%-----------------------------------------------------------------------------% % Copyright (C) 1995-1998 The University of Melbourne. % This file may only be copied under the terms of the GNU General % Public License - see the file COPYING in the Mercury distribution. %-----------------------------------------------------------------------------% % file: lambda.m % main author: fjh % This module is a pass over the HLDS to deal with lambda expressions. % % Lambda expressions are converted into separate predicates, so for % example we translate % % :- pred p(int::in) is det. % p(X) :- % V__1 = lambda([Y::out] is nondet, q(Y, X))), % solutions(V__1, List), % ... % :- pred q(int::out, int::in) is nondet. % % into % % p(X) :- % V__1 = '__LambdaGoal__1'(X) % solutions(V__1, List), % ... % % :- pred '__LambdaGoal__1'(int::in, int::out) is nondet. % '__LambdaGoal__1'(X, Y) :- q(Y, X). % % % Note that the mode checker requires that a lambda expression % not bind any of the non-local variables such as `X' in the above % example. % % Similarly, a lambda expression may not bind any of the type_infos for % those variables; that is, none of the non-local variables % should be existentially typed (from the perspective of the lambda goal). % When we run the polymorphism.m pass before mode checking, this will % be checked by mode analysis. XXX But currently it is not checked. % % It might be OK to allow the parameters of the lambda goal to be % existentially typed, but currently that is not supported. % One difficulty is that it's hard to determine here which type variables % should be existentially quantified. The information is readily % available during type inference, and really type inference should save % that information in a field in the lambda_goal struct, but currently it % doesn't; it saves the head_type_params field in the pred_info, which % tells us which type variables where produced by the body, but for % any given lambda goal we don't know whether the type variable was % produced by something outside the lambda goal or by something inside % the lambda goal (only in the latter case should it be existentially % quantified). % The other difficulty is that taking the address of a predicate with an % existential type would require second-order polymorphism: for a predicate % declared as `:- some [T] pred p(int, T)', the expression `p' must have % type `some [T] pred(int, T)', which is quite a different thing to saying % that there is some type `T' for which `p' has type `pred(int, T)' -- % we don't know what `T' is until the predicate is called, and it might % be different for each call. % Currently we don't support second-order polymorphism, so we % don't support existentially typed lambda expressions either. % %-----------------------------------------------------------------------------% :- module (lambda). :- interface. :- import_module hlds_module, hlds_pred, hlds_goal, hlds_data, prog_data. :- import_module list, map, set. :- pred lambda__process_pred(pred_id, module_info, module_info). :- mode lambda__process_pred(in, in, out) is det. :- pred lambda__transform_lambda(pred_or_func, string, list(prog_var), list(mode), determinism, list(prog_var), set(prog_var), hlds_goal, unification, prog_varset, map(prog_var, type), class_constraints, tvarset, map(tvar, type_info_locn), map(class_constraint, prog_var), module_info, unify_rhs, unification, module_info). :- mode lambda__transform_lambda(in, in, in, in, in, in, in, in, in, in, in, in, in, in, in, in, out, out, out) is det. %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% :- implementation. :- import_module make_hlds, globals, options, term, varset. :- import_module goal_util, prog_util, mode_util, inst_match, llds, arg_info. :- import_module bool, string, std_util, require. :- type lambda_info ---> lambda_info( prog_varset, % from the proc_info map(prog_var, type), % from the proc_info class_constraints, % from the pred_info tvarset, % from the proc_info map(tvar, type_info_locn), % from the proc_info % (typeinfos) map(class_constraint, prog_var), % from the proc_info % (typeclass_infos) pred_or_func, string, % pred/func name module_info ). %-----------------------------------------------------------------------------% % This whole section just traverses the module structure. lambda__process_pred(PredId, ModuleInfo0, ModuleInfo) :- module_info_pred_info(ModuleInfo0, PredId, PredInfo), pred_info_procids(PredInfo, ProcIds), lambda__process_procs(PredId, ProcIds, ModuleInfo0, ModuleInfo). :- pred lambda__process_procs(pred_id, list(proc_id), module_info, module_info). :- mode lambda__process_procs(in, in, in, out) is det. lambda__process_procs(_PredId, [], ModuleInfo, ModuleInfo). lambda__process_procs(PredId, [ProcId | ProcIds], ModuleInfo0, ModuleInfo) :- lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1), lambda__process_procs(PredId, ProcIds, ModuleInfo1, ModuleInfo). :- pred lambda__process_proc(pred_id, proc_id, module_info, module_info). :- mode lambda__process_proc(in, in, in, out) is det. lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo) :- module_info_preds(ModuleInfo0, PredTable0), map__lookup(PredTable0, PredId, PredInfo0), pred_info_procedures(PredInfo0, ProcTable0), map__lookup(ProcTable0, ProcId, ProcInfo0), lambda__process_proc_2(ProcInfo0, PredInfo0, ModuleInfo0, ProcInfo, PredInfo1, ModuleInfo1), pred_info_procedures(PredInfo1, ProcTable1), map__det_update(ProcTable1, ProcId, ProcInfo, ProcTable), pred_info_set_procedures(PredInfo1, ProcTable, PredInfo), module_info_preds(ModuleInfo1, PredTable1), map__det_update(PredTable1, PredId, PredInfo, PredTable), module_info_set_preds(ModuleInfo1, PredTable, ModuleInfo). :- pred lambda__process_proc_2(proc_info, pred_info, module_info, proc_info, pred_info, module_info). :- mode lambda__process_proc_2(in, in, in, out, out, out) is det. lambda__process_proc_2(ProcInfo0, PredInfo0, ModuleInfo0, ProcInfo, PredInfo, ModuleInfo) :- % grab the appropriate fields from the pred_info and proc_info pred_info_name(PredInfo0, PredName), pred_info_get_is_pred_or_func(PredInfo0, PredOrFunc), pred_info_typevarset(PredInfo0, TypeVarSet0), pred_info_get_class_context(PredInfo0, Constraints0), proc_info_varset(ProcInfo0, VarSet0), proc_info_vartypes(ProcInfo0, VarTypes0), proc_info_goal(ProcInfo0, Goal0), proc_info_typeinfo_varmap(ProcInfo0, TVarMap0), proc_info_typeclass_info_varmap(ProcInfo0, TCVarMap0), % process the goal Info0 = lambda_info(VarSet0, VarTypes0, Constraints0, TypeVarSet0, TVarMap0, TCVarMap0, PredOrFunc, PredName, ModuleInfo0), lambda__process_goal(Goal0, Goal, Info0, Info), Info = lambda_info(VarSet, VarTypes, Constraints, TypeVarSet, TVarMap, TCVarMap, _, _, ModuleInfo), % set the new values of the fields in proc_info and pred_info proc_info_set_goal(ProcInfo0, Goal, ProcInfo1), proc_info_set_varset(ProcInfo1, VarSet, ProcInfo2), proc_info_set_vartypes(ProcInfo2, VarTypes, ProcInfo3), proc_info_set_typeinfo_varmap(ProcInfo3, TVarMap, ProcInfo4), proc_info_set_typeclass_info_varmap(ProcInfo4, TCVarMap, ProcInfo), pred_info_set_typevarset(PredInfo0, TypeVarSet, PredInfo1), pred_info_set_class_context(PredInfo1, Constraints, PredInfo). :- pred lambda__process_goal(hlds_goal, hlds_goal, lambda_info, lambda_info). :- mode lambda__process_goal(in, out, in, out) is det. lambda__process_goal(Goal0 - GoalInfo0, Goal) --> lambda__process_goal_2(Goal0, GoalInfo0, Goal). :- pred lambda__process_goal_2(hlds_goal_expr, hlds_goal_info, hlds_goal, lambda_info, lambda_info). :- mode lambda__process_goal_2(in, in, out, in, out) is det. lambda__process_goal_2(unify(XVar, Y, Mode, Unification, Context), GoalInfo, Unify - GoalInfo) --> ( { Y = lambda_goal(PredOrFunc, NonLocalVars, Vars, Modes, Det, LambdaGoal0) } -> % for lambda expressions, we must convert the lambda expression % into a new predicate lambda__process_lambda(PredOrFunc, Vars, Modes, Det, NonLocalVars, LambdaGoal0, Unification, Y1, Unification1), { Unify = unify(XVar, Y1, Mode, Unification1, Context) } ; % ordinary unifications are left unchanged { Unify = unify(XVar, Y, Mode, Unification, Context) } ). % the rest of the clauses just process goals recursively lambda__process_goal_2(conj(Goals0), GoalInfo, conj(Goals) - GoalInfo) --> lambda__process_goal_list(Goals0, Goals). lambda__process_goal_2(par_conj(Goals0, SM), GoalInfo, par_conj(Goals, SM) - GoalInfo) --> lambda__process_goal_list(Goals0, Goals). lambda__process_goal_2(disj(Goals0, SM), GoalInfo, disj(Goals, SM) - GoalInfo) --> lambda__process_goal_list(Goals0, Goals). lambda__process_goal_2(not(Goal0), GoalInfo, not(Goal) - GoalInfo) --> lambda__process_goal(Goal0, Goal). lambda__process_goal_2(switch(Var, CanFail, Cases0, SM), GoalInfo, switch(Var, CanFail, Cases, SM) - GoalInfo) --> lambda__process_cases(Cases0, Cases). lambda__process_goal_2(some(Vars, Goal0), GoalInfo, some(Vars, Goal) - GoalInfo) --> lambda__process_goal(Goal0, Goal). lambda__process_goal_2(if_then_else(Vars, A0, B0, C0, SM), GoalInfo, if_then_else(Vars, A, B, C, SM) - GoalInfo) --> lambda__process_goal(A0, A), lambda__process_goal(B0, B), lambda__process_goal(C0, C). lambda__process_goal_2(higher_order_call(A,B,C,D,E,F), GoalInfo, higher_order_call(A,B,C,D,E,F) - GoalInfo) --> []. lambda__process_goal_2(class_method_call(A,B,C,D,E,F), GoalInfo, class_method_call(A,B,C,D,E,F) - GoalInfo) --> []. lambda__process_goal_2(call(A,B,C,D,E,F), GoalInfo, call(A,B,C,D,E,F) - GoalInfo) --> []. lambda__process_goal_2(pragma_c_code(A,B,C,D,E,F,G), GoalInfo, pragma_c_code(A,B,C,D,E,F,G) - GoalInfo) --> []. :- pred lambda__process_goal_list(list(hlds_goal), list(hlds_goal), lambda_info, lambda_info). :- mode lambda__process_goal_list(in, out, in, out) is det. lambda__process_goal_list([], []) --> []. lambda__process_goal_list([Goal0 | Goals0], [Goal | Goals]) --> lambda__process_goal(Goal0, Goal), lambda__process_goal_list(Goals0, Goals). :- pred lambda__process_cases(list(case), list(case), lambda_info, lambda_info). :- mode lambda__process_cases(in, out, in, out) is det. lambda__process_cases([], []) --> []. lambda__process_cases([case(ConsId, Goal0) | Cases0], [case(ConsId, Goal) | Cases]) --> lambda__process_goal(Goal0, Goal), lambda__process_cases(Cases0, Cases). :- pred lambda__process_lambda(pred_or_func, list(prog_var), list(mode), determinism, list(prog_var), hlds_goal, unification, unify_rhs, unification, lambda_info, lambda_info). :- mode lambda__process_lambda(in, in, in, in, in, in, in, out, out, in, out) is det. lambda__process_lambda(PredOrFunc, Vars, Modes, Det, OrigNonLocals0, LambdaGoal, Unification0, Functor, Unification, LambdaInfo0, LambdaInfo) :- LambdaInfo0 = lambda_info(VarSet, VarTypes, Constraints, TVarSet, TVarMap, TCVarMap, POF, PredName, ModuleInfo0), % XXX existentially typed lambda expressions are not yet supported % (see the documentation at top of this file) ExistQVars = [], LambdaGoal = _ - LambdaGoalInfo, goal_info_get_nonlocals(LambdaGoalInfo, LambdaNonLocals), goal_util__extra_nonlocal_typeinfos(TVarMap, TCVarMap, VarTypes, ExistQVars, LambdaNonLocals, ExtraTypeInfos), lambda__transform_lambda(PredOrFunc, PredName, Vars, Modes, Det, OrigNonLocals0, ExtraTypeInfos, LambdaGoal, Unification0, VarSet, VarTypes, Constraints, TVarSet, TVarMap, TCVarMap, ModuleInfo0, Functor, Unification, ModuleInfo), LambdaInfo = lambda_info(VarSet, VarTypes, Constraints, TVarSet, TVarMap, TCVarMap, POF, PredName, ModuleInfo). lambda__transform_lambda(PredOrFunc, OrigPredName, Vars, Modes, Detism, OrigVars, ExtraTypeInfos, LambdaGoal, Unification0, VarSet, VarTypes, Constraints, TVarSet, TVarMap, TCVarMap, ModuleInfo0, Functor, Unification, ModuleInfo) :- ( Unification0 = construct(Var0, _, _, UniModes0) -> Var = Var0, UniModes1 = UniModes0 ; error("polymorphism__transform_lambda: weird unification") ), % Optimize a special case: replace % `lambda([Y1, Y2, ...] is Detism, p(X1, X2, ..., Y1, Y2, ...))' % where `p' has determinism `Detism' with % `p(X1, X2, ...)' % % This optimization is only valid if the modes of the Xi are % input, since only input arguments can be curried. % It's also only valid if all the inputs in the Yi precede the % outputs. It's also not valid if any of the Xi are in the Yi. LambdaGoal = _ - LambdaGoalInfo, goal_info_get_nonlocals(LambdaGoalInfo, NonLocals0), set__delete_list(NonLocals0, Vars, NonLocals1), module_info_globals(ModuleInfo0, Globals), % If typeinfo_liveness is set, all type_infos for the % arguments should be included, not just the ones % that are used. globals__lookup_bool_option(Globals, typeinfo_liveness, TypeInfoLiveness), ( TypeInfoLiveness = yes -> set__union(NonLocals1, ExtraTypeInfos, NonLocals) ; NonLocals = NonLocals1 ), set__to_sorted_list(NonLocals, ArgVars1), ( LambdaGoal = call(PredId0, ProcId0, CallVars, _, _, PredName0) - _, module_info_pred_proc_info(ModuleInfo0, PredId0, ProcId0, _, Call_ProcInfo), % check that this procedure uses an args_method which % is always directly higher-order callable. proc_info_args_method(Call_ProcInfo, Call_ArgsMethod), module_info_globals(ModuleInfo0, Globals), arg_info__args_method_is_ho_callable(Globals, Call_ArgsMethod, yes), list__remove_suffix(CallVars, Vars, InitialVars), % check that none of the variables that we're trying to % use as curried arguments are lambda-bound variables \+ ( list__member(InitialVar, InitialVars), list__member(InitialVar, Vars) ), proc_info_interface_code_model(Call_ProcInfo, Call_CodeModel), determinism_to_code_model(Detism, CodeModel), % Check that the code models are compatible. % Note that det is not compatible with semidet, % and semidet is not compatible with nondet, % since the arguments go in different registers. % But det is compatible with nondet. ( CodeModel = Call_CodeModel ; CodeModel = model_non, Call_CodeModel = model_det ), % check that the curried arguments are all input proc_info_argmodes(Call_ProcInfo, Call_ArgModes), list__length(InitialVars, NumInitialVars), list__take(NumInitialVars, Call_ArgModes, CurriedArgModes), \+ ( list__member(Mode, CurriedArgModes), \+ mode_is_input(ModuleInfo0, Mode) ) -> ArgVars = InitialVars, PredId = PredId0, ProcId = ProcId0, PredName = PredName0, ModuleInfo = ModuleInfo0, NumArgVars = NumInitialVars, mode_util__modes_to_uni_modes(CurriedArgModes, CurriedArgModes, ModuleInfo0, UniModes) ; % Prepare to create a new predicate for the lambda % expression: work out the arguments, module name, predicate % name, arity, arg types, determinism, % context, status, etc. for the new predicate. ArgVars = ArgVars1, list__append(ArgVars, Vars, AllArgVars), module_info_name(ModuleInfo0, ModuleName), module_info_next_lambda_count(ModuleInfo0, LambdaCount, ModuleInfo1), goal_info_get_context(LambdaGoalInfo, OrigContext), term__context_line(OrigContext, OrigLine), make_pred_name_with_context(ModuleName, "IntroducedFrom", PredOrFunc, OrigPredName, OrigLine, LambdaCount, PredName), goal_info_get_context(LambdaGoalInfo, LambdaContext), % The TVarSet is a superset of what it really ought be, % but that shouldn't matter. % XXX existentially typed lambda expressions are not % yet supported (see the documentation at top of this file) ExistQVars = [], lambda__uni_modes_to_modes(UniModes1, OrigArgModes), % We have to jump through hoops to work out the mode % of the lambda predicate. For introduced % type_info arguments, we use the mode "in". For the original % non-local vars, we use the modes from `UniModes1'. % For the lambda var arguments at the end, % we use the mode in the lambda expression. list__length(ArgVars, NumArgVars), in_mode(In), list__duplicate(NumArgVars, In, InModes), map__from_corresponding_lists(ArgVars, InModes, ArgModesMap), map__from_corresponding_lists(OrigVars, OrigArgModes, OrigArgModesMap), map__overlay(ArgModesMap, OrigArgModesMap, ArgModesMap1), map__apply_to_list(ArgVars, ArgModesMap1, ArgModes1), % Recompute the uni_modes. mode_util__modes_to_uni_modes(ArgModes1, ArgModes1, ModuleInfo1, UniModes), list__append(ArgModes1, Modes, AllArgModes), map__apply_to_list(AllArgVars, VarTypes, ArgTypes), % Choose an args_method which is always directly callable % from do_call_*_closure even if the inputs don't preceed % the outputs in the declaration. mercury_ho_call.c requires % that procedures which are directly higher-order-called use % the compact args_method. % % Previously we permuted the argument variables so that % inputs came before outputs, but that resulted in the % HLDS not being type or mode correct which caused problems % for some transformations and for rerunning mode analysis. arg_info__ho_call_args_method(Globals, ArgsMethod), % Now construct the proc_info and pred_info for the new % single-mode predicate, using the information computed above proc_info_create(VarSet, VarTypes, AllArgVars, AllArgModes, Detism, LambdaGoal, LambdaContext, TVarMap, TCVarMap, ArgsMethod, ProcInfo), init_markers(Markers), pred_info_create(ModuleName, PredName, TVarSet, ExistQVars, ArgTypes, true, LambdaContext, local, Markers, PredOrFunc, Constraints, ProcInfo, ProcId, PredInfo), % save the new predicate in the predicate table module_info_get_predicate_table(ModuleInfo1, PredicateTable0), predicate_table_insert(PredicateTable0, PredInfo, PredId, PredicateTable), module_info_set_predicate_table(ModuleInfo1, PredicateTable, ModuleInfo) ), Functor = functor(cons(PredName, NumArgVars), ArgVars), ConsId = pred_const(PredId, ProcId), Unification = construct(Var, ConsId, ArgVars, UniModes). :- pred lambda__uni_modes_to_modes(list(uni_mode), list(mode)). :- mode lambda__uni_modes_to_modes(in, out) is det. % This predicate works out the modes of the original non-local % variables of a lambda expression based on the list of uni_mode % in the unify_info for the lambda unification. lambda__uni_modes_to_modes([], []). lambda__uni_modes_to_modes([UniMode | UniModes], [Mode | Modes]) :- UniMode = ((_Initial0 - Initial1) -> (_Final0 - _Final1)), Mode = (Initial1 -> Initial1), lambda__uni_modes_to_modes(UniModes, Modes). %---------------------------------------------------------------------------% %---------------------------------------------------------------------------%