%-----------------------------------------------------------------------------% % Copyright (C) 1999-2001 The University of Melbourne. % This file may only be copied under the terms of the GNU Library General % Public License - see the file COPYING.LIB in the Mercury distribution. %-----------------------------------------------------------------------------% % File: declarative_execution.m % Author: Mark Brown % % This module defines a Mercury representation of Mercury program % execution, the annotated trace. This structure is described in % papers/decl_debug. The declarative debugging infrastructure in the % trace directory builds an annotated trace, using predicates exported % from this module. Once built, the structure is passed to the front % end (in browser/declarative_debugger.m) where it is analysed % to produce a bug diagnosis. :- module mdb__declarative_execution. :- interface. :- import_module list, std_util, string, io, bool. :- import_module mdb__util, mdb__program_representation. % This type represents a port in the annotated trace. % The type R is the type of references to other nodes % in the store. % % If this type is modified, the procedures below which % do destructive update on values of this type may also % need to be modified. % :- type trace_node(R) ---> call( R, % Preceding event. R, % Last EXIT or REDO event. trace_atom, % Atom that was called. sequence_number, % Call sequence number. event_number, % Trace event number. bool, % At the maximum depth? maybe(goal_rep) % Body of the called procedure. ) ; exit( R, % Preceding event. R, % CALL event. R, % Previous REDO event, if any. trace_atom, % Atom in its final state. event_number % Trace event number. ) ; redo( R, % Preceding event. R % EXIT event. ) ; fail( R, % Preceding event. R, % CALL event. R, % Previous REDO event, if any. event_number % Trace event number. ) ; excp( R, % Preceding event. R, % Call event. R, % Previous redo, if any. univ, % Exception thrown. event_number % Trace event number. ) ; switch( R, % Preceding event. goal_path_string % Path for this event. ) ; first_disj( R, % Preceding event. goal_path_string % Path for this event. ) ; later_disj( R, % Preceding event. goal_path_string, % Path for this event. R % Event of the first DISJ. ) ; cond( R, % Preceding event. goal_path_string, % Path for this event. goal_status % Whether we have reached % a THEN or ELSE event. ) ; then( R, % Preceding event. R % COND event. ) ; else( R, % Preceding event. R % COND event. ) ; neg( R, % Preceding event. goal_path_string, % Path for this event. goal_status % Whether we have reached % a NEGS or NEGF event. ) ; neg_succ( R, % Preceding event. R % NEGE event. ) ; neg_fail( R, % Preceding event. R % NEGE event. ) . :- type trace_atom ---> atom( pred_or_func, % Procedure name. % string, % Arguments. % XXX this representation will not be % able to handle partially instantiated % data structures. % list(maybe(univ)) ). % If the following type is modified, some of the macros in % trace/mercury_trace_declarative.h may need to be updated. % :- type goal_status ---> succeeded ; failed ; undecided. :- type sequence_number == int. :- type event_number == int. % Members of this typeclass represent an entire annotated % trace. The second parameter is the type of identifiers % for trace nodes, and the first parameter is the type of % an abstract mapping from identifiers to the nodes they % identify. % :- typeclass annotated_trace(S, R) where [ % Dereference the identifier. This fails if the % identifier does not refer to any trace_node (ie. % it is a NULL pointer). % pred trace_node_from_id(S, R, trace_node(R)), mode trace_node_from_id(in, in, out) is semidet ]. % Given any node in an annotated trace, find the most recent % node in the same contour (ie. the last node which has not been % backtracked over, skipping negations, failed conditions, the % bodies of calls, and alternative disjuncts). Throw an exception % if there is no such node (ie. if we are at the start of a % negation, call, or failed condition). % % In some cases the contour may reach a dead end. This can % happen if, for example, a DISJ node is not present because % it is beyond the depth bound or in a module that is not traced; % "stepping left" will arrive at a FAIL, REDO or NEGF node. Since % it is not possible to follow the original contour in these % circumstances, we follow the previous contour instead. % :- func step_left_in_contour(S, trace_node(R)) = R <= annotated_trace(S, R). % Given any node in an annotated trace, find the most recent % node in the same stratum (ie. the most recent node, skipping % negations, failed conditions, and the bodies of calls). % Throw an exception if there is no such node (ie. if we are at % the start of a negation, call, or failed negation). % :- func step_in_stratum(S, trace_node(R)) = R <= annotated_trace(S, R). % The following procedures also dereference the identifiers, % but they give an error if the node is not of the expected type. % :- pred det_trace_node_from_id(S, R, trace_node(R)) <= annotated_trace(S, R). :- mode det_trace_node_from_id(in, in, out) is det. :- inst trace_node_call = bound(call(ground, ground, ground, ground, ground, ground, ground)). :- pred call_node_from_id(S, R, trace_node(R)) <= annotated_trace(S, R). :- mode call_node_from_id(in, in, out(trace_node_call)) is det. :- inst trace_node_redo = bound(redo(ground, ground)). % maybe_redo_node_from_id/3 fails if the argument is a % NULL reference. % :- pred maybe_redo_node_from_id(S, R, trace_node(R)) <= annotated_trace(S, R). :- mode maybe_redo_node_from_id(in, in, out(trace_node_redo)) is semidet. :- inst trace_node_exit = bound(exit(ground, ground, ground, ground, ground)). :- pred exit_node_from_id(S, R, trace_node(R)) <= annotated_trace(S, R). :- mode exit_node_from_id(in, in, out(trace_node_exit)) is det. :- inst trace_node_cond = bound(cond(ground, ground, ground)). :- pred cond_node_from_id(S, R, trace_node(R)) <= annotated_trace(S, R). :- mode cond_node_from_id(in, in, out(trace_node_cond)) is det. :- inst trace_node_neg = bound(neg(ground, ground, ground)). :- pred neg_node_from_id(S, R, trace_node(R)) <= annotated_trace(S, R). :- mode neg_node_from_id(in, in, out(trace_node_neg)) is det. :- inst trace_node_first_disj = bound(first_disj(ground, ground)). :- pred first_disj_node_from_id(S, R, trace_node(R)) <= annotated_trace(S, R). :- mode first_disj_node_from_id(in, in, out(trace_node_first_disj)) is det. :- inst trace_node_disj = bound(first_disj(ground, ground); later_disj(ground, ground, ground)). :- pred disj_node_from_id(S, R, trace_node(R)) <= annotated_trace(S, R). :- mode disj_node_from_id(in, in, out(trace_node_disj)) is det. % Load an execution tree which was previously saved by % the back end. % :- pred load_trace_node_map(io__input_stream, trace_node_map, trace_node_key, io__state, io__state). :- mode load_trace_node_map(in, out, out, di, uo) is det. % Save an execution tree generated by the back end. It is % first converted into a trace_node_map/trace_node_key pair. % :- pred save_trace_node_store(io__output_stream, trace_node_store, trace_node_id, io__state, io__state). :- mode save_trace_node_store(in, in, in, di, uo) is det. %-----------------------------------------------------------------------------% % This instance is used when the declarative debugger is in % normal mode. Values of this instance are produced by the % back end and passed directly to the front end. % :- type trace_node_store. :- type trace_node_id. :- instance annotated_trace(trace_node_store, trace_node_id). % This instance is used when the declarative debugger is in % test mode. Values of this instance are produced by copying % values of the previous instance. Unlike the previous % instance, values of this one can be fed through a stream. % :- type trace_node_map. :- type trace_node_key. :- instance annotated_trace(trace_node_map, trace_node_key). %-----------------------------------------------------------------------------% :- implementation. :- import_module map, require, store. step_left_in_contour(Store, exit(_, Call, _, _, _)) = Prec :- call_node_from_id(Store, Call, call(Prec, _, _, _, _, _, _)). step_left_in_contour(Store, excp(_, Call, _, _, _)) = Prec :- call_node_from_id(Store, Call, call(Prec, _, _, _, _, _, _)). step_left_in_contour(_, switch(Prec, _)) = Prec. step_left_in_contour(_, first_disj(Prec, _)) = Prec. step_left_in_contour(Store, later_disj(_, _, FirstDisj)) = Prec :- first_disj_node_from_id(Store, FirstDisj, first_disj(Prec, _)). step_left_in_contour(_, cond(Prec, _, Status)) = Node :- ( Status = failed -> error("step_left_in_contour: failed COND node") ; Node = Prec ). step_left_in_contour(_, then(Prec, _)) = Prec. step_left_in_contour(Store, else(_, Cond)) = Prec :- cond_node_from_id(Store, Cond, cond(Prec, _, _)). step_left_in_contour(Store, neg_succ(_, Neg)) = Prec :- neg_node_from_id(Store, Neg, neg(Prec, _, _)). % % The following cases are possibly at the left end of a contour, % where we cannot step any further. % step_left_in_contour(_, call(_, _, _, _, _, _, _)) = _ :- error("step_left_in_contour: unexpected CALL node"). step_left_in_contour(_, neg(Prec, _, Status)) = Next :- ( Status = undecided -> % % An exception must have been thrown inside the % negation, so we don't consider it a separate % context. % Next = Prec ; error("step_left_in_contour: unexpected NEGE node") ). % % In the remaining cases we have reached a dead end, so we % step to the previous contour instead. % step_left_in_contour(Store, Node) = Prec :- Node = fail(_, _, _, _), find_prev_contour(Store, Node, Prec). step_left_in_contour(Store, Node) = Prec :- Node = redo(_, _), find_prev_contour(Store, Node, Prec). step_left_in_contour(Store, Node) = Prec :- Node = neg_fail(_, _), find_prev_contour(Store, Node, Prec). % Given any node which is not on a contour, find a node on % the previous contour in the same stratum. % :- pred find_prev_contour(S, trace_node(R), R) <= annotated_trace(S, R). :- mode find_prev_contour(in, in, out) is semidet. :- mode find_prev_contour(in, in(trace_node_reverse), out) is det. :- inst trace_node_reverse = bound( fail(ground, ground, ground, ground) ; redo(ground, ground) ; neg_fail(ground, ground)). find_prev_contour(Store, fail(_, Call, _, _), OnContour) :- call_node_from_id(Store, Call, call(OnContour, _, _, _, _, _, _)). find_prev_contour(Store, redo(_, Exit), OnContour) :- exit_node_from_id(Store, Exit, exit(OnContour, _, _, _, _)). find_prev_contour(Store, neg_fail(_, Neg), OnContour) :- neg_node_from_id(Store, Neg, neg(OnContour, _, _)). % % The following cases are at the left end of a contour, % so there are no previous contours in the same stratum. % find_prev_contour(_, call(_, _, _, _, _, _, _), _) :- error("find_prev_contour: reached CALL node"). find_prev_contour(_, cond(_, _, _), _) :- error("find_prev_contour: reached COND node"). find_prev_contour(_, neg(_, _, _), _) :- error("find_prev_contour: reached NEGE node"). step_in_stratum(Store, exit(_, Call, MaybeRedo, _, _)) = step_over_redo_or_call(Store, Call, MaybeRedo). step_in_stratum(Store, fail(_, Call, MaybeRedo, _)) = step_over_redo_or_call(Store, Call, MaybeRedo). step_in_stratum(Store, excp(_, Call, MaybeRedo, _, _)) = step_over_redo_or_call(Store, Call, MaybeRedo). step_in_stratum(Store, redo(_, Exit)) = Next :- exit_node_from_id(Store, Exit, exit(Next, _, _, _, _)). step_in_stratum(_, switch(Next, _)) = Next. step_in_stratum(_, first_disj(Next, _)) = Next. step_in_stratum(_, later_disj(Next, _, _)) = Next. step_in_stratum(_, cond(Prec, _, Status)) = Next :- ( Status = failed -> error("step_in_stratum: failed COND node") ; Next = Prec ). step_in_stratum(_, then(Next, _)) = Next. step_in_stratum(Store, else(_, Cond)) = Next :- cond_node_from_id(Store, Cond, cond(Next, _, _)). step_in_stratum(Store, neg_succ(_, Neg)) = Next :- neg_node_from_id(Store, Neg, neg(Next, _, _)). step_in_stratum(Store, neg_fail(_, Neg)) = Next :- neg_node_from_id(Store, Neg, neg(Next, _, _)). % % The following cases mark the boundary of the stratum, % so we cannot step any further. % step_in_stratum(_, call(_, _, _, _, _, _, _)) = _ :- error("step_in_stratum: unexpected CALL node"). step_in_stratum(_, neg(_, _, _)) = _ :- error("step_in_stratum: unexpected NEGE node"). :- func step_over_redo_or_call(S, R, R) = R <= annotated_trace(S, R). step_over_redo_or_call(Store, Call, MaybeRedo) = Next :- ( maybe_redo_node_from_id(Store, MaybeRedo, Redo) -> Redo = redo(Next, _) ; call_node_from_id(Store, Call, call(Next, _, _, _, _, _, _)) ). det_trace_node_from_id(Store, NodeId, Node) :- ( trace_node_from_id(Store, NodeId, Node0) -> Node = Node0 ; error("det_trace_node_from_id: NULL node id") ). call_node_from_id(Store, NodeId, Node) :- ( trace_node_from_id(Store, NodeId, Node0), Node0 = call(_, _, _, _, _, _, _) -> Node = Node0 ; error("call_node_from_id: not a CALL node") ). maybe_redo_node_from_id(Store, NodeId, Node) :- trace_node_from_id(Store, NodeId, Node0), ( Node0 = redo(_, _) -> Node = Node0 ; error("maybe_redo_node_from_id: not a REDO node or NULL") ). exit_node_from_id(Store, NodeId, Node) :- ( trace_node_from_id(Store, NodeId, Node0), Node0 = exit(_, _, _, _, _) -> Node = Node0 ; error("exit_node_from_id: not an EXIT node") ). cond_node_from_id(Store, NodeId, Node) :- ( trace_node_from_id(Store, NodeId, Node0), Node0 = cond(_, _, _) -> Node = Node0 ; error("cond_node_from_id: not a COND node") ). neg_node_from_id(Store, NodeId, Node) :- ( trace_node_from_id(Store, NodeId, Node0), Node0 = neg(_, _, _) -> Node = Node0 ; error("neg_node_from_id: not a NEG node") ). first_disj_node_from_id(Store, NodeId, Node) :- ( trace_node_from_id(Store, NodeId, Node0), Node0 = first_disj(_, _) -> Node = Node0 ; error("first_disj_node_from_id: not a first DISJ node") ). disj_node_from_id(Store, NodeId, Node) :- ( trace_node_from_id(Store, NodeId, Node0), ( Node0 = first_disj(_, _) ; Node0 = later_disj(_, _, _) ) -> Node = Node0 ; error("disj_node_from_id: not a DISJ node") ). %-----------------------------------------------------------------------------% :- instance annotated_trace(trace_node_store, trace_node_id) where [ pred(trace_node_from_id/3) is search_trace_node_store ]. % The "map" is actually just an integer representing the version % of the map. The empty map should be given the value 0, and % each time the map is destructively modified (by C code), the % value should be incremented. % :- type trace_node_store ---> store(int). % The implementation of the identifiers is the same as what % is identified. This fact is hidden, however, to force the % abstract map to be explicitly used whenever a new node is % accessed. % :- type trace_node_id ---> id(c_pointer). :- pred search_trace_node_store(trace_node_store, trace_node_id, trace_node(trace_node_id)). :- mode search_trace_node_store(in, in, out) is semidet. :- pragma c_code( search_trace_node_store(_Store::in, Id::in, Node::out), [will_not_call_mercury, thread_safe], " Node = Id; SUCCESS_INDICATOR = (Id != (MR_Word) NULL); " ). % % Following are some predicates that are useful for % manipulating the above instance in C code. % :- func call_node_get_last_interface(trace_node(trace_node_id)) = trace_node_id. :- pragma export(call_node_get_last_interface(in) = out, "MR_DD_call_node_get_last_interface"). call_node_get_last_interface(Call) = Last :- ( Call = call(_, Last0, _, _, _, _, _) -> Last = Last0 ; error("call_node_get_last_interface: not a CALL node") ). :- func call_node_set_last_interface(trace_node(trace_node_id), trace_node_id) = trace_node(trace_node_id). :- mode call_node_set_last_interface(di, di) = out is det. :- pragma export(call_node_set_last_interface(di, di) = out, "MR_DD_call_node_set_last_interface"). call_node_set_last_interface(Call0, Last) = Call :- ( Call0 = call(_, _, _, _, _, _, _) -> Call1 = Call0 ; error("call_node_set_last_interface: not a CALL node") ), % The last interface is the second field, so we pass 1 % (since argument numbers start from 0). % set_trace_node_arg(Call1, 1, Last, Call). :- func cond_node_set_status(trace_node(trace_node_id), goal_status) = trace_node(trace_node_id). :- mode cond_node_set_status(di, di) = out is det. :- pragma export(cond_node_set_status(di, di) = out, "MR_DD_cond_node_set_status"). cond_node_set_status(Cond0, Status) = Cond :- ( Cond0 = cond(_, _, _) -> Cond1 = Cond0 ; error("cond_node_set_status: not a COND node") ), % The goal status is the third field, so we pass 2 % (since argument numbers start from 0). % set_trace_node_arg(Cond1, 2, Status, Cond). :- func neg_node_set_status(trace_node(trace_node_id), goal_status) = trace_node(trace_node_id). :- mode neg_node_set_status(di, di) = out is det. :- pragma export(neg_node_set_status(di, di) = out, "MR_DD_neg_node_set_status"). neg_node_set_status(Neg0, Status) = Neg :- ( Neg0 = neg(_, _, _) -> Neg1 = Neg0 ; error("neg_node_set_status: not a NEGE node") ), % The goal status is the third field, so we pass 2 % (since argument numbers start from 0). % set_trace_node_arg(Neg1, 2, Status, Neg). :- pred set_trace_node_arg(trace_node(trace_node_id), int, T, trace_node(trace_node_id)). :- mode set_trace_node_arg(di, in, di, out) is det. set_trace_node_arg(Node0, FieldNum, Val, Node) :- store__new(S0), store__new_ref(Node0, Ref, S0, S1), store__arg_ref(Ref, FieldNum, ArgRef, S1, S2), store__set_ref_value(ArgRef, Val, S2, S), store__extract_ref_value(S, Ref, Node). :- func trace_node_port(trace_node(trace_node_id)) = trace_port_type. :- pragma export(trace_node_port(in) = out, "MR_DD_trace_node_port"). trace_node_port(call(_, _, _, _, _, _, _)) = call. trace_node_port(exit(_, _, _, _, _)) = exit. trace_node_port(redo(_, _)) = redo. trace_node_port(fail(_, _, _, _)) = fail. trace_node_port(excp(_, _, _, _, _)) = exception. trace_node_port(switch(_, _)) = switch. trace_node_port(first_disj(_, _)) = disj. trace_node_port(later_disj(_, _, _)) = disj. trace_node_port(cond(_, _, _)) = ite_cond. trace_node_port(then(_, _)) = ite_then. trace_node_port(else(_, _)) = ite_else. trace_node_port(neg(_, _, _)) = neg_enter. trace_node_port(neg_succ(_, _)) = neg_success. trace_node_port(neg_fail(_, _)) = neg_failure. :- func trace_node_path(trace_node_store, trace_node(trace_node_id)) = goal_path_string. :- pragma export(trace_node_path(in, in) = out, "MR_DD_trace_node_path"). trace_node_path(_, call(_, _, _, _, _, _, _)) = "". trace_node_path(_, exit(_, _, _, _, _)) = "". trace_node_path(_, redo(_, _)) = "". trace_node_path(_, fail(_, _, _, _)) = "". trace_node_path(_, excp(_, _, _, _, _)) = "". trace_node_path(_, switch(_, P)) = P. trace_node_path(_, first_disj(_, P)) = P. trace_node_path(_, later_disj(_, P, _)) = P. trace_node_path(_, cond(_, P, _)) = P. trace_node_path(S, then(_, Cond)) = P :- cond_node_from_id(S, Cond, cond(_, P, _)). trace_node_path(S, else(_, Cond)) = P :- cond_node_from_id(S, Cond, cond(_, P, _)). trace_node_path(_, neg(_, P, _)) = P. trace_node_path(S, neg_succ(_, Neg)) = P :- neg_node_from_id(S, Neg, neg(_, P, _)). trace_node_path(S, neg_fail(_, Neg)) = P :- neg_node_from_id(S, Neg, neg(_, P, _)). :- pred trace_node_seqno(trace_node_store, trace_node(trace_node_id), sequence_number). :- mode trace_node_seqno(in, in, out) is semidet. :- pragma export(trace_node_seqno(in, in, out), "MR_DD_trace_node_seqno"). trace_node_seqno(S, Node, SeqNo) :- ( Node = call(_, _, _, SeqNo0, _, _, _) -> SeqNo = SeqNo0 ; trace_node_call(S, Node, Call), call_node_from_id(S, Call, call(_, _, _, SeqNo, _, _, _)) ). :- pred trace_node_call(trace_node_store, trace_node(trace_node_id), trace_node_id). :- mode trace_node_call(in, in, out) is semidet. :- pragma export(trace_node_call(in, in, out), "MR_DD_trace_node_call"). trace_node_call(_, exit(_, Call, _, _, _), Call). trace_node_call(S, redo(_, Exit), Call) :- exit_node_from_id(S, Exit, exit(_, Call, _, _, _)). trace_node_call(_, fail(_, Call, _, _), Call). trace_node_call(_, excp(_, Call, _, _, _), Call). :- pred trace_node_first_disj(trace_node(trace_node_id), trace_node_id). :- mode trace_node_first_disj(in, out) is semidet. :- pragma export(trace_node_first_disj(in, out), "MR_DD_trace_node_first_disj"). trace_node_first_disj(first_disj(_, _), NULL) :- null_trace_node_id(NULL). trace_node_first_disj(later_disj(_, _, FirstDisj), FirstDisj). % Export a version of this function to be called by C code % in trace/declarative_debugger.c. % :- func step_left_in_contour_store(trace_node_store, trace_node(trace_node_id)) = trace_node_id. :- pragma export(step_left_in_contour_store(in, in) = out, "MR_DD_step_left_in_contour"). step_left_in_contour_store(Store, Node) = step_left_in_contour(Store, Node). % Export a version of this function to be called by C code % in trace/declarative_debugger.c. If called with a node % that is already on a contour, this function returns the % same node. This saves the C code from having to perform % that check itself. % :- func find_prev_contour_store(trace_node_store, trace_node_id) = trace_node_id. :- pragma export(find_prev_contour_store(in, in) = out, "MR_DD_find_prev_contour"). find_prev_contour_store(Store, Id) = Prev :- det_trace_node_from_id(Store, Id, Node), ( find_prev_contour(Store, Node, Prev0) -> Prev = Prev0 ; Prev = Id ). % Print a text representation of a trace node, useful % for debugging purposes. % :- pred print_trace_node(io__output_stream, trace_node(trace_node_id), io__state, io__state). :- mode print_trace_node(in, in, di, uo) is det. :- pragma export(print_trace_node(in, in, di, uo), "MR_DD_print_trace_node"). print_trace_node(OutStr, Node) --> { convert_node(Node, CNode) }, io__write(OutStr, CNode). %-----------------------------------------------------------------------------% % % Each node type has a Mercury function which constructs % a node of that type. The functions are exported to C so % that the back end can build an execution tree. % :- func construct_call_node(trace_node_id, trace_atom, sequence_number, event_number, bool) = trace_node(trace_node_id). :- pragma export(construct_call_node(in, in, in, in, in) = out, "MR_DD_construct_call_node"). construct_call_node(Preceding, Atom, SeqNo, EventNo, MaxDepth) = Call :- Call = call(Preceding, Answer, Atom, SeqNo, EventNo, MaxDepth, no), null_trace_node_id(Answer). :- func construct_call_node_with_goal(trace_node_id, trace_atom, sequence_number, event_number, bool, goal_rep) = trace_node(trace_node_id). :- pragma export(construct_call_node_with_goal(in, in, in, in, in, in) = out, "MR_DD_construct_call_node_with_goal"). construct_call_node_with_goal(Preceding, Atom, SeqNo, EventNo, MaxDepth, GoalRep) = Call :- Call = call(Preceding, Answer, Atom, SeqNo, EventNo, MaxDepth, yes(GoalRep)), null_trace_node_id(Answer). :- func construct_exit_node(trace_node_id, trace_node_id, trace_node_id, trace_atom, event_number) = trace_node(trace_node_id). :- pragma export(construct_exit_node(in, in, in, in, in) = out, "MR_DD_construct_exit_node"). construct_exit_node(Preceding, Call, MaybeRedo, Atom, EventNo) = exit(Preceding, Call, MaybeRedo, Atom, EventNo). :- func construct_redo_node(trace_node_id, trace_node_id) = trace_node(trace_node_id). :- pragma export(construct_redo_node(in, in) = out, "MR_DD_construct_redo_node"). construct_redo_node(Preceding, Exit) = redo(Preceding, Exit). :- func construct_fail_node(trace_node_id, trace_node_id, trace_node_id, event_number) = trace_node(trace_node_id). :- pragma export(construct_fail_node(in, in, in, in) = out, "MR_DD_construct_fail_node"). construct_fail_node(Preceding, Call, Redo, EventNo) = fail(Preceding, Call, Redo, EventNo). :- func construct_excp_node(trace_node_id, trace_node_id, trace_node_id, univ, event_number) = trace_node(trace_node_id). :- pragma export(construct_excp_node(in, in, in, in, in) = out, "MR_DD_construct_excp_node"). construct_excp_node(Preceding, Call, MaybeRedo, Exception, EventNo) = excp(Preceding, Call, MaybeRedo, Exception, EventNo). :- func construct_switch_node(trace_node_id, goal_path_string) = trace_node(trace_node_id). :- pragma export(construct_switch_node(in, in) = out, "MR_DD_construct_switch_node"). construct_switch_node(Preceding, Path) = switch(Preceding, Path). :- func construct_first_disj_node(trace_node_id, goal_path_string) = trace_node(trace_node_id). :- pragma export(construct_first_disj_node(in, in) = out, "MR_DD_construct_first_disj_node"). construct_first_disj_node(Preceding, Path) = first_disj(Preceding, Path). :- func construct_later_disj_node(trace_node_store, trace_node_id, goal_path_string, trace_node_id) = trace_node(trace_node_id). :- pragma export(construct_later_disj_node(in, in, in, in) = out, "MR_DD_construct_later_disj_node"). construct_later_disj_node(Store, Preceding, Path, PrevDisj) = later_disj(Preceding, Path, FirstDisj) :- disj_node_from_id(Store, PrevDisj, PrevDisjNode), ( PrevDisjNode = first_disj(_, _), FirstDisj = PrevDisj ; PrevDisjNode = later_disj(_, _, FirstDisj) ). :- func construct_cond_node(trace_node_id, goal_path_string) = trace_node(trace_node_id). :- pragma export(construct_cond_node(in, in) = out, "MR_DD_construct_cond_node"). construct_cond_node(Preceding, Path) = cond(Preceding, Path, undecided). :- func construct_then_node(trace_node_id, trace_node_id) = trace_node(trace_node_id). :- pragma export(construct_then_node(in, in) = out, "MR_DD_construct_then_node"). construct_then_node(Preceding, Cond) = then(Preceding, Cond). :- func construct_else_node(trace_node_id, trace_node_id) = trace_node(trace_node_id). :- pragma export(construct_else_node(in, in) = out, "MR_DD_construct_else_node"). construct_else_node(Preceding, Cond) = else(Preceding, Cond). :- func construct_neg_node(trace_node_id, goal_path_string) = trace_node(trace_node_id). :- pragma export(construct_neg_node(in, in) = out, "MR_DD_construct_neg_node"). construct_neg_node(Preceding, Path) = neg(Preceding, Path, undecided). :- func construct_neg_succ_node(trace_node_id, trace_node_id) = trace_node(trace_node_id). :- pragma export(construct_neg_succ_node(in, in) = out, "MR_DD_construct_neg_succ_node"). construct_neg_succ_node(Preceding, Neg) = neg_succ(Preceding, Neg). :- func construct_neg_fail_node(trace_node_id, trace_node_id) = trace_node(trace_node_id). :- pragma export(construct_neg_fail_node(in, in) = out, "MR_DD_construct_neg_fail_node"). construct_neg_fail_node(Preceding, Neg) = neg_fail(Preceding, Neg). :- pred null_trace_node_id(trace_node_id). :- mode null_trace_node_id(out) is det. :- pragma c_code( null_trace_node_id(Id::out), [will_not_call_mercury, thread_safe], "Id = (MR_Word) NULL;" ). :- func construct_trace_atom(pred_or_func, string, int) = trace_atom. :- pragma export(construct_trace_atom(in, in, in) = out, "MR_DD_construct_trace_atom"). construct_trace_atom(PredOrFunc, Functor, Arity) = Atom :- Atom = atom(PredOrFunc, Functor, Args), list__duplicate(Arity, no, Args). :- func add_trace_atom_arg(trace_atom, int, univ) = trace_atom. :- pragma export(add_trace_atom_arg(in, in, in) = out, "MR_DD_add_trace_atom_arg"). add_trace_atom_arg(atom(C, F, Args0), Num, Val) = atom(C, F, Args) :- list__replace_nth_det(Args0, Num, yes(Val), Args). %-----------------------------------------------------------------------------% % The most important property of this instance is that it % can be written to or read in from a stream easily. It % is not as efficient to use as the earlier instance, though. % :- instance annotated_trace(trace_node_map, trace_node_key) where [ pred(trace_node_from_id/3) is search_trace_node_map ]. :- type trace_node_map ---> map(map(trace_node_key, trace_node(trace_node_key))). % Values of this type are represented in the same way (in the % underlying C code) as corresponding values of the other % instance. % :- type trace_node_key ---> key(int). :- pred search_trace_node_map(trace_node_map, trace_node_key, trace_node(trace_node_key)). :- mode search_trace_node_map(in, in, out) is semidet. search_trace_node_map(map(Map), Key, Node) :- map__search(Map, Key, Node). load_trace_node_map(Stream, Map, Key) --> io__read(Stream, ResKey), { ResKey = ok(Key) ; ResKey = eof, error("load_trace_node_map: unexpected EOF") ; ResKey = error(Msg, _), error(Msg) }, io__read(Stream, ResMap), { ResMap = ok(Map) ; ResMap = eof, error("load_trace_node_map: unexpected EOF") ; ResMap = error(Msg, _), error(Msg) }. :- pragma export(save_trace_node_store(in, in, in, di, uo), "MR_DD_save_trace"). save_trace_node_store(Stream, Store, NodeId) --> { map__init(Map0) }, { node_id_to_key(NodeId, Key) }, { node_map(Store, NodeId, map(Map0), Map) }, io__write(Stream, Key), io__write_string(Stream, ".\n"), io__write(Stream, Map), io__write_string(Stream, ".\n"). :- pred node_map(trace_node_store, trace_node_id, trace_node_map, trace_node_map). :- mode node_map(in, in, in, out) is det. node_map(Store, NodeId, map(Map0), Map) :- ( search_trace_node_store(Store, NodeId, Node1) -> node_id_to_key(NodeId, Key), convert_node(Node1, Node2), map__det_insert(Map0, Key, Node2, Map1), Next = preceding_node(Node1), node_map(Store, Next, map(Map1), Map) ; Map = map(Map0) ). :- pred node_id_to_key(trace_node_id, trace_node_key). :- mode node_id_to_key(in, out) is det. :- pragma c_code(node_id_to_key(Id::in, Key::out), [will_not_call_mercury, thread_safe], "Key = (MR_Integer) Id;"). :- pred convert_node(trace_node(trace_node_id), trace_node(trace_node_key)). :- mode convert_node(in, out) is det. :- pragma c_code(convert_node(N1::in, N2::out), [will_not_call_mercury, thread_safe], "N2 = N1;"). % Given a node in an annotated trace, return a reference to % the preceding node in the trace, or a NULL reference if % it is the first. % :- func preceding_node(trace_node(T)) = T. preceding_node(call(P, _, _, _, _, _, _)) = P. preceding_node(exit(P, _, _, _, _)) = P. preceding_node(redo(P, _)) = P. preceding_node(fail(P, _, _, _)) = P. preceding_node(excp(P, _, _, _, _)) = P. preceding_node(switch(P, _)) = P. preceding_node(first_disj(P, _)) = P. preceding_node(later_disj(P, _, _)) = P. preceding_node(cond(P, _, _)) = P. preceding_node(then(P, _)) = P. preceding_node(else(P, _)) = P. preceding_node(neg(P, _, _)) = P. preceding_node(neg_succ(P, _)) = P. preceding_node(neg_fail(P, _)) = P.