/2, T = var(_)). :- pragma type_spec(insert_list/2, T = int). :- pragma type_spec(delete/2, T = var(_)). :- pragma type_spec(delete/2, T = int). :- pragma type_spec(delete_list/2, T = var(_)). :- pragma type_spec(delete_list/2, T = int). :- pragma type_spec(foldr/3, T = int). :- pragma type_spec(foldr/3, T = var(_)). :- pragma type_spec(foldl/3, T = int). :- pragma type_spec(foldl/3, T = var(_)). :- pragma type_spec(list_to_set/2, T = var(_)). :- pragma type_spec(list_to_set/2, T = int). :- pragma type_spec(sorted_list_to_set/2, T = var(_)). :- pragma type_spec(sorted_list_to_set/2, T = int). :- pragma type_spec(to_sorted_list/2, T = var(_)). :- pragma type_spec(to_sorted_list/2, T = int). :- pragma type_spec(singleton_set/2, T = var(_)). :- pragma type_spec(singleton_set/2, T = int). :- pragma type_spec(insert/3, T = var(_)). :- pragma type_spec(insert/3, T = int). :- pragma type_spec(insert_list/3, T = var(_)). :- pragma type_spec(insert_list/3, T = int). :- pragma type_spec(delete/3, T = var(_)). :- pragma type_spec(delete/3, T = int). :- pragma type_spec(delete_list/3, T = var(_)). :- pragma type_spec(delete_list/3, T = int). %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% :- implementation. :- import_module list, int, require, std_util. % The number of variables for most procedures % should fit into one or two words. :- type sparse_bitset(T) % <= enum(T) ---> sparse_bitset(bitset_impl). % The list of elements, sorted on offset. % No two elements have the same offset. :- type bitset_impl == list(bitset_elem). % Cells of this type should only be % constructed using make_bitset_elem/2. :- type bitset_elem ---> bitset_elem( offset :: int, % multiple of bits_per_int bits :: int % bits offset .. offset + bits_per_int - 1 % The sparse_bitset operations all remove % elements of the list with a `bits' % field of zero. ). %-----------------------------------------------------------------------------% init = sparse_bitset([]). empty(init). equal(X, X). %-----------------------------------------------------------------------------% to_sorted_list(Set) = foldr(func(Elem, Acc0) = [Elem | Acc0], Set, []). %-----------------------------------------------------------------------------% foldl(F, sparse_bitset(Set), Acc0) = foldl_2(F, Set, Acc0). :- func foldl_2(func(T, U) = U, bitset_impl, U) = U <= enum(T). :- pragma type_spec(foldl_2/3, T = int). :- pragma type_spec(foldl_2/3, T = var(_)). foldl_2(_, [], Acc) = Acc. foldl_2(F, [H | T], Acc0) = Acc :- Acc1 = fold_bits(low_to_high, F, H ^ offset, H ^ bits, Acc0), Acc = foldl_2(F, T, Acc1). foldr(F, sparse_bitset(Set), Acc0) = foldr_2(F, Set, Acc0). :- func foldr_2(func(T, U) = U, bitset_impl, U) = U <= enum(T). :- pragma type_spec(foldr_2/3, T = int). :- pragma type_spec(foldr_2/3, T = var(_)). % We don't just use list__foldr here because the % overhead of allocating the closure for fold_bits % is significant for the compiler's runtime, % so it's best to avoid that even if % `--optimize-higher-order' is not set. foldr_2(_, [], Acc) = Acc. foldr_2(F, [H | T], Acc0) = Acc :- Acc1 = foldr_2(F, T, Acc0), Acc = fold_bits(high_to_low, F, H ^ offset, H ^ bits, Acc1). :- func fold_bits(fold_direction, func(T, U) = U, int, int, U) = U <= enum(T). :- pragma type_spec(fold_bits/5, T = int). :- pragma type_spec(fold_bits/5, T = var(_)). fold_bits(Dir, F, Offset, Bits, Acc0) = Acc :- Size = bits_per_int, Acc = fold_bits_2(Dir, F, Offset, Bits, Size, Acc0). :- type fold_direction ---> low_to_high ; high_to_low . % Do a binary search for the 1 bits in an int. :- func fold_bits_2(fold_direction, func(T, U) = U, int, int, int, U) = U <= enum(T). :- pragma type_spec(fold_bits_2/6, T = int). :- pragma type_spec(fold_bits_2/6, T = var(_)). fold_bits_2(Dir, F, Offset, Bits, Size, Acc0) = Acc :- ( Bits = 0 -> Acc = Acc0 ; Size = 1 -> ( Elem = from_int(Offset) -> Acc = F(Elem, Acc0) ; % We only apply `from_int/1' to integers returned % by `to_int/1', so it should never fail. error("sparse_bitset.m: `enum__from_int/1' failed") ) ; HalfSize = unchecked_right_shift(Size, 1), Mask = mask(HalfSize), % Extract the low-order half of the bits. LowBits = Mask /\ Bits, % Extract the high-order half of the bits. HighBits = Mask /\ unchecked_right_shift(Bits, HalfSize), ( Dir = low_to_high, Acc1 = fold_bits_2(Dir, F, Offset, LowBits, HalfSize, Acc0), Acc = fold_bits_2(Dir, F, Offset + HalfSize, HighBits, HalfSize, Acc1) ; Dir = high_to_low, Acc1 = fold_bits_2(Dir, F, Offset + HalfSize, HighBits, HalfSize, Acc0), Acc = fold_bits_2(Dir, F, Offset, LowBits, HalfSize, Acc1) ) ). %-----------------------------------------------------------------------------% count(Set) = foldl((func(_, Acc) = Acc + 1), Set, 0). %-----------------------------------------------------------------------------% make_singleton_set(A) = insert(init, A). insert(sparse_bitset(Set), Elem) = sparse_bitset(insert_2(Set, enum__to_int(Elem))). :- func insert_2(bitset_impl, int) = bitset_impl. insert_2([], Index) = [make_bitset_elem(Offset, Bits)] :- bits_for_index(Index, Offset, Bits). insert_2(Set0, Index) = Set :- Set0 = [Data0 | Rest], Offset0 = Data0 ^ offset, ( Index < Offset0 -> bits_for_index(Index, Offset, Bits), Set = [make_bitset_elem(Offset, Bits) | Set0] ; BitToSet = Index - Offset0, BitToSet < bits_per_int -> Bits0 = Data0 ^ bits, ( get_bit(Bits0, BitToSet) \= 0 -> Set = Set0 ; Bits = set_bit(Bits0, BitToSet), Set = [make_bitset_elem(Offset0, Bits) | Rest] ) ; Set = [Data0 | insert_2(Rest, Index)] ). insert_list(Set, List) = union(list_to_set(List), Set). %-----------------------------------------------------------------------------% delete(Set, Elem) = difference(Set, insert(init, Elem)). delete_list(Set, List) = difference(Set, list_to_set(List)). remove(Set0, Elem) = Set :- contains(Set0, Elem), Set = delete(Set0, Elem). remove_list(Set0, Elems) = Set :- list_to_set(Elems, ElemsSet), subset(ElemsSet, Set0), Set = difference(Set0, ElemsSet). %-----------------------------------------------------------------------------% remove_least(sparse_bitset(Set0), Elem, sparse_bitset(Set)) :- Set0 = [First | Rest], Bits0 = First ^ bits, Offset = First ^ offset, Bit = find_least_bit(Bits0), ( Elem0 = from_int(Offset + Bit) -> Elem = Elem0 ; % We only apply `from_int/1' to integers returned % by `to_int/1', so it should never fail. error("sparse_bitset.m: `enum__from_int/1' failed") ), Bits = clear_bit(Bits0, Bit), ( Bits = 0 -> Set = Rest ; Set = [make_bitset_elem(Offset, Bits) | Rest] ). :- func find_least_bit(int) = int. find_least_bit(Bits0) = BitNum :- Size = bits_per_int, BitNum0 = 0, BitNum = find_least_bit_2(Bits0, Size, BitNum0). :- func find_least_bit_2(int, int, int) = int. find_least_bit_2(Bits0, Size, BitNum0) = BitNum :- ( Size = 1 -> % We can't get here unless the bit is a 1 bit. BitNum = BitNum0 ; HalfSize = unchecked_right_shift(Size, 1), Mask = mask(HalfSize), LowBits = Bits0 /\ Mask, ( LowBits \= 0 -> BitNum = find_least_bit_2(LowBits, HalfSize, BitNum0) ; HighBits = Mask /\ unchecked_right_shift(Bits0, HalfSize), BitNum = find_least_bit_2(HighBits, HalfSize, BitNum0 + HalfSize) ) ). %-----------------------------------------------------------------------------% list_to_set(List) = sparse_bitset(list_to_set_2(List, [])). % Each pass over the input list selects out the elements which % belong in the same bitset_elem as the first element. % The assumption here is that the items in the input list % will have similar values, so that only a few passes % will be needed. :- func list_to_set_2(list(T), bitset_impl) = bitset_impl <= enum(T). :- pragma type_spec(list_to_set_2/2, T = var(_)). :- pragma type_spec(list_to_set_2/2, T = int). list_to_set_2([], List) = List. list_to_set_2([H | T], List0) = List :- bits_for_index(enum__to_int(H), Offset, Bits0), list_to_set_3(T, Offset, Bits0, Bits, [], Rest), List1 = insert_bitset_elem(make_bitset_elem(Offset, Bits), List0), List = list_to_set_2(Rest, List1). % Go through the list picking out the elements % which belong in the same bitset_elem as the first % element, returning the uncollected elements. :- pred list_to_set_3(list(T), int, int, int, list(T), list(T)) <= enum(T). :- mode list_to_set_3(in, in, in, out, in, out) is det. :- pragma type_spec(list_to_set_3/6, T = var(_)). :- pragma type_spec(list_to_set_3/6, T = int). list_to_set_3([], _, Bits, Bits, Rest, Rest). list_to_set_3([H | T], Offset, Bits0, Bits, Rest0, Rest) :- BitToSet = enum__to_int(H) - Offset, ( BitToSet >= 0, BitToSet < bits_per_int -> Bits2 = set_bit(Bits0, BitToSet), Rest1 = Rest0 ; Bits2 = Bits0, Rest1 = [H | Rest0] ), list_to_set_3(T, Offset, Bits2, Bits, Rest1, Rest). % The list of elements here is pretty much guaranteed % to be small, so use an insertion sort. :- func insert_bitset_elem(bitset_elem, bitset_impl) = bitset_impl. insert_bitset_elem(Data, []) = [Data]. insert_bitset_elem(Data0, [Data1 | Rest]) = List :- ( Data0 ^ offset < Data1 ^ offset -> List = [Data0, Data1 | Rest] ; List = [Data1 | insert_bitset_elem(Data0, Rest)] ). %-----------------------------------------------------------------------------% sorted_list_to_set(L) = sparse_bitset(sorted_list_to_set_2(L)). :- func sorted_list_to_set_2(list(T)) = bitset_impl <= enum(T). :- pragma type_spec(sorted_list_to_set_2/1, T = var(_)). :- pragma type_spec(sorted_list_to_set_2/1, T = int). sorted_list_to_set_2([]) = []. sorted_list_to_set_2([H | T]) = Set :- sorted_list_to_set_3(H, T, Offset, Bits, Set0), ( Bits = 0 -> Set = Set0 ; Set = [make_bitset_elem(Offset, Bits) | Set0] ). :- pred sorted_list_to_set_3(T, list(T), int, int, bitset_impl) <= enum(T). :- mode sorted_list_to_set_3(in, in, out, out, out) is det. :- pragma type_spec(sorted_list_to_set_3/5, T = var(_)). :- pragma type_spec(sorted_list_to_set_3/5, T = int). sorted_list_to_set_3(Elem, [], Offset, Bits, []) :- bits_for_index(enum__to_int(Elem), Offset, Bits). sorted_list_to_set_3(Elem1, [Elem2 | Elems], Offset, Bits, Rest) :- sorted_list_to_set_3(Elem2, Elems, Offset0, Bits0, Rest0), bits_for_index(enum__to_int(Elem1), Offset1, Bits1), ( Offset1 = Offset0 -> Bits = Bits1 \/ Bits0, Offset = Offset1, Rest = Rest0 ; Rest = [make_bitset_elem(Offset0, Bits0) | Rest0], Offset = Offset1, Bits = Bits1 ). %-----------------------------------------------------------------------------% subset(Subset, Set) :- intersect(Set, Subset, Subset). superset(Superset, Set) :- subset(Set, Superset). %-----------------------------------------------------------------------------% contains(sparse_bitset(Set), Elem) :- contains_2(Set, enum__to_int(Elem)). :- pred contains_2(bitset_impl, int). :- mode contains_2(in, in) is semidet. contains_2([Data | Rest], Index) :- Offset = Data ^ offset, Index >= Offset, ( Index < Offset + bits_per_int -> get_bit(Data ^ bits, Index - Offset) \= 0 ; contains_2(Rest, Index) ). %-----------------------------------------------------------------------------% :- func rest(bitset_impl::in(bound([ground | ground]))) = (bitset_impl::out) is det. rest([_ | Rest]) = Rest. union(sparse_bitset(Set1), sparse_bitset(Set2)) = sparse_bitset(union_2(Set1, Set2)). :- func union_2(bitset_impl, bitset_impl) = bitset_impl. union_2([], []) = []. union_2([], B) = B :- B = [_ | _]. union_2(A, []) = A :- A = [_ | _]. union_2(Set1, Set2) = Set :- Set1 = [Data1 | _], Set2 = [Data2 | _], Offset1 = Data1 ^ offset, Offset2 = Data2 ^ offset, ( Offset1 = Offset2 -> Elem = make_bitset_elem(Offset1, (Data1 ^ bits) \/ (Data2 ^ bits)), Set = [Elem | union_2(Set1 ^ rest, Set2 ^ rest)] ; Offset1 < Offset2 -> Set = [Data1 | union_2(Set1 ^ rest, Set2)] ; Set = [Data2 | union_2(Set1, Set2 ^ rest)] ). %-----------------------------------------------------------------------------% intersect(sparse_bitset(Set1), sparse_bitset(Set2)) = sparse_bitset(intersect_2(Set1, Set2)). :- func intersect_2(bitset_impl, bitset_impl) = bitset_impl. intersect_2([], []) = []. intersect_2([], B) = [] :- B = [_ | _]. intersect_2(A, []) = [] :- A = [_ | _]. intersect_2(Set1, Set2) = Set :- Set1 = [Data1 | _], Set2 = [Data2 | _], Offset1 = Data1 ^ offset, Offset2 = Data2 ^ offset, ( Offset1 = Offset2 -> Bits = Data1 ^ bits /\ Data2 ^ bits, ( Bits = 0 -> Set = intersect_2(Set1 ^ rest, Set2 ^ rest) ; Set = [make_bitset_elem(Offset1, Bits) | intersect_2(Set1 ^ rest, Set2 ^ rest)] ) ; Offset1 < Offset2 -> Set = intersect_2(Set1 ^ rest, Set2) ; Set = intersect_2(Set1, Set2 ^ rest) ). %-----------------------------------------------------------------------------% difference(sparse_bitset(Set1), sparse_bitset(Set2)) = sparse_bitset(difference_2(Set1, Set2)). :- func difference_2(bitset_impl, bitset_impl) = bitset_impl. difference_2([], []) = []. difference_2([], B) = [] :- B = [_|_]. difference_2(A, []) = A :- A = [_ | _]. difference_2(Set1, Set2) = Set :- Set1 = [Data1 | _], Set2 = [Data2 | _], Offset1 = Data1 ^ offset, Offset2 = Data2 ^ offset, ( Offset1 = Offset2 -> Bits = (Data1 ^ bits) /\ \ (Data2 ^ bits), ( Bits = 0 -> Set = difference_2(Set1 ^ rest, Set2 ^ rest) ; Set = [make_bitset_elem(Offset1, Bits) | difference_2(Set1 ^ rest, Set2 ^ rest)] ) ; Offset1 < Offset2 -> Set = [Data1 | difference_2(Set1 ^ rest, Set2)] ; Set = difference_2(Set1, Set2 ^ rest) ). %-----------------------------------------------------------------------------% % Return the offset of the element of a set % which should contain the given element, % and an int with the bit corresponding to % that element set. :- pred bits_for_index(int, int, int). :- mode bits_for_index(in, out, out) is det. :- pragma inline(bits_for_index/3). bits_for_index(Index, Offset, Bits) :- Offset = int__floor_to_multiple_of_bits_per_int(Index), BitToSet = Index - Offset, Bits = set_bit(0, BitToSet). :- func get_bit(int, int) = int. :- pragma inline(get_bit/2). get_bit(Int, Bit) = Int /\ unchecked_left_shift(1, Bit). :- func set_bit(int, int) = int. :- pragma inline(set_bit/2). set_bit(Int0, Bit) = Int0 \/ unchecked_left_shift(1, Bit). :- func clear_bit(int, int) = int. :- pragma inline(clear_bit/2). clear_bit(Int0, Bit) = Int0 /\ \ unchecked_left_shift(1, Bit). % `mask(N)' returns a mask which can be `and'ed with an % integer to return the lower `N' bits of the integer. % `N' must be less than bits_per_int. :- func mask(int) = int. :- pragma inline(mask/1). mask(N) = \ unchecked_left_shift(\ 0, N). :- func make_bitset_elem(int, int) = bitset_elem. :- pragma inline(make_bitset_elem/2). %make_bitset_elem(A, B) = bitset_elem(A, B). :- pragma foreign_decl("C", " #include ""mercury_heap.h"" /* for MR_incr_hp_atomic_msg() */ "). % The bit pattern will often look like a pointer, % so allocate the pairs using GC_malloc_atomic() % to avoid unnecessary memory retention. % Doing this slows down the compiler by about 1%, % but in a library module it's better to be safe. :- pragma foreign_proc("C", make_bitset_elem(A::in, B::in) = (Pair::out), [will_not_call_mercury, promise_pure, thread_safe], "{ #define ML_BITSET_TAG MR_FIRST_UNRESERVED_RAW_TAG MR_tag_incr_hp_atomic_msg(Pair, MR_mktag(ML_BITSET_TAG), 2, MR_PROC_LABEL, ""sparse_bitset:bitset_elem/0""); MR_field(MR_mktag(ML_BITSET_TAG), Pair, 0) = A; MR_field(MR_mktag(ML_BITSET_TAG), Pair, 1) = B; }"). % XXX this needs to take reserve-tag into account too :- pragma foreign_proc("C#", make_bitset_elem(A::in, B::in) = (Pair::out), [will_not_call_mercury, promise_pure, thread_safe], "{ #if MR_RESERVE_TAG #error ""sparse_bitset not implemented for .NET in .rt grades"" #endif Pair = mercury.runtime.LowLevelData.make_MR_Word(0, 2); mercury.runtime.LowLevelData.set_MR_Word_field(Pair, 1, A); mercury.runtime.LowLevelData.set_MR_Word_field(Pair, 2, B); }"). %-----------------------------------------------------------------------------% init(init). singleton_set(make_singleton_set(A), A). insert(A, B, insert(A, B)). insert_list(A, B, insert_list(A, B)). delete(A, B, delete(A, B)). delete_list(A, B, delete_list(A, B)). remove(A, B, remove(A, B)). remove_list(A, B, remove_list(A, B)). list_to_set(A, list_to_set(A)). to_sorted_list(A, to_sorted_list(A)). sorted_list_to_set(A, sorted_list_to_set(A)). union(A, B, union(A, B)). intersect(A, B, intersect(A, B)). difference(A, B, difference(A, B)). %-----------------------------------------------------------------------------%