mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-20 16:31:04 +00:00
a529a380e23588bcf4c2024dde00cb15eb62a16f
10 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
189b9215ae |
This diff implements stack slot optimization for the LLDS back end based on
Estimated hours taken: 400
Branches: main
This diff implements stack slot optimization for the LLDS back end based on
the idea that after a unification such as A = f(B, C, D), saving the
variable A on the stack indirectly also saves the values of B, C and D.
Figuring out what subset of {B,C,D} to access via A and what subset to access
via their own stack slots is a tricky optimization problem. The algorithm we
use to solve it is described in the paper "Using the heap to eliminate stack
accesses" by Zoltan Somogyi and Peter Stuckey, available in ~zs/rep/stackslot.
That paper also describes (and has examples of) the source-to-source
transformation that implements the optimization.
The optimization needs to know what variables are flushed at call sites
and at program points that establish resume points (e.g. entries to
disjunctions and if-then-elses). We already had code to compute this
information in live_vars.m, but this code was being invoked too late.
This diff modifies live_vars.m to allow it to be invoked both by the stack
slot optimization transformation and by the code generator, and allows its
function to be tailored to the requirements of each invocation.
The information computed by live_vars.m is specific to the LLDS back end,
since the MLDS back ends do not (yet) have the same control over stack
frame layout. We therefore store this information in a new back end specific
field in goal_infos. For uniformity, we make all the other existing back end
specific fields in goal_infos, as well as the similarly back end specific
store map field of goal_exprs, subfields of this new field. This happens
to significantly reduce the sizes of goal_infos.
To allow a more meaningful comparison of the gains produced by the new
optimization, do not save any variables across erroneous calls even if
the new optimization is not enabled.
compiler/stack_opt.m:
New module containing the code that performs the transformation
to optimize stack slot usage.
compiler/matching.m:
New module containing an algorithm for maximal matching in bipartite
graphs, specialized for the graphs needed by stack_opt.m.
compiler/mercury_compile.m:
Invoke the new optimization if the options ask for it.
compiler/stack_alloc.m:
New module containing code that is shared between the old,
non-optimizing stack slot allocation system and the new, optimizing
stack slot allocation system, and the code for actually allocating
stack slots in the absence of optimization.
Live_vars.m used to have two tasks: find out what variables need to be
saved on the stack, and allocating those variables to stack slots.
Live_vars.m now does only the first task; stack_alloc.m now does
the second, using code that used to be in live_vars.m.
compiler/trace_params:
Add a new function to test the trace level, which returns yes if we
want to preserve the values of the input headvars.
compiler/notes/compiler_design.html:
Document the new modules (as well as trace_params.m, which wasn't
documented earlier).
compiler/live_vars.m:
Delete the code that is now in stack_alloc.m and graph_colour.m.
Separate out the kinds of stack uses due to nondeterminism: the stack
slots used by nondet calls, and the stack slots used by resumption
points, in order to allow the reuse of stack slots used by resumption
points after execution has left their scope. This should allow the
same stack slots to be used by different variables in the resumption
point at the start of an else branch and nondet calls in the then
branch, since the resumption point of the else branch is not in effect
when the then branch is executed.
If the new option --opt-no-return-calls is set, then say that we do not
need to save any values across erroneous calls.
Use type classes to allow the information generated by this module
to be recorded in the way required by its invoker.
Package up the data structures being passed around readonly into a
single tuple.
compiler/store_alloc.m:
Allow this module to be invoked by stack_opt.m without invoking the
follow_vars transformation, since applying follow_vars before the form
of the HLDS code is otherwise final can be a pessimization.
Make the module_info a part of the record containing the readonly data
passed around during the traversal.
compiler/common.m:
Do not delete or move around unifications created by stack_opt.m.
compiler/call_gen.m:
compiler/code_info.m:
compiler/continuation_info.m:
compiler/var_locn.m:
Allow the code generator to delete its last record of the location
of a value when generating code to make an erroneous call, if the new
--opt-no-return-calls option is set.
compiler/code_gen.m:
Use a more useful algorithm to create the messages/comments that
we put into incr_sp instructions, e.g. by distinguishing between
predicates and functions. This is to allow the new scripts in the
tool directory to gather statistics about the effect of the
optimization on stack frame sizes.
library/exception.m:
Make a hand-written incr_sp follow the new pattern.
compiler/arg_info.m:
Add predicates to figure out the set of input, output and unused
arguments of a procedure in several different circumstances.
Previously, variants of these predicates were repeated in several
places.
compiler/goal_util.m:
Export some previously private utility predicates.
compiler/handle_options.m:
Turn off stack slot optimizations when debugging, unless
--trace-optimized is set.
Add a new dump format useful for debugging --optimize-saved-vars.
compiler/hlds_llds.m:
New module for handling all the stuff specific to the LLDS back end
in HLDS goal_infos.
compiler/hlds_goal.m:
Move all the relevant stuff into the new back end specific field
in goal_infos.
compiler/notes/allocation.html:
Update the documentation of store maps to reflect their movement
into a subfield of goal_infos.
compiler/*.m:
Minor changes to accomodate the placement of all back end specific
information about goals from goal_exprs and individual fields of
goal_infos into a new field in goal_infos that gathers together
all back end specific information.
compiler/use_local_vars.m:
Look for sequences in which several instructions use a fake register
or stack slot as a base register pointing to a cell, and make those
instructions use a local variable instead.
Without this, a key assumption of the stack slot optimization,
that accessing a field in a cell costs only one load or store
instruction, would be much less likely to be true. (With this
optimization, the assumption will be false only if the C compiler's
code generator runs out of registers in a basic block, which for
the code we generate should be unlikely even on x86s.)
compiler/options.m:
Make the old option --optimize-saved-vars ask for both the old stack
slot optimization (implemented by saved_vars.m) that only eliminates
the storing of constants in stack slots, and the new optimization.
Add two new options --optimize-saved-vars-{const,cell} to turn on
the two optimizations separately.
Add a bunch of options to specify the parameters of the new
optimizations, both in stack_opt.m and use_local_vars.m. These are
for implementors only; they are deliberately not documented.
Add a new option, --opt-no-return-cells, that governs whether we avoid
saving variables on the stack at calls that cannot return, either by
succeeding or by failing. This is for implementors only, and thus
deliberately documented only in comments. It is enabled by default.
compiler/optimize.m:
Transmit the value of a new option to use_local_vars.m.
doc/user_guide.texi:
Update the documentation of --optimize-saved-vars.
library/tree234.m:
Undo a previous change of mine that effectively applied this
optimization by hand. That change complicated the code, and now
the compiler can do the optimization automatically.
tools/extract_incr_sp:
A new script for extracting stack frame sizes and messages from
stack increment operations in the C code for LLDS grades.
tools/frame_sizes:
A new script that uses extract_incr_sp to extract information about
stack frame sizes from the C files saved from a stage 2 directory
by makebatch and summarizes the resulting information.
tools/avg_frame_size:
A new script that computes average stack frame sizes from the files
created by frame_sizes.
tools/compare_frame_sizes:
A new script that compares the stack frame size information
extracted from two different stage 2 directories by frame_sizes,
reporting on both average stack frame sizes and on specific procedures
that have different stack frame sizes in the two versions.
|
||
|
|
7597790760 |
Use sub-modules to structure the modules in the Mercury compiler directory.
The main aim of this change is to make the overall, high-level structure of the compiler clearer, and to encourage better encapsulation of the major components. compiler/libs.m: compiler/backend_libs.m: compiler/parse_tree.m: compiler/hlds.m: compiler/check_hlds.m: compiler/transform_hlds.m: compiler/bytecode_backend.m: compiler/aditi_backend.m: compiler/ml_backend.m: compiler/ll_backend.m: compiler/top_level.m: New files. One module for each of the major components of the Mercury compiler. These modules contain (as separate sub-modules) all the other modules in the Mercury compiler, except gcc.m and mlds_to_gcc.m. Mmakefile: compiler/Mmakefile: Handle the fact that the top-level module is now `top_level', not `mercury_compile' (since `mercury_compile' is a sub-module of `top_level'). compiler/Mmakefile: Update settings of *FLAGS-<modulename> to use the appropriate nested module names. compiler/recompilation_check.m: compiler/recompilation_version.m: compiler/recompilation_usage.m: compiler/recompilation.check.m: compiler/recompilation.version.m: compiler/recompilation.version.m: Convert the `recompilation_*' modules into sub-modules of the `recompilation' module. compiler/*.m: compiler/*.pp: Module-qualify the module names in `:- module', `:- import_module', and `:- use_module' declarations. compiler/base_type_info.m: compiler/base_type_layout.m: Deleted these unused empty modules. compiler/prog_data.m: compiler/globals.m: Move the `foreign_language' type from prog_data to globals. compiler/mlds.m: compiler/ml_util.m: compiler/mlds_to_il.m: Import `globals', for `foreign_language'. Mmake.common.in: trace/Mmakefile: runtime/Mmakefile: Rename the %.check.c targets as %.check_hdr.c, to avoid conflicts with compiler/recompilation.check.c. |
||
|
|
4be69fa961 |
Eliminated a lot of the dependencies on the the `code_model' type,
Estimated hours taken: 6 Eliminated a lot of the dependencies on the the `code_model' type, and move that type from llds.m into a new module `code_model'. The aim of this change is to improve the modularity of the compiler by reducing the number of places in the compiler front-end that depend on back-end concepts and the number of places in the MLDS back-end which depend on the LLDS. compiler/code_model.m: New module. Contains the code_model type and associated procedures. compiler/llds.m: Move the code_model type into code_model.m. compiler/hlds_goal.m: Move the goal_info_get_code_model procedure into code_model.m, to avoid having the HLDS modules import code_model. compiler/hlds_out.m: Delete `hlds_out__write_code_model', since it wasn't being used. compiler/hlds_pred.m: Move the proc_info_interface_code_model procedure into code_model.m, to avoid having the HLDS modules import code_model. compiler/goal_path.m: When computing the `maybe_cut' field for `some' goals, compute it by comparing the determinism rather than by comparing the goal_infos. compiler/unique_modes.m: Use determinism and test for soln_count = at_most_many rather than using code_model and testing for model_non. compiler/inlining.m: Test for determinism nondet/multi rather than testing for code_model model_non. compiler/hlds_pred.m: compiler/det_report.m: Change valid_code_model_for_eval_method, which succeeded unless the eval_method was minimal_model and the code_model was model_det, to valid_determinism_for_eval_method, which succeeds unless the eval_method is minimal_model and the determinism cannot fail. As well as avoiding a dependency on code_model in the HLDS modules, this also fixes a bug where det_report could give misleading error messages, saying that `multi' was a valid determinism for `minimal_model' predicates, when in fact the compiler will always report a determinism error if you declare a `minimal_model' predicate with determinism `multi'. (Actually the code in which this bug occurs is in fact unreachable, but this is no doubt also a bug... I'll address that one in a separate change.) compiler/lookup_switch.m: Simplify the code a bit by using globals__lookup_*_option rather than globals__get_option and then getopt__lookup_option. compiler/*.m: Add `import_module' declarations for `code_model', and in some cases remove `import_module' declarations for `llds'. |
||
|
|
a1f326f4e9 |
Add an alternative to code_exprn that does eager code generation (code_exprn
Estimated hours taken: 140 Add an alternative to code_exprn that does eager code generation (code_exprn always does lazy code generation). Its main advantages are that the new code is significantly simpler, and that it does not generate unnecessary shuffling code. Its main disadvantage, which is that it does not eliminate the creation of unneeded cells, can be eliminated by switching on --unneeded-code. For now, you can select the use of the new code generator with the --no-lazy-code option (which was previously present but unused). This will be made the default later, after I do more performance tests. Var_locn contains stricter self-checks than code_exprn does. This required modifications to some other parts of the code generator to ensure that the self-checks do not fail unnecessarily. (This mostly took the form of explicitly killing off dead variables before calling code_info__clear_all_registers, which would complain about losing the last record of the value of a variable that was alive as far as it knew.) To make my changes simpler, also took the opportunity to simplify parts of the code generator which were handing around rvals that in fact had to be wrappers around lvals, by handing around the lvals directly. Testing this change also required fixing an old bug which prevented compiling the library with -O1 --trace deep, together with the usual intermodule optimization. The bug is that a library module reads predicates from builtin.opt or private_builtin.opt, does not eliminate them because of the -O1, and then tries to generate traced code for them. However, this fails because the builtin modules contain some predicates that cannot be made to conform to typeinfo-liveness, which is required by tracing. compiler/var_locn.m: The new module that implements eager code generation. compiler/follow_vars.m: Improve the follow_vars pass, since eager code generation requires better follow_vars information. We now generate correct information for generic calls, and record not only where some vars (e.g. those which appear as input arguments of following calls) should be put, but also which registers are not reserved for those variables and are thus available for other variables. compiler/hlds_goal.m: Modify the follow_vars field of the goal_info to record the number of the first non-reserved register. compiler/code_info.m: Replace the general-purpose predicate code_info__cache_exprn, which associated a variable with an rval without generating code, with a set of special-purpose predicates such as code_info__assign_const_to_var and code_info__assign_cell_to_var, some of which can generate code. These new predicates and some older ones (e.g. code_info__setup_call) now choose at runtime whether to call code_exprn or var_locn. The basis for the decision is checking whether the code_info structure contains an exprn_info or a var_locn_info. This is decided in code_info__init based on the value of the lazy_code option, and maintained unchanged from then on. Rename some predicates to better reflect their current possible behaviors. compiler/unify_gen.m: Call the new special-purpose predicates in code_info instead of code_info__cache_exprn. Replace an incorrect clause with a call to error, since that clause could never be invoked. compiler/call_gen.m: Hand over the task of generating the args of generic calls to code_info, since it already has code to do the right thing, which includes reserving the registers to be used for the input args. Notify the rest of the code generator after the last use of non-forward-live variables, in order to avoid spurious calls to error (it is an error to clobber the last location of a live variable). Notify the rest of the code generator when generic calls overwrite registers, to allow the proper consistency checks to be made. If an output variable is singleton, then do not make it known to the code generator. It never will never become dead, and may thus cause a spurious compiler abort if its storage is ever clobbered. Export a predicate for use by follow_vars. Factor out some common code. Call the new preds in code_info where necessary. compiler/pragma_c_gen.m: Notify the rest of the code generator after the last use of non-forward-live variables, in order to avoid spurious calls to error (it is an error to clobber the last location of a live variable). If an output variable is singleton, then do not make it known to the code generator. It never will never become dead, and may thus cause a spurious compiler abort if its storage is ever clobbered. When using var_locn, ensure that none of the input arguments of a model_semi pragma_c_code is assigned to r1. If we did, and the last reference to the value of that argument was after an assignment to SUCCESS_INDICATOR, the C compiler would be forced to generate code to shuffle the value of the argument out of the way. compiler/code_exprn.m: Minor changes to return lvals directly instead of lvals wrapped inside rvals and to conform the new format of follow_vars. Do not include the registers reserved by follow_vars in the search for a spare register. compiler/lookup_switch.m: compiler/switch_gen.m: Fix an old bug that did not matter with code_exprn but does matter with var_locn: the branch end structure was being computed in the wrong place. compiler/disj_gen.m: At the ends of non-last disjuncts, kill off the variables that we needed to know inside the disjunct but won't need to know after the disjunct, in order to avoid error messages about throwing away their state. The variables affected are those which are needed only by the resumption point of the next disjunct, not by enclosing resumption points or forward execution. compiler/arg_info.m: Associate an lval, not an rval, with each argument. compiler/*.m: Minor changes to conform to (a) the new format of follow_vars, (b) the replacement of rvals containing lvals by lvals. compiler/code_util.m: Add some utility predicates for var_locn.m. compiler/exprn_aux.m: Add some utility functions for var_locn.m. Export a predicate for var_locn.m. compiler/handle_options.m: If --no-lazy-code is set, switch on the "optimizations" on whose presence it depends. compiler/mercury_compile.m: compiler/code_gen.m: Turn off tracing for predicates that don't obey typeinfo liveness for backend_by_preds and backend_by_phases respectively. Look up options in the globals structure in the module_info, not in the globals structure in the I/O state, since this is where we turn off tracing. (We should later make sure that other parts of the compiler are also consistent on this issue.) compiler/stack_layout.m: Throw away any continuation_info structures that belong to predicates that don't obey typeinfo liveness. |
||
|
|
2d8bc59951 |
Add an alternative method of computing the non-locals for
Estimated hours taken: 3 compiler/quantification.m: Add an alternative method of computing the non-locals for goals which do structure reuse, This is done to avoid unnecessary field extractions and variable saves for arguments of reused terms. The code-gen non-locals are the same as the ordinary non-locals except that arguments of a reconstruction which are taken from the reused cell are not included in the non-locals set. Mode analysis still uses the full non-locals set. Add a field to type quant_info to record which set of non-locals is being computed. Use record syntax for the access predicates. compiler/hlds_goal.m: Add access predicates to extract and update the code_gen_nonlocals in a goal_info. When structure reuse is not performed, the nonlocals and the code-gen nonlocals will always be the same. Use record syntax for hlds_goal_info access predicates. compiler/goal_util.m: Add a predicate `goal_contains_reconstruction', which succeeds if the goal does any structure reuse. This will always fail on the main branch. Add missing disjuncts for par_conj goals in `goal_calls' and `goal_calls_pred_id'. compiler/liveness.m: compiler/live_vars.m: compiler/ml_code_gen.m: compiler/par_conj_gen.m: Use the code_gen_nonlocals rather than the ordinary nonlocals. configure.in: Add a test for record syntax. |
||
|
|
4dba9609af |
Fix the handling of uniqueness in parallel conjunctions so that
Estimated hours taken: 2.0 (+ debugging bag.m) compiler/unique_modes.m: compiler/par_conj_gen.m: Fix the handling of uniqueness in parallel conjunctions so that variables that occur in more than one conjunct become shared. |
||
|
|
3bf462e0b7 |
Switch to a closure representation that includes runtime type and procedure id
Estimated hours taken: 36
Switch to a closure representation that includes runtime type and procedure id
information, so that closures can be copied, garbage collected, printed, etc.
This RTTI information is not yet used. Adding code to use it would be futile
until Tyson finishes his changes to the other RTTI data structures.
Note also that this change provides the information required for solving the
problem of trying to deep copy closures only for grades that include
--typeinfo-liveness. Providing this info for other grades is future work.
configure.in:
Find out what the right way to refer to a variable-sized array
at the end of a struct is.
runtime/mercury_ho_call.h:
New file to define the structure of closures and macros for accessing
closures.
runtime/Mmakefile:
Add the new header file.
runtime/mercury_ho_call.c:
Add an entry point to handle calls to new-style closures. The code
to handle old-style closures, which was unnecessarily duplicated for
each code model, stays until all the installed compilers use the new
closure representation.
Until that time, the new entry point will contain code to detect
the use of old-style closures and invoke the old code instead.
This allows stage1s compiled with old compilers to use the old style
and stage2 to use the new style without any special tricks anywhere
else.
Add a new entry point to handle method calls of all code models.
The old entry points, which had the same code, will also be deleted
after this change has been bootstrapped.
runtime/mercury_calls.h:
Remove the macros that call closures. Their interface sucked, they
were not used, and their implementation is now out of date.
runtime/mercury_stack_layout.h:
Add a new type, MR_Type_Param_Locns, for use by the C type
representing closures. Since MR_Stack_Layout_Vars has a field,
MR_slvs_tvars, which references a data structure identical
in every way to MR_Type_Param_Locns, change the type of that field
to this new type, instead of the previous cheat.
runtime/mercury_layout_util.h:
Minor update to conform to the new type of the MR_slvs_tvars field.
(This is the only use of that field in the system.)
runtime/mercury_type_info.h:
Add new types MR_TypeInfo and MR_PseudoTypeInfo. For now, they
are just Word, but later we can make them more accurate.
In the meantime, we can refer to them instead of to Word,
making code clearer. One such reference is now in mercury_ho_call.h.
compiler/notes/release_checklist.html:
Add a reminder to remove the redundant code from mercury_ho_call.c
after bootstrapping.
compiler/llds.m:
Replace three code addresses for calling closures and another three
for calling methods with one each.
compiler/call_gen.m:
compiler/dupelim.m:
compiler/opt_debug.m:
compiler/opt_util.m:
compiler/llds_out.m:
Trivial updates in accordance with the change to llds.m
compiler/code_info.m:
Move the code to handle layouts to continuation_info.m,
since that's where it belongs. Leave only the code for picking
up parameters from code_infos and for putting results back in there.
Remove the redundant arguments of code_info__init, and extract
them from ProcInfo, to make clear that they are related.
compiler/code_gen.m:
Since we pass ProcInfo to code_info__init, don't pass its components.
compiler/continuation_info.m:
Add the code moved from code_info.m, in a form which takes explicit
arguments for things that used be hidden in the code_info.
Add new code, closely related to the moved code, that creates
layout info from a procedure's argument info, rather than from a
(part of) the current code generator state. This way, it can be
invoked from places that don't have a code_info for the procedure
for which they want to generate layouts. This is the case when
we generate layouts for closures.
compiler/par_conj_gen.m:
compiler/trace.m:
Minor changes required by the move of stuff from code_info to
continuation_info.
compiler/stack_layout.m:
Export some predicates for use by unify_gen.
compiler/unify_gen.m:
Switch to creating new style closures, complete with layout info.
Optimize the code for extending closures a bit. By copying the
fixed words of the closure outside the loop, we avoid incurring
the loop overhead twice.
compiler/code_util.m:
Add a couple of utility predicates for continuation_info.m and
unify_gen.m
library/benchmarking.m:
library/std_util.m:
Refer to the new entry point for handling closures.
browser/dl.m:
Use the new closure representation.
Note that extras/dynamic_linking/dl.m, which is supposed to be
the same as browser/dl.m but is not, should also be updated, but
this will be handled later by Fergus.
tests/hard_coded/closure_extension.{m,exp}:
A new test case to exercise the code for extending closures.
tests/hard_coded/Mmakefile:
Enable the new test case.
|
||
|
|
5c955626f2 |
These changes make var' and term' polymorphic.
Estimated hours taken: 20 These changes make `var' and `term' polymorphic. This allows us to make variables and terms representing types of a different type to those representing program terms and those representing insts. These changes do not *fix* any existing problems (for instance there was a messy conflation of program variables and inst variables, and where necessary I've just called varset__init(InstVarSet) with an XXX comment). NEWS: Mention the changes to the standard library. library/term.m: Make term, var and var_supply polymorphic. Add new predicates: term__generic_term/1 term__coerce/2 term__coerce_var/2 term__coerce_var_supply/2 library/varset.m: Make varset polymorphic. Add the new predicate: varset__coerce/2 compiler/prog_data.m: Introduce type equivalences for the different kinds of vars, terms, and varsets that we use (tvar and tvarset were already there but have been changed to use the polymorphic var and term). Also change the various kinds of items to use the appropriate kinds of var/varset. compiler/*.m: Thousands of boring changes to make the compiler type correct with the different types for type, program and inst vars and varsets. |
||
|
|
d1855187e5 |
Implement new methods of handling failures and the end points of branched
Estimated hours taken: 260
Implement new methods of handling failures and the end points of branched
control structures.
compiler/notes/failure.html:
Fix an omission about the handling of resume_is_known in if-then-elses.
(This omission lead to a bug in the implementation.)
Optimize cuts across multi goals when curfr is known to be equal
to maxfr.
Clarify the wording in several places.
compiler/code_info.m:
Completely rewrite the methods for handling failure.
Separate the fields of code_info into three classes: those which
do not change after initialization, those which record state that
depends on where in the HLDS goal we are, and those which contain
persistent data such as label and cell counters.
Rename grab_code_info and slap_code_info as remember_position
and reset_to_position, and add a wrapper around the remembered
code_info to make it harder to make mistakes in its use.
(Only the location-dependent fields of the remembered code_info
are used, but putting only them into a separate data structure would
result in more, not less, memory being allocated.)
Gather the predicates that deal with handling branched control
structures into a submodule.
Reorder the declarations and definitions of access predicates
to conform to the new order of fields.
Reorder the declarations and definitions of the failure handling
submodule to better reflect the separation of higher-level and
lower-level predicates.
compiler/code_gen.m:
Replace code_gen__generate_{det,semi,non}_goal_2 with a single
predicate, since for most HLDS constructs the code here is the same
anyway (the called preds check the code model when needed).
Move classification of the various kinds of unifications to unify_gen,
since that is where it belongs.
Move responsibility for initializing the code generator's trace
info to code_info.
Move the generation of code for negations to ite_gen, since the
handling of negations is a cut-down version of the handling of
negations. This should make the required double maintenance easier,
and more likely to happen.
compiler/disj_gen.m:
compiler/ite_gen.m:
These are the two modules that handle most failures; they have
undergone a significant rewrite. As part of this rewrite, factor
out the remaining common code between model_non and model_{det,semi}
goals.
compiler/unify_gen.m:
Move classification of the various kinds of unifications here from
code_gen. This allows us to keep several previously exported
predicates private.
compiler/call_gen.m:
Factor out some code that was common to ordinary calls, higher order
calls and method calls. Move the common code that checks whether
we are doing tracing to trace.m.
Replace call_gen__generate_{det,semi,nondet}_builtin with a single
predicate.
Delete the commented out call_gen__generate_complicated_unify,
since it will never be needed and in any case suffered from
significant code rot.
compiler/llds.m:
Change the mkframe instruction so that depending on one of its
arguments, it can create either ordinary frames, or the cut-down
frames used by the new failure handling algorithm (they have only
three fixed fields: prevfr, redoip and redofr).
compiler/llds_out.m:
Emit a #define MR_USE_REDOFR before including mercury_imp.h, to
tell the runtime we are using the new failure handling scheme.
This effectively changes the grade of the compiled module.
Emit MR_stackvar and MR_framevar instead of detstackvar and framevar.
This is a step towards cleaning up the name-space, and a step towards
making both start numbering at 0. For the time being, the compiler
internally still starts counting framevars at 0; the code in llds_out.m
adds a +1 offset.
compiler/trace.m:
Change the way trace info is initialized to fit in with the new
requirements of code_info.m.
Move the "are we tracing" check from the callers to the implementation
of trace__prepare_for_call.
compiler/*.m:
Minor changes in accordance with the major ones above.
compiler/options.m:
Introduce a new option, allow_hijacks, which is set to "yes" by
default. It is not used yet, but the idea is that when it is set to no,
the code generator will not generate code that hijacks the nondet
stack frame of another procedure invocation; instead, it will create
a new temporary nondet stack frame. If the current procedure is
model_non, it will have three fields: prevfr, redoip and redofr.
If the current procedure is model_det or model_semi, it will have
a fourth field that is set to the value of MR_sp. The idea is that
the runtime system, which will be able to distinguish between
ordinary frames (whose size is at least 5 words), 3-word and 4-word
temporary frames, will now be able to use the redofr slots of
all three kinds of frames and the fourth slot values of 4-word
temporary frames as the addresses relative to which framevars
and detstackvars respectively ought to be offset in stack layouts.
compiler/handle_options.m:
Turn off allow_hijacks if the gc method is accurate.
runtime/mercury_stacks.h:
Change the definitions for the nondet stack handling macros
to accommodate the new nondet stack handling discipline.
Define a new macro for creating temp nondet frames.
Define MR_based_stackvar and MR_based_framevar (both of which start
numbering slots at 1), and express other references, including
MR_stackvar and MR_framevar and backward compatible definitions of
detstackvar and framevar for hand-written C code, in terms of those
two.
runtime/mercury_stack_trace.[ch]:
Add a new function to print a dump of the fixed elements nondet stack,
for debugging my changes. (The dump does not include variable values.)
runtime/mercury_trace_internal.c:
Add a new undocumented command "D" for dumping the nondet stack
(users should not know about this command, since the output is
intelligible only to implementors).
Add a new command "toggle_echo" that can cause the debugger to echo
all commands. When the input to the debugger is redirected, this
echo causes the output of the session to be much more readable.
runtime/mercury_wrapper.c:
Save the address of the artificial bottom nondet stack frame,
so that the new function in mercury_stack_trace.c can find out
where to stop.
runtime/mercury_engine.c:
runtime/mercury_wrapper.c:
Put MR_STACK_TRACE_THIS_MODULE at the tops of these modules, so that
the labels they define (e.g. do_fail and global_success) are registered
in the label table when their module initialization functions are
called. This is necessary for a meaningful nondet stack dump.
runtime/mercury_grade.h:
Add a new component to the grade string that specifies whether
the code was compiled with the old or the new method of handling
the nondet stack. This is important, because modules compiled
with different nondet stack handling disciplines are not compatible.
This component depends on whether MR_USE_REDOFR is defined or not.
runtime/mercury_imp.h:
If MR_DISABLE_REDOFR is defined, undefine off MR_USE_REDOFR before
including mercury_grade.h. This is to allow people to continue
working on un-updated workspaces after this change is installed;
they should put "EXTRA_CFLAGS = -DMR_DISABLE_REDOFR" into
Mmake.stage.params. (This way their stage1 will use the new method
of handling failure, while their stage2 2&3 will use the old one.)
This change should be undone once all our workspaces have switched
over to the new failure handling method.
tests/hard_coded/cut_test.{m,exp}:
A new test case to tickle the various ways of handling cuts in the
new code generator.
tests/hard_coded/Mmakefile:
Enable the new test case.
|
||
|
|
f03737bef5 | Oops again! I forgot to cvs add par_conj_gen.m |