Commit Graph

6 Commits

Author SHA1 Message Date
Simon Taylor
2725b1a331 Aditi update syntax, type and mode checking.
Estimated hours taken: 220

Aditi update syntax, type and mode checking.

Change the hlds_goal for constructions in preparation for
structure reuse to avoid making multiple conflicting changes.

compiler/hlds_goal.m:
	Merge `higher_order_call' and `class_method_call' into a single
	`generic_call' goal type. This also has alternatives for the
	various Aditi builtins for which type declarations can't
	be written.

	Remove the argument types field from higher-order/class method calls.
	It wasn't used often, and wasn't updated by optimizations
	such as inlining. The types can be obtained from the vartypes
	field of the proc_info.

	Add a `lambda_eval_method' field to lambda_goals.

	Add a field to constructions to identify which RL code fragment should
	be used for an top-down Aditi closure.

	Add fields to constructions to hold structure reuse information.
	This is currently ignored -- the changes to implement structure
	reuse will be committed to the alias branch.
	This is included here to avoid lots of CVS conflicts caused by
	changing the definition of `hlds_goal' twice.

	Add a field to `some' goals to specify whether the quantification
	can be removed. This is used to make it easier to ensure that
	indexes are used for updates.

	Add a field to lambda_goals to describe whether the modes were
	guessed by the compiler and may need fixing up after typechecking
	works out the argument types.

	Add predicate `hlds_goal__generic_call_id' to work out a call_id
	for a generic call for use in error messages.

compiler/purity.m:
compiler/post_typecheck.m:
	Fill in the modes of Aditi builtin calls and closure constructions.
	This needs to know which are the `aditi__state' arguments, so
	it must be done after typechecking.

compiler/prog_data.m:
	Added `:- type sym_name_and_arity ---> sym_name/arity'.

	Add a type `lambda_eval_method', which describes how a closure
	is to be executed. The alternatives are normal Mercury execution,
	bottom-up execution by Aditi and top-down execution by Aditi.

compiler/prog_out.m:
	Add predicate `prog_out__write_sym_name_and_arity', which
	replaces duplicated inline code in a few places.

compiler/hlds_data.m:
	Add a `lambda_eval_method' field to `pred_const' cons_ids and
	`pred_closure_tag' cons_tags.

compiler/hlds_pred.m:
	Remove type `pred_call_id', replace it with type `simple_call_id',
	which combines a `pred_or_func' and a `sym_name_and_arity'.

	Add a type `call_id' which describes all the different types of call,
	including normal calls, higher-order and class-method calls
	and Aditi builtins.

	Add `aditi_top_down' to the type `marker'.

	Remove `aditi_interface' from type `marker'. Interfacing to
	Aditi predicates is now handled by `generic_call' hlds_goals.

	Add a type `rl_exprn_id' which identifies a predicate to
	be executed top-down by Aditi.
	Add a `maybe(rl_exprn_id)'  field to type `proc_info'.

	Add predicate `adjust_func_arity' to convert between the arity
	of a function to its arity as a predicate.

	Add predicates `get_state_args' and `get_state_args_det' to
	extract the DCG state arguments from an argument list.

	Add predicate `pred_info_get_call_id' to get a `simple_call_id'
	for a predicate for use in error messages.

compiler/hlds_out.m:
	Write the new representation for call_ids.

	Add a predicate `hlds_out__write_call_arg_id' which
	replaces similar code in mode_errors.m and typecheck.m.

compiler/prog_io_goal.m:
	Add support for `aditi_bottom_up' and `aditi_top_down' annotations
	on pred expressions.

compiler/prog_io_util.m:
compiler/prog_io_pragma.m:
	Add predicates
	- `prog_io_util:parse_name_and_arity' to parse `SymName/Arity'
		(moved from prog_io_pragma.m).
	- `prog_io_util:parse_pred_or_func_name_and_arity to parse
		`pred SymName/Arity' or `func SymName/Arity'.
	- `prog_io_util:parse_pred_or_func_and_args' to parse terms resembling
		a clause head (moved from prog_io_pragma.m).

compiler/type_util.m:
	Add support for `aditi_bottom_up' and `aditi_top_down' annotations
	on higher-order types.

	Add predicates `construct_higher_order_type',
	`construct_higher_order_pred_type' and
	`construct_higher_order_func_type' to avoid some code duplication.

compiler/mode_util.m:
	Add predicate `unused_mode/1', which returns `builtin:unused'.
	Add functions `aditi_di_mode/0', `aditi_ui_mode/0' and
	`aditi_uo_mode/0' which return `in', `in', and `out', but will
	be changed to return `di', `ui' and `uo' when alias tracking
	is implemented.

compiler/goal_util.m:
	Add predicate `goal_util__generic_call_vars' which returns
	any arguments to a generic_call which are not in the argument list,
	for example the closure passed to a higher-order call or
	the typeclass_info for a class method call.

compiler/llds.m:
compiler/exprn_aux.m:
compiler/dupelim.m:
compiler/llds_out.m:
compiler/opt_debug.m:
	Add builtin labels for the Aditi update operations.

compiler/hlds_module.m:
	Add predicate predicate_table_search_pf_sym, used for finding
	possible matches for a call with the wrong number of arguments.

compiler/intermod.m:
	Don't write predicates which build `aditi_top_down' goals,
	because there is currently no way to tell importing modules
	which RL code fragment to use.

compiler/simplify.m:
	Obey the `cannot_remove' field of explicit quantification goals.

compiler/make_hlds.m:
	Parse Aditi updates.

	Don't typecheck clauses for which syntax errors in Aditi updates
	are found - this avoids spurious "undefined predicate `aditi_insert/3'"
	errors.

	Factor out some common code to handle terms of the form `Head :- Body'.
	Factor out common code in the handling of pred and func expressions.

compiler/typecheck.m:
	Typecheck Aditi builtins.

	Allow the argument types of matching predicates to be adjusted
	when typechecking the higher-order arguments of Aditi builtins.

	Change `typecheck__resolve_pred_overloading' to take a list of
	argument types rather than a `map(var, type)' and a list of
	arguments to allow a transformation to be performed on the
	argument types before passing them.

compiler/error_util.m:
	Move the part of `report_error_num_args' which writes
	"wrong number of arguments (<x>; expected <y>)" from
	typecheck.m for use by make_hlds.m when reporting errors
	for Aditi builtins.

compiler/modes.m:
compiler/unique_modes.m:
compiler/modecheck_call.m:
	Modecheck Aditi builtins.

compiler/lambda.m:
	Handle the markers for predicates introduced for
	`aditi_top_down' and `aditi_bottom_up' lambda expressions.

compiler/polymorphism.m:
	Add extra type_infos to `aditi_insert' calls
	describing the tuple to insert.

compiler/call_gen.m:
	Generate code for Aditi builtins.

compiler/unify_gen.m:
compiler/bytecode_gen.m:
	Abort on `aditi_top_down' and `aditi_bottom_up' lambda
	expressions - code generation for them is not yet implemented.

compiler/magic.m:
	Use the `aditi_call' generic_call rather than create
	a new procedure for each Aditi predicate called from C.

compiler/rl_out.pp:
compiler/rl_gen.m:
compiler/rl.m:
	Move some utility code used by magic.m and call_gen.m into rl.m.

	Remove an XXX comment about reference counting being not yet
	implemented - Evan has fixed that.

library/ops.m:
compiler/mercury_to_mercury.m:
doc/transition_guide.texi:
	Add unary prefix operators `aditi_bottom_up' and `aditi_top_down',
	used as qualifiers on lambda expressions.
	Add infix operator `==>' to separate the tuples in an
	`aditi_modify' call.

compiler/follow_vars.m:
	Thread a `map(prog_var, type)' through, needed because
	type information is no longer held in higher-order call goals.

compiler/table_gen.m:
	Use the `make_*_construction' predicates in hlds_goal.m
	to construct constants.

compiler/*.m:
	Trivial changes to add extra fields to hlds_goal structures.

doc/reference_manual.texi:
	Document Aditi updates.

	Use @samp{pragma base_relation} instead of
	@samp{:- pragma base_relation} throughout the Aditi documentation
	to be consistent with other parts of the reference manual.

tests/valid/Mmakefile:
tests/valid/aditi_update.m:
tests/valid/aditi.m:
	Test case.

tests/valid/Mmakefile:
	Remove some hard-coded --intermodule-optimization rules which are
	no longer needed because `mmake depend' is now run in this directory.

tests/invalid/*.err_exp:
	Fix expected output for changes in reporting of call_ids
	in typecheck.m.

tests/invalid/Mmakefile
tests/invalid/aditi_update_errors.{m,err_exp}:
tests/invalid/aditi_update_mode_errors.{m,err_exp}:
	Test error messages for Aditi updates.

tests/valid/aditi.m:
tests/invalid/aditi.m:
	Cut down version of extras/aditi/aditi.m to provide basic declarations
	for Aditi compilation such as `aditi__state' and the modes
	`aditi_di', `aditi_uo' and `aditi_ui'. Installing extras/aditi/aditi.m
	somewhere would remove the need for these.
1999-07-13 08:55:28 +00:00
Thomas Conway
a70b59e83c Add a test to find the number of words needed to represent a
configure.in:
        Add a test to find the number of words needed to represent a
        synchronization term.

boehm_gc/gc.h:
        fix a declaration by replacing the args () with (void).
boehm_gc/solaris_pthreads.c:
        add a missing include
        check the return values of pthread calls.

compiler/*.m:
        Add handling for the new HLDS goal type par_conj.
        Add handling for the four new LLDS instructions:
                init_sync_term
                fork
                join_and_terminate
                join_and_continue

compiler/code_info.m:
        add a new alternative for slot_contents - sync_term.

compiler/handle_options.m:
        add .par as part of the grade

compiler/hlds_goal.m:
        add the new goal type par_conj.

compiler/instmap.m:
        add instmap__unify which takes a list of instmaps
                and abstractly unifies them.
        add unify_instmap_delta which tajes two instmap deltas
                and abstractly unifies them.

compiler/llds.m:
        add the new llds instructions.

compiler/mode_info.m:
        add par_conj as a lock reason.

library/Makefile:
        work around a bug in the solaris version pthread.h

library/benchmarking.m:
        reference the stack zones from the engine structure
        rather than from global variables.

library/{nc,sp}_builtin.nl:
        add an op declaration for &.

library/std_util.m:
        change references to global variables to references inside
        the engine structure.

runtime/Mmakefile:
        add mercury_thread.{c,h}
        add THREADLIBS to the libraries

runtime/*.{c,h}
        Remove some old junk from the previous processes/shrd-mem
        changes that found their way into the repository.
        Add MR_ prefixes to lots of names.

runtime/mercury_context.c:
        Add init_thread_stuff for creating and initializing a
        context structure for the current thread.

runtime/mercury_context.h:
        add a field to the mercury context which stores the thread id
        of the thread where this context originated.
        add various macros for implementing the new llds instructions.

runtime/mercury_engine.c:
        initialize the engine structure, rather than a bunch of globals.

runtime/mercury_engine.h:
        declare the mercury_engine structure.

runtime/mercury_regorder.h:
        if MR_THREAD_SAFE, and there is at least one global register
        then use mr0 as a pointer to the mercury engine structure.

scripts/init_grade_options.sh-subr
        add thread_safe

scripts/mgnuc.in
        add THREAD_OPTS

scripts/ml.in:
        add THREAD_LIBS
1998-06-09 02:16:31 +00:00
Zoltan Somogyi
5013dd9c76 Implement nondet pragma C codes.
Estimated hours taken: 40

Implement nondet pragma C codes.

runtime/mercury_stacks.h:
	Define a new macro, mkpragmaframe, for use in the implementation
	of nondet pragma C codes. This new macro includes space for a
	struct with a given sruct tag in the nondet stack frame being created.

compiler/{prog_data.m,hlds_goal.m}:
	Revise the representation of pragma C codes, both as the item and
	in the HLDS.

compiler/prog_io_pragma.m:
	Parse nondet pragma C declarations.

	Fix the indentation in some places.

compiler/llds.m:
	Include an extra argument in mkframe instructions. This extra argument
	gives the details of the C structure (if any) to be included in the
	nondet stack frame to be created.

	Generalize the LLDS representation of pragma C codes. Instead of a
	fixed sequence of <assign from inputs, user c code, assign to outputs>,
	let the sequence contain these elements, as well as arbitrary
	compiler-generated C code, in any order and possibly with repetitions.
	This flexibility is needed for nondet pragma C codes.

	Add a field to pragma C codes to say whether they can call Mercury.
	Some optimizations can do a better job if they know that a pragma C
	code cannot call Mercury.

	Add another field to pragma C codes to give the name of the label
	they refer to (if any). This is needed to prevent labelopt from
	incorrectly optimizing away the label definition.

	Add a new alternative to the type pragma_c_decl, to describe the
	declaration of the local variable that points to the save struct.

compiler/llds_out.m:
	Output mkframe instructions that specify a struct as invoking the new
	mkpragmaframe macro, and make sure that the struct is declared just
	before the procedure that uses it.

	Other minor changes to keep up with the changes to the representation
	of pragma C code in the LLDS, and to make the output look a bit nicer.

compiler/pragma_c_gen.m:
	Add code to generate code for nondet pragma C codes. Revise the utility
	predicates and their data structures a bit to make this possible.

compiler/code_gen.m:
	Add code for the necessary special handling of prologs and epilogs
	of procedures defined by nondet pragma C codes. The prologs need
	to be modified to include a programmer-defined C structure in the
	nondet stack frame and to communicate the location of this structure
	to the pragma C code, whereas the functionality of the epilog is
	taken care of by the pragma C code itself.

compiler/make_hlds.m:
	When creating a proc_info for a procedure defined by a pragma C code,
	we used to insert unifications between the headvars and the vars of
	the pragma C code into the body goal. We now perform substitutions
	instead. This removes a factor that would complicate the generation
	of code for nondet pragma C codes.

	Pass a moduleinfo down the procedures that warn about singletons
	(and other basic scope errors). When checking whether to warn about
	an argument of a pragma C code not being mentioned in the C code
	fragment, we need to know whether the argument is input or output,
	since input variables should appear in some code fragments in a
	nondet pragma C code and must not appear in others. The
	mode_is_{in,out}put checks need the moduleinfo.

	(We do not need to check for any variables being mentioned where
	they shouldn't be. The C compiler will fail in the presence of any
	errors of that type, and since those variables could be referred
	to via macros whose definitions we do not see, we couldn't implement
	a reliable test anyway.)

compiler/opt_util.m:
	Recognize that some sorts of pragma_c codes cannot affect the data
	structures that control backtracking. This allows peepholing to
	do a better job on code sequences produced for nondet pragma C codes.

	Recognize that the C code strings inside some pragma_c codes refer to
	other labels in the procedure. This prevents labelopt from incorrectly
	optimizing away these labels.

compiler/dupelim.m:
	If a label is referred to from within a C code string, then do not
	attempt to optimize it away.

compiler/det_analysis.m:
	Remove a now incorrect part of an error message.

compiler/*.m:
	Minor changes to conform to changes to the HLDS and LLDS data
	structures.
1998-01-13 10:14:23 +00:00
Zoltan Somogyi
bb4442ddc1 Update copyright dates for 1998.
Estimated hours taken: 0.5

compiler/*.m:
	Update copyright dates for 1998.
1998-01-13 10:06:08 +00:00
David Jeffery
7406335105 This change implements typeclasses. Included are the necessary changes to
Estimated hours taken: 500 or so

This change implements typeclasses. Included are the necessary changes to
the compiler, runtime and library.

compiler/typecheck.m:
	Typecheck the constraints on a pred by adding constraints for each
	call to a pred/func with constraints, and eliminating constraints
	by applying context reduction.

	While reducing the constraints, keep track of the proofs so that
	polymorphism can produce the tyepclass_infos for eliminated
	constraints.

compiler/polymorphism.m:
	Perform the source-to-source transformation which turns code with
	typeclass constraints into code without constraints, but with extra
	"typeclass_info", or "dictionary" parameters.

	Also, rather than always having a type_info directly for each type
	variable, sometimes the type_info is hidden inside a typeclass_info.

compiler/bytecode*.m:
	Insert some code to abort if bytecode generation is used when
	typeclasses are used.
compiler/call_gen.m:
	Generate code for a class_method_call, which forms the body of a class
	method (by selecting the appropriate proc from the typeclass_info).
compiler/dead_proc_elim.m:
	Don't eliminate class methods if they are potentially used outside
	the module
compiler/hlds_data.m:
	Define data types to store:
		- the typeclass definitions
		- the instances of a class
		- "constraint_proof". ie. the proofs of redundancy of a
		  constraint. This info is used by polymorphism to construct the
		  typeclass_infos for a constraint.
		- the "base_tyepclass_info_constant", which is analagous the
		  the base_type_info_constant
compiler/hlds_data.m:
	Define the class_method_call goal. This goal is inserted into the
	body of class method procs, and is responsible for selecting the
	appropriate part of the typeclass_info to call.
compiler/hlds_data.m:
	Add the class table and instance table to the module_info.
compiler/hlds_out.m:
	Output info about base_typeclass_infos and class_method_calls
compiler/hlds_pred.m:
	Change the representation of the locations of type_infos from "var"
	to type_info_locn, which is either a var, or part of a typeclass_info,
	since now the typeclass_infos contain the type_infos for the type that
	they constrain.

	Add constraints to the pred_info.

	Add constraint_proofs to the pred_info (so that typeclass.m can
	annotate the pred_info with the reasons that constraints were
	eliminated, so that polymorphism.m can in turn generate the
	typeclass_infos for the constraints).

	Add the "class_method" marker.

compiler/lambda.m:
	A feable attempt at adding class ontexts to lambda expressions,
	untested and almost certainly not working.
compiler/llds_out.m:
	Output the code addresses for do_*det_class_method, and output
	appropriately mangled symbol names for base_typeclass_infos.
compiler/make_hlds.m:
	Add constraints to the types on pred and func decls, and add
	class and instance declarations to the class_table and instance_table
	respectively.
compiler/mercury_compile.m:
	Add the check_typeclass pass.
compiler/mercury_to_mercury.m:
	Output constraints of pred and funcs, and output typeclass and instance
	declarations.
compiler/module_qual.m:
	Module qualify typeclass names in pred class contexts, and qualify the
	typeclass and instance decls themselves.
compiler/modules.m:
	Output typeclass declarations in the short interface too.
compiler/prog_data.m:
	Add the "typeclass" and "instance" items. Define the types to store
	information about the declarations, including class contexts on pred
	and func decls.
compiler/prog_io.m:
	Parse constraints on pred and func declarations.
compiler/prod_out.m:
	Output class contexts on pred and func decls.
compiler/type_util.m:
	Add preds to apply a substitution to a class_constraint, and to
	a list of class constraints. Add type_list_matches_exactly/2. Also
	add typeclass_info and base_typeclass_info as types which should not
	be optimised as no_tag types (seeing that we cheat a bit about their
	representation).
compiler/notes/compiler_design.html:
	Add notes on module qualification of class contexts. Needs expansion
	to include more stuff on typeclasses.
compiler/*.m:
	Various minor changes.

New Files:
compiler/base_typeclass_info.m:
	Produce one base_typeclass_info for each instance declaration.
compiler/prog_io_typeclass.m:
	Parse typeclass and instance declarations.
compiler/check_typeclass.m:
	Check the conformance of an instance declaration to the typeclass
	declaration, including building up a proof of how superclass
	constraints are satisfied so that polymorphism.m is able to construct
	the typeclass_info, including the superclass typeclass_infos.

library/mercury_builtin.m:
	Implement that base_typeclass_info and typeclass_info types, as
	well as the predicates type_info_from_typeclass_info/3 to extract
	a type_info from a typeclass_info, and superclass_from_typeclass_info/3
	for extracting superclasses.
library/ops.m:
	Add "typeclass" and "instance" as operators.
library/string.m:
	Add a (in, uo) mode for string__length/3.

runtime/mercury_ho_call.c:
	Implement do_call_*det_class_method, which are the pieces of code
	responsible for extracting the correct code address from the
	typeclass_info, setting up the arguments correctly, then executing
	the code.
runtime/mercury_type_info.h:
	Macros for accessing the typeclass_info structure.
1997-12-19 03:10:47 +00:00
Zoltan Somogyi
07cc196858 When generating code that raises trace events at runtime, trace not just
Estimated hours taken: 5

When generating code that raises trace events at runtime, trace not just
procedure calls, exits and failures, but also entries to switch arms,
disjunction arms and to the then and else parts of if-then-elses.
These new trace ports are exactly what is needed to let the trace analyzer
figure out what path execution took inside a procedure. (This includes
knowing at what point forward execution resumes after backtracking.)
The new ports correspond to the UNIFY port in the Opium debugger, which
signified entry to a clause.

These new ports complete the set of ports required for generating traces
whose information content is approximately equivalent to Opium (i.e. as
close to Opium functionality as we can get in Mercury).

compiler/trace.m:
	Add code to handle the new ports.

compiler/hlds_goal.m:
	Add an extra slot to each hlds_goal_info structure. This slot
	holds information about the position of the goal within the
	procedure, in the form of a description of the path from the
	root of the main goal to this goal. This info is included in
	the new trace ports.  It is likely that this info will also be
	used by optimizations (such as loop invariant removal) to be
	implemented later.

compiler/goal_path.m:
	A new module whose job it is to fill the new goal_info slot;
	later it may also contain code to e.g. check whether one goal
	is before, after, or parallel to another.

compiler/hlds_out.m:
	Include the new slot in HLDS dumps.

compiler/mercury_compile.m:
	Invoke code in goal_path.m to fill in the new slot just before
	code generation when generating traces.

compiler/dense_switch.m:
compiler/disj_gen.m:
compiler/ite_gen.m:
compiler/string_switch.m:
compiler/switch_gen.m:
compiler/tag_switch.m:
	Emit code for invoking the new trace ports.

runtime/mercury_trace.c:
runtime/mercury_trace.h:
	Implement the new ports.
1997-10-13 08:10:49 +00:00