Commit Graph

10 Commits

Author SHA1 Message Date
Zoltan Somogyi
8693e293a2 This diff makes hlds_pred.m and many callers of its predicates easier to read
Estimated hours taken: 4
Branches: main

This diff makes hlds_pred.m and many callers of its predicates easier to read
and to maintain, but contains no changes in algorithms whatsoever.

compiler/hlds_pred.m:
	Bring this module into line with our current coding standards.
	Use predmode declarations, functions, and state variable syntax
	when appropriate.

	Reorder arguments of predicates where necessary for the use of state
	variable syntax, and where this improves readability.

	Replace old-style lambdas with new-style lambdas or with partially
	applied named procedures.

	Standardize indentation.

compiler/*.m:
	Conform to the changes in hlds_pred.m. This mostly means using the
	new argument orders of predicates exported by hlds_pred.m. Where this
	is now conveniently possible, change predicates to use state
	variable notation.

	In some modules, using state variable notation required changing the
	orders of arguments in the module's top predicate.

compiler/passes_aux.m:
	Change the order of arguments in the calls this module makes to
	allow the callees to use state variable notation.

	Convert this module to state variable notation too.
2003-10-24 06:17:51 +00:00
Zoltan Somogyi
1790c3b505 When generating calls, specify whether the call is to a predicate or
Estimated hours taken: 1
Branches: main

compiler/goal_util.m:
compiler/hlds_module.m:
	When generating calls, specify whether the call is to a predicate or
	function.

compiler/goal_util.m:
compiler/unify_proc.m:
	Move a predicate that generates unsafe casts from unify_proc to
	goal_util, since polymorphism may also want to use it someday.

compiler/add_heap_ops.m:
compiler/add_trail_ops.m:
compiler/aditi_builtin_ops.m:
compiler/deep_profiling.m:
compiler/det_analysis.m:
compiler/higher_order.m:
compiler/polymorphism.m:
compiler/simplify.m:
compiler/table_gen.m:
compiler/type_ctor_info.m:
compiler/type_util.m:
compiler/typecheck.m:
	Trivial diffs to conform to the changes above.
2003-05-29 18:17:16 +00:00
Zoltan Somogyi
d3e315ffd2 Move functionality that is not part of the LLDS backend from
Estimated hours taken: 1
Branches: main

compiler/code_util.m:
compiler/goal_form.m:
compiler/hlds_code_util.m:
	Move functionality that is not part of the LLDS backend from
	ll_backend__code_util to hlds__goal_form and to hlds__hlds_code_util.

	Turn some predicates into functions.

compiler/*.m:
	Conform to the changes above.
2003-03-15 07:11:56 +00:00
Zoltan Somogyi
9551640f55 Import only one compiler module per line. Sort the blocks of imports.
Estimated hours taken: 2
Branches: main

compiler/*.m:
	Import only one compiler module per line. Sort the blocks of imports.
	This makes it easier to merge in changes.

	In a couple of places, remove unnecessary imports.
2003-03-15 03:09:14 +00:00
Ralph Becket
54255f93e7 Make the Prolog term comparison operators (@<, @=<, @>, @>=)
Estimated hours taken: 32
Branches: main

Make the Prolog term comparison operators (@<, @=<, @>, @>=)
builtin since they're often useful and calling compare/3
can look a little awkward.

Simplification now applies the following transformations on the
new builtin operators:

	X  @< Y    --->    some [R] (compare(R, X, Y), R  = (<))
	X @=< Y    --->    some [R] (compare(R, X, Y), R \= (>))
	X @>  Y    --->    some [R] (compare(R, X, Y), R  = (>))
	X @>= Y    --->    some [R] (compare(R, X, Y), R \= (<))

compiler/add_heap_ops.m:
compiler/add_trail_ops.m:
compiler/table_gen.m:
	Added `only_mode' argument to calls to
	goal_util__generate_simple_call which now has an extra parameter.

compiler/goal_util.m:
	Added a new parameter, ModeNo, to goal_util__generate_simple_call.
	ModeNo is either
	- `only_mode' in which case the predicate in question is expected to
	  have exactly one mode or
	- `mode_no(N)' in which case mode number N (counting from 0) is
	  used.
	The inequality transformation uses this to handle calls to compare/3
	with unique arguments (even though the builtin inequality modes don't
	yet handle ui arguments...)

compiler/simplify.m:
	simplify__goal_2 for calls now makes a decision as to whether to
	call simplify__call_goal or simplify__inequality_goal.  The bulk
	of simplify__goal_2 is now in simplify__call_goal.  The
	inequality transformation is handled in simplify__inequality_goal.

compiler/type_util.m:
	Added comparison_result_type constant.

compiler/NEWS:
	Mention these changes.

library/builtin.m:
	Added the inequalities as built-ins.
	Added the function ordering/2.

library/prolog.m:
	Removed the definitions for @< etc.
2002-11-01 07:07:01 +00:00
Zoltan Somogyi
189b9215ae This diff implements stack slot optimization for the LLDS back end based on
Estimated hours taken: 400
Branches: main

This diff implements stack slot optimization for the LLDS back end based on
the idea that after a unification such as A = f(B, C, D), saving the
variable A on the stack indirectly also saves the values of B, C and D.

Figuring out what subset of {B,C,D} to access via A and what subset to access
via their own stack slots is a tricky optimization problem. The algorithm we
use to solve it is described in the paper "Using the heap to eliminate stack
accesses" by Zoltan Somogyi and Peter Stuckey, available in ~zs/rep/stackslot.
That paper also describes (and has examples of) the source-to-source
transformation that implements the optimization.

The optimization needs to know what variables are flushed at call sites
and at program points that establish resume points (e.g. entries to
disjunctions and if-then-elses). We already had code to compute this
information in live_vars.m, but this code was being invoked too late.
This diff modifies live_vars.m to allow it to be invoked both by the stack
slot optimization transformation and by the code generator, and allows its
function to be tailored to the requirements of each invocation.

The information computed by live_vars.m is specific to the LLDS back end,
since the MLDS back ends do not (yet) have the same control over stack
frame layout. We therefore store this information in a new back end specific
field in goal_infos. For uniformity, we make all the other existing back end
specific fields in goal_infos, as well as the similarly back end specific
store map field of goal_exprs, subfields of this new field. This happens
to significantly reduce the sizes of goal_infos.

To allow a more meaningful comparison of the gains produced by the new
optimization, do not save any variables across erroneous calls even if
the new optimization is not enabled.

compiler/stack_opt.m:
	New module containing the code that performs the transformation
	to optimize stack slot usage.

compiler/matching.m:
	New module containing an algorithm for maximal matching in bipartite
	graphs, specialized for the graphs needed by stack_opt.m.

compiler/mercury_compile.m:
	Invoke the new optimization if the options ask for it.

compiler/stack_alloc.m:
	New module containing code that is shared between the old,
	non-optimizing stack slot allocation system and the new, optimizing
	stack slot allocation system, and the code for actually allocating
	stack slots in the absence of optimization.

	Live_vars.m used to have two tasks: find out what variables need to be
	saved on the stack, and allocating those variables to stack slots.
	Live_vars.m now does only the first task; stack_alloc.m now does
	the second, using code that used to be in live_vars.m.

compiler/trace_params:
	Add a new function to test the trace level, which returns yes if we
	want to preserve the values of the input headvars.

compiler/notes/compiler_design.html:
	Document the new modules (as well as trace_params.m, which wasn't
	documented earlier).

compiler/live_vars.m:
	Delete the code that is now in stack_alloc.m and graph_colour.m.

	Separate out the kinds of stack uses due to nondeterminism: the stack
	slots used by nondet calls, and the stack slots used by resumption
	points, in order to allow the reuse of stack slots used by resumption
	points after execution has left their scope. This should allow the
	same stack slots to be used by different variables in the resumption
	point at the start of an else branch and nondet calls in the then
	branch, since the resumption point of the else branch is not in effect
	when the then branch is executed.

	If the new option --opt-no-return-calls is set, then say that we do not
	need to save any values across erroneous calls.

	Use type classes to allow the information generated by this module
	to be recorded in the way required by its invoker.

	Package up the data structures being passed around readonly into a
	single tuple.

compiler/store_alloc.m:
	Allow this module to be invoked by stack_opt.m without invoking the
	follow_vars transformation, since applying follow_vars before the form
	of the HLDS code is otherwise final can be a pessimization.

	Make the module_info a part of the record containing the readonly data
	passed around during the traversal.

compiler/common.m:
	Do not delete or move around unifications created by stack_opt.m.

compiler/call_gen.m:
compiler/code_info.m:
compiler/continuation_info.m:
compiler/var_locn.m:
	Allow the code generator to delete its last record of the location
	of a value when generating code to make an erroneous call, if the new
	--opt-no-return-calls option is set.

compiler/code_gen.m:
	Use a more useful algorithm to create the messages/comments that
	we put into incr_sp instructions, e.g. by distinguishing between
	predicates and functions. This is to allow the new scripts in the
	tool directory to gather statistics about the effect of the
	optimization on stack frame sizes.

library/exception.m:
	Make a hand-written incr_sp follow the new pattern.

compiler/arg_info.m:
	Add predicates to figure out the set of input, output and unused
	arguments of a procedure in several different circumstances.
	Previously, variants of these predicates were repeated in several
	places.

compiler/goal_util.m:
	Export some previously private utility predicates.

compiler/handle_options.m:
	Turn off stack slot optimizations when debugging, unless
	--trace-optimized is set.

	Add a new dump format useful for debugging --optimize-saved-vars.

compiler/hlds_llds.m:
	New module for handling all the stuff specific to the LLDS back end
	in HLDS goal_infos.

compiler/hlds_goal.m:
	Move all the relevant stuff into the new back end specific field
	in goal_infos.

compiler/notes/allocation.html:
	Update the documentation of store maps to reflect their movement
	into a subfield of goal_infos.

compiler/*.m:
	Minor changes to accomodate the placement of all back end specific
	information about goals from goal_exprs and individual fields of
	goal_infos into a new field in goal_infos that gathers together
	all back end specific information.

compiler/use_local_vars.m:
	Look for sequences in which several instructions use a fake register
	or stack slot as a base register pointing to a cell, and make those
	instructions use a local variable instead.

	Without this, a key assumption of the stack slot optimization,
	that accessing a field in a cell costs only one load or store
	instruction, would be much less likely to be true. (With this
	optimization, the assumption will be false only if the C compiler's
	code generator runs out of registers in a basic block, which for
	the code we generate should be unlikely even on x86s.)

compiler/options.m:
	Make the old option --optimize-saved-vars ask for both the old stack
	slot optimization (implemented by saved_vars.m) that only eliminates
	the storing of constants in stack slots, and the new optimization.

	Add two new options --optimize-saved-vars-{const,cell} to turn on
	the two optimizations separately.

	Add a bunch of options to specify the parameters of the new
	optimizations, both in stack_opt.m and use_local_vars.m. These are
	for implementors only; they are deliberately not documented.

	Add a new option, --opt-no-return-cells, that governs whether we avoid
	saving variables on the stack at calls that cannot return, either by
	succeeding or by failing. This is for implementors only, and thus
	deliberately documented only in comments. It is enabled by default.

compiler/optimize.m:
	Transmit the value of a new option to use_local_vars.m.

doc/user_guide.texi:
	Update the documentation of --optimize-saved-vars.

library/tree234.m:
	Undo a previous change of mine that effectively applied this
	optimization by hand. That change complicated the code, and now
	the compiler can do the optimization automatically.

tools/extract_incr_sp:
	A new script for extracting stack frame sizes and messages from
	stack increment operations in the C code for LLDS grades.

tools/frame_sizes:
	A new script that uses extract_incr_sp to extract information about
	stack frame sizes from the C files saved from a stage 2 directory
	by makebatch and summarizes the resulting information.

tools/avg_frame_size:
	A new script that computes average stack frame sizes from the files
	created by frame_sizes.

tools/compare_frame_sizes:
	A new script that compares the stack frame size information
	extracted from two different stage 2 directories by frame_sizes,
	reporting on both average stack frame sizes and on specific procedures
	that have different stack frame sizes in the two versions.
2002-03-28 03:44:41 +00:00
Fergus Henderson
7597790760 Use sub-modules to structure the modules in the Mercury compiler directory.
The main aim of this change is to make the overall, high-level structure
of the compiler clearer, and to encourage better encapsulation of the
major components.

compiler/libs.m:
compiler/backend_libs.m:
compiler/parse_tree.m:
compiler/hlds.m:
compiler/check_hlds.m:
compiler/transform_hlds.m:
compiler/bytecode_backend.m:
compiler/aditi_backend.m:
compiler/ml_backend.m:
compiler/ll_backend.m:
compiler/top_level.m:
	New files.  One module for each of the major components of the
	Mercury compiler.  These modules contain (as separate sub-modules)
	all the other modules in the Mercury compiler, except gcc.m and
	mlds_to_gcc.m.

Mmakefile:
compiler/Mmakefile:
	Handle the fact that the top-level module is now `top_level',
	not `mercury_compile' (since `mercury_compile' is a sub-module
	of `top_level').

compiler/Mmakefile:
	Update settings of *FLAGS-<modulename> to use the appropriate
	nested module names.

compiler/recompilation_check.m:
compiler/recompilation_version.m:
compiler/recompilation_usage.m:
compiler/recompilation.check.m:
compiler/recompilation.version.m:
compiler/recompilation.version.m:
	Convert the `recompilation_*' modules into sub-modules of the
	`recompilation' module.

compiler/*.m:
compiler/*.pp:
	Module-qualify the module names in `:- module', `:- import_module',
	and `:- use_module' declarations.

compiler/base_type_info.m:
compiler/base_type_layout.m:
	Deleted these unused empty modules.

compiler/prog_data.m:
compiler/globals.m:
	Move the `foreign_language' type from prog_data to globals.

compiler/mlds.m:
compiler/ml_util.m:
compiler/mlds_to_il.m:
	Import `globals', for `foreign_language'.

Mmake.common.in:
trace/Mmakefile:
runtime/Mmakefile:
	Rename the %.check.c targets as %.check_hdr.c,
	to avoid conflicts with compiler/recompilation.check.c.
2002-03-20 12:37:56 +00:00
Fergus Henderson
7622e889e0 Define the `heap_pointer' type in private_builtin.m as a new builtin
Estimated hours taken: 2
Branches: main

Define the `heap_pointer' type in private_builtin.m as a new builtin
type with representation MR_TYPECTOR_REP_HP, rather than as equivalent
to `c_pointer'.  This is needed so that the accurate garbage collector
can tell saved heap pointer values apart from other c_pointer values,
which it needs to do in order to handle saved heap pointer values.

library/private_builtin.m:
runtime/mercury.h:
runtime/mercury.c:
	Define the type_ctor_info etc. for the heap_pointer type.

compiler/type_util.m:
	Add a new function `heap_pointer_type'.

compiler/add_heap_ops.m:
	Use `heap_pointer_type' from type_util.m.
2002-02-05 09:14:55 +00:00
Fergus Henderson
6c6082a3ac Avoid saving and restoring the heap pointer across goals which
Estimated hours taken: 2
Branches: main

compiler/add_heap_ops.m:
	Avoid saving and restoring the heap pointer across goals which
	are known not to allocate any heap space.
2001-11-27 15:59:28 +00:00
Fergus Henderson
95acb0d8a2 Implement heap reclamation on failure for the MLDS back-end.
Branches: main
Estimated hours taken: 8

Implement heap reclamation on failure for the MLDS back-end.

library/private_builtin.m:
	Add impure procedures for saving and restoring the heap pointer.

compiler/add_heap_ops.m:
	New file, similar to add_trail_ops.m.
	An HLDS->HLDS transformation to add heap reclamation operations.

compiler/mercury_compile.m:
	Call the new pass.

compiler/notes/compiler_design.html:
	Mention the new pass.

compiler/add_trail_ops.m:
compiler/table_gen.m:
compiler/goal_util.m:
	Abstract out the common code from `generate_call' in table_gen.m,
	add_trail_ops.m, and add_heap_ops.m, and put it in a new procedure
	`generate_simple_goal' in goal_util.m.

compiler/add_heap_ops.m:
compiler/add_trail_ops.m:
	Apply a review suggestion from Peter Ross: when putting code
	in places that should not be reachable, insert code that calls
	private_builtin__unused (which calls error/1) rather
	than just inserting `true'.
2001-11-26 09:31:06 +00:00