mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-18 23:35:25 +00:00
b4813457c9416e6489701f0a9d743c97e8e33368
12 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
b4813457c9 |
A rewrite of termination analysis to make it significantly easier to modify,
Estimated hours taken: 60
A rewrite of termination analysis to make it significantly easier to modify,
and to extend its capabilities.
compiler/error_util.m:
A new file containing code that makes it easier to generate
nicely formatted error messages.
compiler/termination.m:
Updates to reflect the changes to the representation of termination
information.
Instead of doing pass 1 on all SCCs and then pass 2 on all SCCs,
we now do both pass 1 and 2 on an SCC before moving on to the next.
Do not insist that either all procedures in an SCC are
compiler-generated or all are user-written, since this need not be
true in the presence of user-defined equality predicates.
Clarify the structure of the code that handles builtins and compiler
generated predicates.
Concentrate all the code for updating module_infos in this module.
Previously it was scattered in several places in several files.
Put all the code for writing out termination information at the
end of the module in a logical order.
compiler/term_traversal.m:
A new file containing code used by both pass 1 and pass 2 to
traverse procedure bodies.
compiler/term_pass1.m:
Use the new traversal module.
Clarify the fixpoint computation on the set of output supplier
arguments.
Remove duplicates from the list of equations given to the solver.
This avoids a det stack overflow in lp.m when doing termination
analysis on options.m.
If an output argument of a predicate makes sense only in the absence
of errors, then return it only in the absence of errors.
compiler/term_pass2.m:
Use the new traversal module. Unlike the previous code, this allows us
to ignore recursive calls with input arguments bigger than the head
if those calls occur after goals that cannot succeed (since those
calls will never be reached).
Implement a better way of doing single argument analysis, which
(unlike the previous version) works in the presence of mutual recursion
and other calls between the recursive call and the start of the clause.
Implement a more precise way of checking for recursions that don't
cause termination problems. We now allow calls from p to q in which
the recursive input supplier arguments can grow, provided that on
any path on which q can call p, directly or indirectly, the recursive
input supplier arguments shrink by a greater amount.
If an output argument of a predicate makes sense only in the absence
of errors, then return it only in the absence of errors.
compiler/term_util.m:
Updates to reflect the changes to the representation of termination
information.
Reorder to put related code together.
Change the interface of several predicates to better reflect the
way they are used.
Add some more utility predicates.
compiler/term_errors.m:
Small changes to the set of possible errors, and major changes in
the way the messages are printed out (we now use error_util).
compiler/options.m:
Change --term-single-arg from being a bool to an int option,
whose value indicates the maximum size of an SCC in which we try
single argument analysis. (Large SCCs can cause single-arg analysis
to require a lot of iterations.)
Add an (int) option that controls the max number of paths
that we are willing to analyze (analyzing too many paths can cause
det stack overflow).
Add an (int) option that controls the max number of causes of
nontermination that we print out.
compiler/hlds_pred.m:
Use two separate slots in the proc_info to hold argument size data
and termination info, instead of the single slot used until now.
The two kinds of information are produced and used separately.
Make the layout of the get and set procedures for proc_infos more
regular, to facilitate later updates.
The procedures proc_info_{,set_}variables did the same work as
proc_info_{,set_}varset. To eliminate potential confusion, I
removed the first set.
compiler/*.m:
Change proc_info_{,set_}variables to proc_info_{,set_}varset.
compiler/hlds_out.m:
compiler/make_hlds.m:
compiler/mercury_to_mercury.m:
Change the code to handle the arg size data and the termination
info separately.
compiler/prog_data.m:
Change the internal representation of termination_info pragmas to
hold the arg size data and the termination info separately.
compiler/prog_io_pragma.m:
Change the external representation of termination_info pragmas to
group the arg size data together with the output supplier data,
to which it is logically connected.
compiler/module_qual.m:
compiler/modules.m:
Change the code to accommodate the change to the internal
representation of termination_info pragmas.
compiler/notes/compiler_design.html:
Fix some documentation rot, and clarify some points.
Document termination analysis.
doc/user_guide.texi:
Document --term-single-arg and the new options.
Remove spaces from the ends of lines.
library/bag.m:
Add a new predicate, bag__least_upper_bound.
Fix code that would do the wrong thing if executed by Prolog.
Remove spaces from the ends of lines.
library/list.m:
Add a new predicate, list__take_upto.
library/set{,_ordlist}.m:
Add a new predicate, set{,_ordlist}__count.
tests/term/*:
A bunch of new test cases to test the behaviour of termination
analysis. They are the small benchmark suite from our paper.
tests/Mmakefile:
Enable the new test case directory.
|
||
|
|
42c540ad67 |
Give duplicate code elimination more teeth in dealing with similar arguments
Estimated hours taken: 20
Give duplicate code elimination more teeth in dealing with similar arguments
of different function symbols. For the source code
:- type t1 ---> f(int)
; g(int, int).
:- pred p1(t1::in, int::out) is det.
p1(f(Y), Y).
p1(g(Y, _), Y).
we now generate the C code
Define_entry(mercury__xdup__p1_2_0);
r1 = const_mask_field(r1, (Integer) 0);
proceed();
thus avoiding the cost of testing the function symbol.
runtime/mercury_tags.h:
Add two new macros, mask_field and const_mask_field, that behave
just like field and const_field except that instead of stripping
off a known tag from the pointer, they strip (mask) off an unknown
tag.
compiler/llds.m:
Change the first argument of the lval field/3 from tag to maybe(tag).
Make the comments on some types more readable.
compiler/llds_out.m:
If the first arg of the lval field/3 is no, emit a (const_)mask_field
macro; otherwise, emit a (const_)field macro.
compiler/basic_block.m:
New module to convert sequences of instructions to sequences of
basic blocks and vice versa. Used in the new dupelim.m.
compiler/dupelim.m:
Complete rewrite to give duplicate code elimination more teeth.
Whereas previously we eliminated blocks of code only if they exactly
duplicated other blocks of code, we now look for blocks that can be
"anti-unified". For example, the blocks
r1 = field(mktag(0), r2, 0)
goto L1
and
r1 = field(mktag(1), r2, 0)
<fall through to L1>
anti-unify, with the most specific common generalization being
r1 = mask_field(r2, 0)
goto L1
If several basic blocks antiunify, we replace one copy with the
antiunified block and try to eliminate the others. We do not
eliminate blocks that can be fallen into, since eliminating them
would require introducing a goto, which would slow the code down.
compiler/peephole,m:
If a conditional branch to a label is followed by that label or
by an unconditional branch to that label, eliminate the branch.
Dupelim produces this kind of code.
compiler/{code_exprn,exprn_aux,lookup_switch,opt_debug,unify_gen}.m:
Minor changes required by the change to field/3.
compiler/{frameopt,jumpopt,labelopt,mercury_compile,optimize,value_number}.m:
s/__main/_main/ in predicate names.
compiler/jumpopt.m:
Add some documentation.
compiler/unify_gen.m:
Fix a module qualified predicate name reference that would not
work in Prolog.
compiler/notes/compiler_design.html:
Document the new file basic_block.m.
|
||
|
|
7406335105 |
This change implements typeclasses. Included are the necessary changes to
Estimated hours taken: 500 or so This change implements typeclasses. Included are the necessary changes to the compiler, runtime and library. compiler/typecheck.m: Typecheck the constraints on a pred by adding constraints for each call to a pred/func with constraints, and eliminating constraints by applying context reduction. While reducing the constraints, keep track of the proofs so that polymorphism can produce the tyepclass_infos for eliminated constraints. compiler/polymorphism.m: Perform the source-to-source transformation which turns code with typeclass constraints into code without constraints, but with extra "typeclass_info", or "dictionary" parameters. Also, rather than always having a type_info directly for each type variable, sometimes the type_info is hidden inside a typeclass_info. compiler/bytecode*.m: Insert some code to abort if bytecode generation is used when typeclasses are used. compiler/call_gen.m: Generate code for a class_method_call, which forms the body of a class method (by selecting the appropriate proc from the typeclass_info). compiler/dead_proc_elim.m: Don't eliminate class methods if they are potentially used outside the module compiler/hlds_data.m: Define data types to store: - the typeclass definitions - the instances of a class - "constraint_proof". ie. the proofs of redundancy of a constraint. This info is used by polymorphism to construct the typeclass_infos for a constraint. - the "base_tyepclass_info_constant", which is analagous the the base_type_info_constant compiler/hlds_data.m: Define the class_method_call goal. This goal is inserted into the body of class method procs, and is responsible for selecting the appropriate part of the typeclass_info to call. compiler/hlds_data.m: Add the class table and instance table to the module_info. compiler/hlds_out.m: Output info about base_typeclass_infos and class_method_calls compiler/hlds_pred.m: Change the representation of the locations of type_infos from "var" to type_info_locn, which is either a var, or part of a typeclass_info, since now the typeclass_infos contain the type_infos for the type that they constrain. Add constraints to the pred_info. Add constraint_proofs to the pred_info (so that typeclass.m can annotate the pred_info with the reasons that constraints were eliminated, so that polymorphism.m can in turn generate the typeclass_infos for the constraints). Add the "class_method" marker. compiler/lambda.m: A feable attempt at adding class ontexts to lambda expressions, untested and almost certainly not working. compiler/llds_out.m: Output the code addresses for do_*det_class_method, and output appropriately mangled symbol names for base_typeclass_infos. compiler/make_hlds.m: Add constraints to the types on pred and func decls, and add class and instance declarations to the class_table and instance_table respectively. compiler/mercury_compile.m: Add the check_typeclass pass. compiler/mercury_to_mercury.m: Output constraints of pred and funcs, and output typeclass and instance declarations. compiler/module_qual.m: Module qualify typeclass names in pred class contexts, and qualify the typeclass and instance decls themselves. compiler/modules.m: Output typeclass declarations in the short interface too. compiler/prog_data.m: Add the "typeclass" and "instance" items. Define the types to store information about the declarations, including class contexts on pred and func decls. compiler/prog_io.m: Parse constraints on pred and func declarations. compiler/prod_out.m: Output class contexts on pred and func decls. compiler/type_util.m: Add preds to apply a substitution to a class_constraint, and to a list of class constraints. Add type_list_matches_exactly/2. Also add typeclass_info and base_typeclass_info as types which should not be optimised as no_tag types (seeing that we cheat a bit about their representation). compiler/notes/compiler_design.html: Add notes on module qualification of class contexts. Needs expansion to include more stuff on typeclasses. compiler/*.m: Various minor changes. New Files: compiler/base_typeclass_info.m: Produce one base_typeclass_info for each instance declaration. compiler/prog_io_typeclass.m: Parse typeclass and instance declarations. compiler/check_typeclass.m: Check the conformance of an instance declaration to the typeclass declaration, including building up a proof of how superclass constraints are satisfied so that polymorphism.m is able to construct the typeclass_info, including the superclass typeclass_infos. library/mercury_builtin.m: Implement that base_typeclass_info and typeclass_info types, as well as the predicates type_info_from_typeclass_info/3 to extract a type_info from a typeclass_info, and superclass_from_typeclass_info/3 for extracting superclasses. library/ops.m: Add "typeclass" and "instance" as operators. library/string.m: Add a (in, uo) mode for string__length/3. runtime/mercury_ho_call.c: Implement do_call_*det_class_method, which are the pieces of code responsible for extracting the correct code address from the typeclass_info, setting up the arguments correctly, then executing the code. runtime/mercury_type_info.h: Macros for accessing the typeclass_info structure. |
||
|
|
bf824facde |
Make Mercury cope with impure code
The purpose of this diff is to allow Mercury programs to contain
impure Mercury code without the compiler changing its behavior
inappropriately, while still allowing the compiler to aggressively
optimize pure code. To do this, we require impure predicates to be so
declared, and calls to impure predicates to be flagged as such. We
also allow predicates implemented in terms of impure predicates to be
promised to be pure; lacking such a promise, any predicate that calls
an impure predicate is assumed to be impure.
At the moment, we don't allow impure functions (only predicates),
though some of the work necessary to support them has been done.
Note that to make the operators work properly, the precedence of the
`pred' and `func' operators has been changed from 1199 to 800.
Estimated hours taken: 150
compiler/purity.m:
New compiler pass for purity checking.
compiler/hlds_goal.m:
Add `impure' and `semipure' to the goal_feature enum.
compiler/hlds_out.m:
compiler/typecheck.m:
compiler/special_pred.m:
Fixed code that prints predicate name to write something more
helpful for special (compiler-generated) predicates. Added
code to print new markers. Added purity argument to
mercury_output_pred_type. New public predicate
special_pred_description/2 provides an english description for
each compiler-generated predicate.
compiler/hlds_pred.m:
Add `impure' and `semipure' to marker enum. Added new
public predicates to get predicate purity and whether or not
it's promised to be pure.
compiler/prog_data.m:
compiler/mercury_to_mercury.m:
compiler/prog_io.m:
compiler/prog_io_goal.m:
compiler/prog_io_pragma.m:
compiler/prog_io_dcg.m:
compiler/prog_util.m:
compiler/equiv_type.m:
compiler/intermod.m:
compiler/mercury_to_c.m:
compiler/module_qual.m:
Add purity argument to pred and func items. Add new `impure'
and `semipure' operators. Add promise_pure pragma. Add
purity/2 wrapper to goal_expr type.
compiler/make_hlds.m:
compiler/mercury_to_goedel.m:
Added purity argument to module_add_{pred,func},
clauses_info_add_pragma_c_code, and to pred and func items.
Handle promise_pure pragma. Handle purity/2 wrapper used to
handle user-written impurity annotations on goals.
compiler/mercury_compile.m:
Add purity checking pass between type and mode checking.
compiler/mode_errors.m:
Distinguish mode errors caused by impure goals preventing
goals being delayed.
compiler/modes.m:
Don't delay impure goals, and ensure before scheduling an
impure goal that no goals are delayed. Actually, we go ahead
and try to schedule goals even if impurity causes a problem,
and then if it still doesn't mode check, then we report an
ordinary mode error. Only if the clause would be mode correct
except for an impure goal do we report it as an impurity problem.
compiler/simplify.m:
Don't optimize away non-pure duplicate calls. We could do
better and still optimize duplicate semipure goals without an
intervening impure goal, but it's probably not worth the
trouble. Also don't eliminate impure goals on a failing branch.
compiler/notes/compiler_design.html:
Documented purity checking pass.
doc/reference_manual.texi:
Document purity system.
doc/transition_guide.texi:
library/nc_builtin.nl:
library/ops.m:
library/sp_builtin.nl:
New operators and new precdence for `pred' and `func'
operators.
tests/hard_coded/purity.m
tests/hard_coded/purity.exp
tests/hard_coded/Mmakefile:
tests/invalid/purity.m
tests/invalid/purity_nonsense.m
tests/invalid/purity.err_exp
tests/invalid/purity_nonsense.err_exp
tests/invalid/Mmakefile:
Test cases for purity.
|
||
|
|
2a97f96d1a |
Generate stack layouts for accurate garbage collection.
Estimated hours taken: 50 Generate stack layouts for accurate garbage collection. compiler/base_type_layout.m: Change the order of some arguments so that threaded data structures are more often in the final two arguments (allows easy use of higher order predicates). Simplify some code using higher order preds. Export base_type_layout__construct_pseudo_type_info, as stack_layout.m needs to be able to generate pseudo_type_infos too. Fix problems with cell numbers being re-used -- get the next cell number from module_info, and update module_info after processing base_type_layouts. compiler/code_gen.m: Add information about each procedure to the continuation info. Handle new field in c_procedure. compiler/continuation_info.m: Redesign most of this module to deal with labels that are continuation points for multiple calls. Change the order of some arguments so that threaded data structures are in the final two arguments. Cleaned up and documented code. compiler/dupelim.m: compiler/exprn_aux.m: Handle new label_entry data type. compiler/export.m: compiler/opt_debug.m: Handle new label_entry and general data types. compiler/llds_out.m: Add an argument to get_proc_label to control whether a "mercury_" prefix is wanted. Handle new label_entry and general data types. compiler/llds.m: Add a new alternative for data_const - a label_entry. Add a new alternative for data_name - general, which allows any sort of data, with names generated elsewhere. Add the pred_proc_id as a field of c_procedure. compiler/optimize.m: compiler/llds_common.m: compiler/optimize.m: Handle new field in c_procedure. compiler/mercury_compile.m: Generate layout information after code has been generated, and output stack layouts. compiler/notes/compiler_design.html: Document new stack_layout module. compiler/stack_layout.m: New file - generates the LLDS code that defines global constants to hold the stack_layout structures. compiler/options.m: compiler/handle_options.m: Add --stack-layout option which outputs stack layouts. Make accurate gc imply stack_layout. |
||
|
|
e4b4e886bb |
Trivial layout change.
Estimated hours taken: 0.1 compiler/notes/compiler_design.html: Trivial layout change. |
||
|
|
3641af5272 |
Add constant propagation within modules. This occurs during simplification
Estimated hours taken: 10 Add constant propagation within modules. This occurs during simplification and simply attempts to evaluate "known" calls that have all their inputs bound to constants and replaces the call with constructions of the outputs. Currently the "known" calls are (most) of the arithmetic predicates, and the comparison of ints and floats. compiler/instmap.m: add merge_instmap_deltas which merges a list of intmap deltas rather than just two of them. compiler/mercury_compile.m: compiler/options.m: add (and use) the option --optimize-constant-propagation compiler/simplify.m: add a bool to the simplify struct to turn on/off constant propagation. in the simplification of calls, check to see if all the inputs are bound to constants. If we know how to evaluate this call at compile time, then do so. This may change the instmap delta. For branched goals, we merge the instmap deltas to recompute the instmap delta for the goal as a whole so that we know when every branch binds a variable to the same constant. compiler/notes/compiler_design.html: mention constant propagation. doc/user_guide.texi: mention constant propagation. compiler/const_prop.m: code that attempts to evaluate calls at compile time. It contains tables of calls that we know how to evaluate. |
||
|
|
78e344c0df |
Update compiler design notes.
Estimated hours taken: 0.05 Update compiler design notes. compiler/notes/compiler_design.html: Update design notes with regard to continutation_info.m, and remove mention of garbage_out.m and shapes.m. |
||
|
|
1414a710ab |
Reorganisation of modules to do with the inst data type.
Estimated hours taken: 20 Reorganisation of modules to do with the inst data type. This is actually the first installment of the alias tracking mode checker in disguise. A very good disguise. The rationale for this reorganisation is to reduce coupling in the part of the mode checker which is _not_ in this change (ie most of it). Alias tracking requires a new kind of inst, alias(inst_key), where an inst_key is a handle on some other sub-inst. With it goes a data structure in which to store dereferenced insts and all the operations which go with it. This code will go in the new module inst.m so that it doesn't have to go in prog_data.m. (I briefly considered putting it in instmap.m however this introduces some bad coupling since instmap.m imports hlds_module.m. Putting it in prog_data.m would cause hlds_*.m to depend on prog_data.m, but we have designed things so that the dependencies go in the other direction.) The remainder of the reorganisation is a general cleanup: the inst testing predicates (inst_is_*) have been moved out of mode_util because they are not actually operations on modes at all, and have been moved into inst_match. inst_match has then been split because otherwise it would be 2000 lines long and will get significantly bigger when aliasing is added. Roughly speaking, any operations which create new insts from old ones have been moved into a new module, inst_util while any operations which test the values of insts remain in inst_match. Also included are the removal of some NU-Prologisms since the NU-Prolog version of the compiler is no longer supported. Two changes here: - Removal of some when declarations. - A gross hack in inst_is_*_2, where two copies of the same inst were passed into the predicate so that one could be switched on. Thank NU-Prolog's lack of common subexpression elimination. compiler/inst.m: New module which contains the data types inst, uniqueness, pred_inst_info, bound_inst. compiler/inst_util.m: New module which contains predicates which perform mode checking-like operations on insts. Moved in: abstractly_unify_inst, abstractly_unify_inst_functor, inst_merge, make_mostly_uniq_inst (from inst_match.m) compiler/inst_match.m: Moved out: inst_merge, make_mostly_uniq_inst, abstractly_unify_inst, abstractly_unify_inst_functor (to inst_util.m) Moved in: inst_is_*, inst_list_is_*, bound_inst_list_is_* (from mode_util.m) Now exported: unique_matches_initial/2, unique_matches_final/2 inst_contains_instname/3, pred_inst_matches/3 (They are required by inst_util.m, and they are useful in their own right.) compiler/instmap.m: instmap_delta_lookup_var/3 reincarnated as instmap_delta_search_var/3. The reason for this change is that previously, instmap_delta_lookup_var simply returned `free' if the searched-for var did not occur in the instmap_delta. This is somewhat non-obvious behaviour. instmap_delta_search_var/3 fails in such a situation. compiler/mode_util.m: Moved out: inst_is_*, inst_list_is_*, bound_inst_list_is_* (to inst_match.m) (These are not really operations on modes.) compiler/modecheck_call.m: Moved in modecheck_higher_order_func_call/5, from modecheck_unify.m compiler/modecheck_unify.m: Moved out modecheck_higher_order_func_call/5, to modecheck_call.m where it should have been all along. compiler/prog_data.m: Moved out the types inst, uniqueness, pred_inst_info, bound_inst (to inst.m). compiler/common.m: compiler/cse_detection.m: compiler/fact_table.m: compiler/higher_order.m: compiler/hlds_data.m: compiler/hlds_goal.m: compiler/hlds_out.m: compiler/intermod.m: compiler/liveness.m: compiler/llds.m: compiler/make_hlds.m: compiler/mercury_to_mercury.m: compiler/mode_debug.m: compiler/mode_errors.m: compiler/mode_info.m: compiler/modes.m: compiler/module_qual.m: compiler/polymorphism.m: compiler/prog_io.m: compiler/prog_io_util.m: compiler/prog_util.m: compiler/simplify.m: compiler/switch_detection.m: compiler/unify_proc.m: compiler/unique_modes.m: Miscellaneous minor changes to cope with the above changes. compiler/notes/compiler_design.html: Document the new modules. |
||
|
|
7628f7dabc |
Mention that common.m also does elimination of duplicate procedure
Estimated hours taken: 0.25 compiler/notes/compiler_design.html: Mention that common.m also does elimination of duplicate procedure calls, not just of common structs. |
||
|
|
9c8bf02b3a |
Added some more documentation on module qualification.
Estimated hours taken: 0.1 [This was stayl's change to COMPILER_DESIGN that somehow didn't get incorporated when COMPILER_DESIGN became compiler_desing.html.] compiler/notes/compiler_design.html: Added some more documentation on module qualification. |
||
|
|
dea497b338 |
Translated plain text docs to HTML. This obviously creates
Estimated hours taken: 4 Translated plain text docs to HTML. This obviously creates a dual update problem. We should solve this by putting the plain text docs in the attic and retaining the HTML. Also added the HTML files to the Mmakefile so they are installed on the web pages. The other documents in compiler/notes will be HTMLized soon. compiler/notes/ Mmakefiles ALLOCATION.html AUTHORS.html CODING_STANDARDS.html COMPILER_DESIGN.html GC_AND_C_CODE.html GLOSSARY.html MODULE_SYSTEM.html RELEASE_CHECKLIST.html REVIEWS.html TODO.html |