%-----------------------------------------------------------------------------% % vim: ft=mercury ts=4 sw=4 et %-----------------------------------------------------------------------------% % Copyright (C) 1999-2007 The University of Melbourne. % This file may only be copied under the terms of the GNU General % Public License - see the file COPYING in the Mercury distribution. %-----------------------------------------------------------------------------% % % Module: assertion.m. % Main authors: petdr. % % This module is an abstract interface to the assertion table. % Note that this is a first design and will probably change % substantially in the future. % %-----------------------------------------------------------------------------% :- module hlds.assertion. :- interface. :- import_module hlds.hlds_data. :- import_module hlds.hlds_goal. :- import_module hlds.hlds_module. :- import_module hlds.hlds_pred. :- import_module parse_tree.prog_data. :- import_module pair. %-----------------------------------------------------------------------------% % Get the hlds_goal which represents the assertion. % :- pred assert_id_goal(module_info::in, assert_id::in, hlds_goal::out) is det. % Record into the pred_info of each pred used in the assertion % the assert_id. % :- pred record_preds_used_in(hlds_goal::in, assert_id::in, module_info::in, module_info::out) is det. % is_commutativity_assertion(MI, Id, Vs, CVs): % % Does the assertion represented by the assertion id, Id, % state the commutativity of a pred/func? % We extend the usual definition of commutativity to apply to % predicates or functions with more than two arguments as % follows by allowing extra arguments which must be invariant. % If so, this predicate returns (in CVs) the two variables which % can be swapped in order if it was a call to Vs. % % The assertion must be in a form similar to this % all [Is,A,B,C] ( p(Is,A,B,C) <=> p(Is,B,A,C) ) % for the predicate to return true (note that the invariant % arguments, Is, can be any where providing they are in % identical locations on both sides of the equivalence). % :- pred is_commutativity_assertion(module_info::in, assert_id::in, prog_vars::in, pair(prog_var)::out) is semidet. % is_associativity_assertion(MI, Id, Vs, CVs, OV): % % Does the assertion represented by the assertion id, Id, % state the associativity of a pred/func? % We extend the usual definition of associativity to apply to % predicates or functions with more than two arguments as % follows by allowing extra arguments which must be invariant. % If so, this predicate returns (in CVs) the two variables which % can be swapped in order if it was a call to Vs, and the % output variable, OV, related to these two variables (for the % case below it would be the variable in the same position as % AB, BC or ABC). % % The assertion must be in a form similar to this % % all [Is,A,B,C,ABC] % ( % some [AB] p(Is,A,B,AB), p(Is,AB,C,ABC) % <=> % some [BC] p(Is,B,C,BC), p(Is,A,BC,ABC) % ) % % for the predicate to return true (note that the invariant % arguments, Is, can be any where providing they are in % identical locations on both sides of the equivalence). % :- pred is_associativity_assertion(module_info::in, assert_id::in, prog_vars::in, pair(prog_var)::out, prog_var::out) is semidet. % is_update_assertion(MI, Id, PId, Ss): % % is true iff the assertion, Id, is about a predicate, PId, % which takes some state as input and produces some state as output % and we are guaranteed to get the same final state regardless of % the order that the state is updated. % % i.e. the promise should look something like this, note that A % and B could be vectors of variables. % % :- promise all [A,B,SO,S] % ( % (some [SA] (update(S0,A,SA), update(SA,B,S))) % <=> % (some [SB] (update(S0,B,SB), update(SB,A,S))) % ). % % Given the actual variables, Vs, to the call to update, return % the pair of variables which are state variables, SPair. % :- pred is_update_assertion(module_info::in, assert_id::in, pred_id::in, prog_vars::in, pair(prog_var)::out) is semidet. % is_construction_equivalence_assertion(MI, Id, C, P): % % Can a single construction unification whose functor is determined % by the cons_id, C, be expressed as a call to the predid, P (with possibly % some construction unifications to initialise the arguments). % % The assertion will be in a form similar to % % all [L,H,T] ( L = [H | T] <=> append([H], T, L) ) % :- pred is_construction_equivalence_assertion(module_info::in, assert_id::in, cons_id::in, pred_id::in) is semidet. % Place a hlds_goal into a standard form. Currently all the % code does is replace conj([G]) with G. % :- pred normalise_goal(hlds_goal::in, hlds_goal::out) is det. %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% :- implementation. :- import_module hlds.goal_util. :- import_module hlds.hlds_clauses. :- import_module libs.compiler_util. :- import_module parse_tree.prog_util. :- import_module assoc_list. :- import_module list. :- import_module map. :- import_module maybe. :- import_module set. :- import_module solutions. :- type subst == map(prog_var, prog_var). %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% is_commutativity_assertion(Module, AssertId, CallVars, CommutativeVars) :- assert_id_goal(Module, AssertId, Goal), goal_is_equivalence(Goal, P, Q), P = hlds_goal(plain_call(PredId, _, VarsP, _, _, _), _), Q = hlds_goal(plain_call(PredId, _, VarsQ, _, _, _), _), commutative_var_ordering(VarsP, VarsQ, CallVars, CommutativeVars). % commutative_var_ordering(Ps, Qs, Vs, CommutativeVs): % % Check that the two list of variables are identical except that % the position of two variables has been swapped. % e.g [A,B,C] and [B,A,C] is true. % It also takes a list of variables, Vs, to a call and returns % the two variables in that list that can be swapped, ie [A,B]. % :- pred commutative_var_ordering(prog_vars::in, prog_vars::in, prog_vars::in, pair(prog_var)::out) is semidet. commutative_var_ordering([P | Ps], [Q | Qs], [V | Vs], CommutativeVars) :- ( P = Q -> commutative_var_ordering(Ps, Qs, Vs, CommutativeVars) ; commutative_var_ordering_2(P, Q, Ps, Qs, Vs, CallVarB), CommutativeVars = V - CallVarB ). :- pred commutative_var_ordering_2(prog_var::in, prog_var::in, prog_vars::in, prog_vars::in, prog_vars::in, prog_var::out) is semidet. commutative_var_ordering_2(VarP, VarQ, [P | Ps], [Q | Qs], [V | Vs], CallVarB) :- ( P = Q -> commutative_var_ordering_2(VarP, VarQ, Ps, Qs, Vs, CallVarB) ; CallVarB = V, P = VarQ, Q = VarP, Ps = Qs ). %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% is_associativity_assertion(Module, AssertId, CallVars, AssociativeVars, OutputVar) :- assert_id_goal(Module, AssertId, hlds_goal(GoalExpr, GoalInfo)), goal_is_equivalence(hlds_goal(GoalExpr, GoalInfo), P, Q), UniversiallyQuantifiedVars = goal_info_get_nonlocals(GoalInfo), % There may or may not be a some [] depending on whether % the user explicity qualified the call or not. ( P = hlds_goal(scope(_, hlds_goal(conj(plain_conj, PCalls0), _)), _), Q = hlds_goal(scope(_, hlds_goal(conj(plain_conj, QCalls0), _)), _) -> PCalls = PCalls0, QCalls = QCalls0 ; P = hlds_goal(conj(plain_conj, PCalls), _PGoalInfo), Q = hlds_goal(conj(plain_conj, QCalls), _QGoalInfo) ), promise_equivalent_solutions [AssociativeVars, OutputVar] ( associative(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars, AssociativeVars - OutputVar) ). % associative(Ps, Qs, Us, R): % % If the assertion was in the form % all [Us] (some [] (Ps)) <=> (some [] (Qs)) % try and rearrange the order of Ps and Qs so that the assertion % is in the standard from % % compose( A, B, AB), compose(B, C, BC), % compose(AB, C, ABC) <=> compose(A, BC, ABC) % :- pred associative(hlds_goals::in, hlds_goals::in, set(prog_var)::in, prog_vars::in, pair(pair(prog_var), prog_var)::out) is cc_nondet. associative(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars, (CallVarA - CallVarB) - OutputVar) :- reorder(PCalls, QCalls, LHSCalls, RHSCalls), process_one_side(LHSCalls, UniversiallyQuantifiedVars, PredId, AB, PairsL, Vs), process_one_side(RHSCalls, UniversiallyQuantifiedVars, PredId, BC, PairsR, _), % If you read the predicate documentation, you will note that % for each pair of variables on the left hand side there are an equivalent % pair of variables on the right hand side. As the pairs of variables % are not symmetric, the call to list.perm will only succeed once, % if at all. assoc_list.from_corresponding_lists(PairsL, PairsR, Pairs), list.perm(Pairs, [(A - AB) - (B - A), (B - C) - (C - BC), (AB - ABC) - (BC - ABC)]), assoc_list.from_corresponding_lists(Vs, CallVars, AssocList), list.filter((pred(X-_Y::in) is semidet :- X = AB), AssocList, [_AB - OutputVar]), list.filter((pred(X-_Y::in) is semidet :- X = A), AssocList, [_A - CallVarA]), list.filter((pred(X-_Y::in) is semidet :- X = B), AssocList, [_B - CallVarB]). % reorder(Ps, Qs, Ls, Rs): % % Given both sides of the equivalence return another possible ordering. % :- pred reorder(hlds_goals::in, hlds_goals::in, hlds_goals::out, hlds_goals::out) is multi. reorder(PCalls, QCalls, LHSCalls, RHSCalls) :- list.perm(PCalls, LHSCalls), list.perm(QCalls, RHSCalls). reorder(PCalls, QCalls, LHSCalls, RHSCalls) :- list.perm(PCalls, RHSCalls), list.perm(QCalls, LHSCalls). % process_one_side(Gs, Us, L, Ps): % % Given the list of goals, Gs, which are one side of a possible % associative equivalence, and the universally quantified % variables, Us, of the goals return L the existentially % quantified variable that links the two calls and Ps the list % of variables which are not invariants. % % i.e. for app(TypeInfo, X, Y, XY), app(TypeInfo, XY, Z, XYZ) % L <= XY and Ps <= [X - XY, Y - Z, XY - XYZ] % :- pred process_one_side(hlds_goals::in, set(prog_var)::in, pred_id::out, prog_var::out, assoc_list(prog_var)::out, prog_vars::out) is semidet. process_one_side(Goals, UniversiallyQuantifiedVars, PredId, LinkingVar, Vars, VarsA) :- process_two_linked_calls(Goals, UniversiallyQuantifiedVars, PredId, LinkingVar, Vars0, VarsA), % Filter out all the invariant arguments, and then make sure that % their is only 3 arguments left. list.filter((pred(X-Y::in) is semidet :- not X = Y), Vars0, Vars), list.length(Vars, number_of_associative_vars). :- func number_of_associative_vars = int. number_of_associative_vars = 3. %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% is_update_assertion(Module, AssertId, _PredId, CallVars, StateA - StateB) :- assert_id_goal(Module, AssertId, hlds_goal(GoalExpr, GoalInfo)), goal_is_equivalence(hlds_goal(GoalExpr, GoalInfo), P, Q), UniversiallyQuantifiedVars = goal_info_get_nonlocals(GoalInfo), % There may or may not be an explicit some [Vars] there, % as quantification now works correctly. ( P = hlds_goal(scope(_, hlds_goal(conj(plain_conj, PCalls0), _)), _), Q = hlds_goal(scope(_, hlds_goal(conj(plain_conj, QCalls0), _)), _) -> PCalls = PCalls0, QCalls = QCalls0 ; P = hlds_goal(conj(plain_conj, PCalls), _PGoalInfo), Q = hlds_goal(conj(plain_conj, QCalls), _QGoalInfo) ), solutions.solutions(update(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars), [StateA - StateB | _]). % compose(S0, A, SA), compose(SB, A, S), % compose(SA, B, S) <=> compose(S0, B, SB) % :- pred update(hlds_goals::in, hlds_goals::in, set(prog_var)::in, prog_vars::in, pair(prog_var)::out) is nondet. update(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars, StateA - StateB) :- reorder(PCalls, QCalls, LHSCalls, RHSCalls), process_two_linked_calls(LHSCalls, UniversiallyQuantifiedVars, PredId, SA, PairsL, Vs), process_two_linked_calls(RHSCalls, UniversiallyQuantifiedVars, PredId, SB, PairsR, _), assoc_list.from_corresponding_lists(PairsL, PairsR, Pairs0), list.filter((pred(X-Y::in) is semidet :- X \= Y), Pairs0, Pairs), list.length(Pairs) = 2, % If you read the predicate documentation, you will note that % for each pair of variables on the left hand side there is an equivalent % pair of variables on the right hand side. As the pairs of variables % are not symmetric, the call to list.perm will only succeed once, % if at all. list.perm(Pairs, [(S0 - SA) - (SB - S0), (SA - S) - (S - SB)]), assoc_list.from_corresponding_lists(Vs, CallVars, AssocList), list.filter((pred(X-_Y::in) is semidet :- X = S0), AssocList, [_S0 - StateA]), list.filter((pred(X-_Y::in) is semidet :- X = SA), AssocList, [_SA - StateB]). %-----------------------------------------------------------------------------% % process_two_linked_calls(Gs, UQVs, PId, LV, AL, VAs): % % is true iff the list of goals, Gs, with universally quantified % variables, UQVs, is two calls to the same predicate, PId, with % one variable that links them, LV. AL will be the assoc list % that is the each variable from the first call with its % corresponding variable in the second call, and VAs are the % variables of the first call. % :- pred process_two_linked_calls(hlds_goals::in, set(prog_var)::in, pred_id::out, prog_var::out, assoc_list(prog_var)::out, prog_vars::out) is semidet. process_two_linked_calls(Goals, UniversiallyQuantifiedVars, PredId, LinkingVar, Vars, VarsA) :- Goals = [hlds_goal(plain_call(PredId, _, VarsA, _, _, _), _), hlds_goal(plain_call(PredId, _, VarsB, _, _, _), _)], % Determine the linking variable, L. By definition it must be % existentially quantified and member of both variable lists. CommonVars = list_to_set(VarsA) `intersect` list_to_set(VarsB), set.singleton_set(CommonVars `difference` UniversiallyQuantifiedVars, LinkingVar), % Set up mapping between the variables in the two calls. assoc_list.from_corresponding_lists(VarsA, VarsB, Vars). %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% is_construction_equivalence_assertion(Module, AssertId, ConsId, PredId) :- assert_id_goal(Module, AssertId, Goal), goal_is_equivalence(Goal, P, Q), ( single_construction(P, ConsId) -> predicate_call(Q, PredId) ; single_construction(Q, ConsId), predicate_call(P, PredId) ). % One side of the equivalence must be just the single unification % with the correct cons_id. % :- pred single_construction(hlds_goal::in, cons_id::in) is semidet. single_construction(hlds_goal(unify(_, UnifyRhs, _, _, _), _), cons(QualifiedSymName, Arity)) :- UnifyRhs = rhs_functor(cons(UnqualifiedSymName, Arity), _, _), match_sym_name(UnqualifiedSymName, QualifiedSymName). % The side containing the predicate call must be a single call % to the predicate with 0 or more construction unifications % which setup the arguments to the predicates. % :- pred predicate_call(hlds_goal::in, pred_id::in) is semidet. predicate_call(Goal, PredId) :- ( Goal = hlds_goal(conj(plain_conj, Goals), _) -> list.member(Call, Goals), Call = hlds_goal(plain_call(PredId, _, _, _, _, _), _), list.delete(Goals, Call, Unifications), P = (pred(G::in) is semidet :- not ( G = hlds_goal(unify(_, UnifyRhs, _, _, _), _), UnifyRhs = rhs_functor(_, _, _) ) ), list.filter(P, Unifications, []) ; Goal = hlds_goal(plain_call(PredId, _, _, _, _, _), _) ). %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% assert_id_goal(Module, AssertId, Goal) :- module_info_get_assertion_table(Module, AssertTable), assertion_table_lookup(AssertTable, AssertId, PredId), module_info_pred_info(Module, PredId, PredInfo), pred_info_get_clauses_info(PredInfo, ClausesInfo), clauses_info_clauses_only(ClausesInfo, Clauses), ( Clauses = [clause(_ProcIds, Goal0, _Lang, _Context)] -> normalise_goal(Goal0, Goal) ; unexpected(this_file, "goal: not an assertion") ). %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% :- pred goal_is_implication(hlds_goal::in, hlds_goal::out, hlds_goal::out) is semidet. goal_is_implication(Goal, P, Q) :- % Goal = (P => Q) Goal = hlds_goal(negation(hlds_goal(conj(plain_conj, GoalList), _)), GI), list.reverse(GoalList) = [NotQ | Ps], ( Ps = [P0] -> P = P0 ; P = hlds_goal(conj(plain_conj, list.reverse(Ps)), GI) ), NotQ = hlds_goal(negation(Q), _). :- pred goal_is_equivalence(hlds_goal::in, hlds_goal::out, hlds_goal::out) is semidet. goal_is_equivalence(Goal, P, Q) :- % Goal = P <=> Q Goal = hlds_goal(conj(plain_conj, [A, B]), _GoalInfo), map.init(Subst), goal_is_implication(A, PA, QA), goal_is_implication(B, QB, PB), equal_goals(PA, PB, Subst, _), equal_goals(QA, QB, Subst, _), P = PA, Q = QA. %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% % equal_goals(GA, GB): % % Do these two goals represent the same hlds_goal modulo renaming? % :- pred equal_goals(hlds_goal::in, hlds_goal::in, subst::in, subst::out) is semidet. equal_goals(GoalA, GoalB, !Subst) :- GoalA = hlds_goal(GoalExprA, _GoalInfoA), GoalB = hlds_goal(GoalExprB, _GoalInfoB), equal_goal_exprs(GoalExprA, GoalExprB, !Subst). :- pred equal_goal_exprs(hlds_goal_expr::in, hlds_goal_expr::in, subst::in, subst::out) is semidet. equal_goal_exprs(GoalExprA, GoalExprB, !Subst) :- ( GoalExprA = conj(ConjType, GoalsA), GoalExprB = conj(ConjType, GoalsB), equal_goals_list(GoalsA, GoalsB, !Subst) ; GoalExprA = plain_call(PredId, _, ArgVarsA, _, _, _), GoalExprB = plain_call(PredId, _, ArgVarsB, _, _, _), equal_vars(ArgVarsA, ArgVarsB, !Subst) ; GoalExprA = generic_call(CallDetails, ArgVarsA, _, _), GoalExprB = generic_call(CallDetails, ArgVarsB, _, _), equal_vars(ArgVarsA, ArgVarsB, !Subst) ; GoalExprA = switch(Var, CanFail, CasesA), GoalExprB = switch(Var, CanFail, CasesB), equal_goals_cases(CasesA, CasesB, !Subst) ; GoalExprA = unify(VarA, RHSA, _, _, _), GoalExprB = unify(VarB, RHSB, _, _, _), equal_var(VarA, VarB, !Subst), equal_unification(RHSA, RHSB, !Subst) ; GoalExprA = disj(GoalsA), GoalExprB = disj(GoalsB), equal_goals_list(GoalsA, GoalsB, !Subst) ; GoalExprA = negation(SubGoalA), GoalExprB = negation(SubGoalB), equal_goals(SubGoalA, SubGoalB, !Subst) ; GoalExprA = scope(ReasonA, SubGoalA), GoalExprB = scope(ReasonB, SubGoalB), equal_reason(ReasonA, ReasonB, !Subst), equal_goals(SubGoalA, SubGoalB, !Subst) ; GoalExprA = if_then_else(VarsA, CondA, ThenA, ElseA), GoalExprB = if_then_else(VarsB, CondB, ThenB, ElseB), equal_vars(VarsA, VarsB, !Subst), equal_goals(CondA, CondB, !Subst), equal_goals(ThenA, ThenB, !Subst), equal_goals(ElseA, ElseB, !Subst) ; GoalExprA = call_foreign_proc(Attributes, PredId, _, ArgsA, ExtraA, MaybeTraceA, _), GoalExprB = call_foreign_proc(Attributes, PredId, _, ArgsB, ExtraB, MaybeTraceB, _), % Foreign_procs with extra args and trace runtime conditions are % compiler generated, and as such will not participate in assertions. ExtraA = [], ExtraB = [], MaybeTraceA = no, MaybeTraceB = no, VarsA = list.map(foreign_arg_var, ArgsA), VarsB = list.map(foreign_arg_var, ArgsB), equal_vars(VarsA, VarsB, !Subst) ; GoalExprA = shorthand(ShortHandA), GoalExprB = shorthand(ShortHandB), equal_goals_shorthand(ShortHandA, ShortHandB, !Subst) ). :- pred equal_reason(scope_reason::in, scope_reason::in, subst::in, subst::out) is semidet. equal_reason(exist_quant(VarsA), exist_quant(VarsB), !Subst) :- equal_vars(VarsA, VarsB, !Subst). equal_reason(barrier(Removable), barrier(Removable), !Subst). equal_reason(commit(ForcePruning), commit(ForcePruning), !Subst). equal_reason(from_ground_term(VarA), from_ground_term(VarB), !Subst) :- equal_var(VarA, VarB, !Subst). :- pred equal_goals_shorthand(shorthand_goal_expr::in, shorthand_goal_expr::in, subst::in, subst::out) is semidet. equal_goals_shorthand(ShortHandA, ShortHandB, !Subst) :- ShortHandA = bi_implication(LeftGoalA, RightGoalA), ShortHandB = bi_implication(LeftGoalB, RightGoalB), equal_goals(LeftGoalA, LeftGoalB, !Subst), equal_goals(RightGoalA, RightGoalB, !Subst). :- pred equal_var(prog_var::in, prog_var::in, subst::in, subst::out) is semidet. equal_var(VA, VB, !Subst) :- ( map.search(!.Subst, VA, SubstVA) -> SubstVA = VB ; map.insert(!.Subst, VA, VB, !:Subst) ). :- pred equal_vars(prog_vars::in, prog_vars::in, subst::in, subst::out) is semidet. equal_vars([], [], !Subst). equal_vars([VA | VAs], [VB | VBs], !Subst) :- equal_var(VA, VB, !Subst), equal_vars(VAs, VBs, !Subst). :- pred equal_unification(unify_rhs::in, unify_rhs::in, subst::in, subst::out) is semidet. equal_unification(rhs_var(A), rhs_var(B), !Subst) :- equal_vars([A], [B], !Subst). equal_unification(rhs_functor(ConsId, E, VarsA), rhs_functor(ConsId, E, VarsB), !Subst) :- equal_vars(VarsA, VarsB, !Subst). equal_unification(LambdaGoalA, LambdaGoalB, !Subst) :- LambdaGoalA = rhs_lambda_goal(Purity, PredOrFunc, EvalMethod, NLVarsA, LVarsA, Modes, Det, GoalA), LambdaGoalB = rhs_lambda_goal(Purity, PredOrFunc, EvalMethod, NLVarsB, LVarsB, Modes, Det, GoalB), equal_vars(NLVarsA, NLVarsB, !Subst), equal_vars(LVarsA, LVarsB, !Subst), equal_goals(GoalA, GoalB, !Subst). :- pred equal_goals_list(hlds_goals::in, hlds_goals::in, subst::in, subst::out) is semidet. equal_goals_list([], [], !Subst). equal_goals_list([GoalA | GoalAs], [GoalB | GoalBs], !Subst) :- equal_goals(GoalA, GoalB, !Subst), equal_goals_list(GoalAs, GoalBs, !Subst). :- pred equal_goals_cases(list(case)::in, list(case)::in, subst::in, subst::out) is semidet. equal_goals_cases([], [], !Subst). equal_goals_cases([CaseA | CaseAs], [CaseB | CaseBs], !Subst) :- CaseA = case(ConsId, GoalA), CaseB = case(ConsId, GoalB), equal_goals(GoalA, GoalB, !Subst), equal_goals_cases(CaseAs, CaseBs, !Subst). %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% record_preds_used_in(Goal, AssertId, !Module) :- % Explicit lambda expression needed since goal_calls_pred_id % has multiple modes. P = (pred(PredId::out) is nondet :- goal_calls_pred_id(Goal, PredId)), solutions.solutions(P, PredIds), list.foldl(update_pred_info(AssertId), PredIds, !Module). %-----------------------------------------------------------------------------% % update_pred_info(Id, A, !Module): % % Record in the pred_info pointed to by Id that that predicate % is used in the assertion pointed to by A. % :- pred update_pred_info(assert_id::in, pred_id::in, module_info::in, module_info::out) is det. update_pred_info(AssertId, PredId, !Module) :- module_info_pred_info(!.Module, PredId, PredInfo0), pred_info_get_assertions(PredInfo0, Assertions0), set.insert(Assertions0, AssertId, Assertions), pred_info_set_assertions(Assertions, PredInfo0, PredInfo), module_info_set_pred_info(PredId, PredInfo, !Module). %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% normalise_goal(Goal0, Goal) :- Goal0 = hlds_goal(GoalExpr0, GoalInfo), normalise_goal_expr(GoalExpr0, GoalExpr), Goal = hlds_goal(GoalExpr, GoalInfo). :- pred normalise_goal_expr(hlds_goal_expr::in, hlds_goal_expr::out) is det. normalise_goal_expr(GoalExpr0, GoalExpr) :- ( ( GoalExpr0 = plain_call(_, _, _, _, _, _) ; GoalExpr0 = generic_call(_, _, _, _) ; GoalExpr0 = unify(_, _, _, _, _) ; GoalExpr0 = call_foreign_proc(_, _, _, _, _, _, _) ), GoalExpr = GoalExpr0 ; GoalExpr0 = conj(ConjType, Goals0), ( ConjType = plain_conj, normalise_conj(Goals0, Goals) ; ConjType = parallel_conj, normalise_goals(Goals0, Goals) ), GoalExpr = conj(ConjType, Goals) ; GoalExpr0 = switch(Var, CanFail, Cases0), normalise_cases(Cases0, Cases), GoalExpr = switch(Var, CanFail, Cases) ; GoalExpr0 = disj(Goals0), normalise_goals(Goals0, Goals), GoalExpr = disj(Goals) ; GoalExpr0 = negation(SubGoal0), normalise_goal(SubGoal0, SubGoal), GoalExpr = negation(SubGoal) ; GoalExpr0 = scope(Reason, SubGoal0), normalise_goal(SubGoal0, SubGoal), GoalExpr = scope(Reason, SubGoal) ; GoalExpr0 = if_then_else(Vars, Cond0, Then0, Else0), normalise_goal(Cond0, Cond), normalise_goal(Then0, Then), normalise_goal(Else0, Else), GoalExpr = if_then_else(Vars, Cond, Then, Else) ; GoalExpr0 = shorthand(ShortHandGoal0), normalise_goal_shorthand(ShortHandGoal0, ShortHandGoal), GoalExpr = shorthand(ShortHandGoal) ). % Place a shorthand goal into a standard form. Currently % all the code does is replace conj([G]) with G. % :- pred normalise_goal_shorthand(shorthand_goal_expr::in, shorthand_goal_expr::out) is det. normalise_goal_shorthand(ShortHand0, ShortHand) :- ShortHand0 = bi_implication(LHS0, RHS0), normalise_goal(LHS0, LHS), normalise_goal(RHS0, RHS), ShortHand = bi_implication(LHS, RHS). %-----------------------------------------------------------------------------% :- pred normalise_conj(hlds_goals::in, hlds_goals::out) is det. normalise_conj([], []). normalise_conj([Goal0 | Goals0], Goals) :- goal_to_conj_list(Goal0, ConjGoals), normalise_conj(Goals0, Goals1), list.append(ConjGoals, Goals1, Goals). :- pred normalise_cases(list(case)::in, list(case)::out) is det. normalise_cases([], []). normalise_cases([Case0 | Cases0], [Case | Cases]) :- Case0 = case(ConsId, Goal0), normalise_goal(Goal0, Goal), Case = case(ConsId, Goal), normalise_cases(Cases0, Cases). :- pred normalise_goals(hlds_goals::in, hlds_goals::out) is det. normalise_goals([], []). normalise_goals([Goal0 | Goals0], [Goal | Goals]) :- normalise_goal(Goal0, Goal), normalise_goals(Goals0, Goals). %-----------------------------------------------------------------------------% :- func this_file = string. this_file = "assertion.m". %-----------------------------------------------------------------------------%